首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
混合模糊证据权模型在河北承德煤炭资源预测中的应用   总被引:1,自引:0,他引:1  
黄秀  张钊  陈建平  刘清俊  别立东 《地质通报》2010,29(7):1075-1081
应用模糊逻辑法、加权证据权法相结合的混合模糊证据权模型和GeoDASGIS技术开展了承德煤炭资源预测研究。采用模糊逻辑法对与煤炭矿床有关的证据层进行了系统的处理和分析,并在此基础上采用加权证据权方法编制了成矿后验概率图,最终划分出5个主要的找矿远景区。研究结果不仅对进一步开展预测区优选评价具有重要的参考意义,而且为混合知识驱动与数据驱动的混合预测模型提供了一种可借鉴的有效方法。  相似文献   

2.
Selection of potential areas for mineral exploration is a complex process and needs many diverse criteria. Combining analytic hierarchy process (AHP) modeling with geographic information system (GIS) provides an effective means for studies of mineral potential mapping evaluation. Fuzzy AHP is an extension of conventional AHP and by using fuzzy theory is obtained the advantage rather AHP method. In this paper to provide, potential mapping for Cu porphyry mineralization used fuzzy AHP and GIS in the Ahar–Arasbaran areas, several criteria, such as geology, geochemical and geophysical data, alteration, and faults were used. Each criterion was evaluated with the aid of fuzzy AHP and mapped by GIS. The method allowed a mixture of quantitative and qualitative information with group decision. The results and its validation demonstrate the acceptable outcomes for copper porphyry exploration.  相似文献   

3.
Multi-criteria decision-making methods support decision makers in all stages of the decision-making process by providing useful data. However, criteria are not always certain as uncertainty is a feature of the real world. MCDM methods under uncertainty and fuzzy systems are accepted as suitable techniques in conflicting problems that cannot be represented by numerical values, in particular in energy analysis and planning. In this paper, a modified TOPSIS method for multi-criteria group decision-making with qualitative linguistic labels is proposed. This method addresses uncertainty considering different levels of precision. Each decision maker’s judgment on the performance of alternatives with respect to each criterion is expressed by qualitative linguistic labels. The new method takes into account linguistic data provided by the decision makers without any previous aggregation. Decision maker judgments are incorporated into the proposed method to generate a complete ranking of alternatives. An application in energy planning is presented as an illustrative case example in which energy policy alternatives are ranked. Seven energy alternatives under nine criteria were evaluated according to the opinion of three environmental and energy experts. The weights of the criteria are determined by fuzzy AHP, and the alternatives are ranked using qualitative TOPSIS. The proposed approach is compared with a modified fuzzy TOPSIS method, showing the advantages of the proposed approach when dealing with linguistic assessments to model uncertainty and imprecision. Although the new approach requires less cognitive effort to decision makers, it yields similar results.  相似文献   

4.
This paper presents an application of the analytical hierarchy process and fuzzy analytical hierarchy process methods for selecting the best wastewater treatment process. The analytical hierarchy process is one of the best ways for deciding among the complex criteria structure in different levels, and the fuzzy analytical hierarchy process is a synthetic extension of the classical method when the fuzziness of the decision makers are considered. After reviewing aerobic treatment processes operated in Iran’s industrial estates and determining the main criteria used for treatment process evaluation, they are arranged in a hierarchy structure. Selection of the best wastewater treatment process is a multi-criteria decision making problem. Conventional methods are inadequate for dealing with the imprecise or vague nature of linguistic assessment. To overcome this difficulty, the fuzzy analytical hierarchy process is proposed for dealing with the vagueness of decision makers’ judgments. The alternatives consist of extended aeration, absorption bio-oxidation, integrated fixed-film activated sludge, sequencing batch reactor, aerated lagoon. Based on the general condition of industrial estate’s wastewater treatment plants, technical/administrative, economic and environmental criteria and their sub-criteria are weighted and then criteria evaluated and priorities of alternatives have been done by analytical hierarchy process and fuzzy analytical hierarchy process methods by the use of triangular fuzzy numbers. Finally, selection of the best process and ranking of these five processes are carried out by these foregoing methods, and some sensitivity analyses are conducted to show the results’ sensitiveness to the changes of the weights of the evaluation criteria.  相似文献   

5.
Nowadays, selection of the suitable disposal site in municipal solid waste (MSW) management has become a challenge task for the municipal authorities, especially in fast-growing areas. Site selection can be viewed as a complicated multi-criteria decision-making (MCDM) problem requiring consideration of multiple alternative solutions and conflicting quantitative and qualitative criteria. In this paper, linguistic variables, which can be expressed as trapezoidal fuzzy numbers, are used to assess the ratings and weights for the selection criteria. The ordered weighted averaging operator is utilized to transform the fuzzy decision matrix into crisp values considering the decision maker’s attitudinal character. For selecting the best site, the extended VIsekriterijumska optimizacija i KOmpromisno Resenje (VIKOR) method is applied to determine the priority ranking of alternatives. As a result, a hierarchy MCDM model based on fuzzy set theory and VIKOR method is proposed to deal with the site selection problems in the MSW management system. An empirical study in Shanghai, China, is provided and comparison with the existing approach is conducted to illustrate the applicability and benefits of the proposed method.  相似文献   

6.
This paper presents a GIS-based multi-criteria site selection for municipal solid waste landfilling in Ariana Region, Tunisia. Based on the regional characteristics, literature related to disposal sites and waste management, local expert, data availability and assessments via questionnaires, 15 constraints, and 5 factors were built in the hierarchical structure for landfill suitability by multi-criteria evaluation. The factors are divided into environmental and socio-economic groups. The methodology is used for preliminary assessment of the 20-year most useful lifetime suitable landfilling sites by combining fuzzy set theory, weighted linear combination (WLC) and analytic hierarchy process (AHP) in a GIS environment. The criteria standardization is undertaken by application of different fuzzy membership functions. The fuzzy membership functions shape and their control points are chosen through assessment of expert opinion. The weightings of each selection criterion are assigned depending on the relative importance using the AHP methodology. The WLC approach is applied for alternative landfill sites prioritization. The results of this study showed five potential candidate sites, which are generated when the environmental factors are valued higher than socio-economic factors. These sites are ranked in descending order using the ELECTRE III method. However, the final decision will require further detailed geotechnical and hydrogeological analyses toward the protection of groundwater as well as surface water.  相似文献   

7.
Identifying highly favorable areas related to a particular mineralization type is the main objective of mineral prospectivity modeling (MPM). The northwestern portion of Ahar-Arasbaran porphyry copper belt (AAPCB) is situated within the Urumieh-Dokhtar magmatic belt (UDMB). Because of owning many worthwhile Cu-Mo and Cu-Au porphyry deposits, this area is entitled to incorporate diverse spatial evidence layers for the MPM. In this paper, a hybrid AHP-VIKOR, as an improved knowledge-driven MPM procedure has been proposed for integration of various exploration evidence layers. For this, the AHP is used to calculate important weights of spatial criteria while the VIKOR is applied to outline ultimate prospectivity model. Six effective spatial evidence layers pertaining to the Varzaghan District are selected: (1) multi-elemental geochemical layer of Cu-Mo-Bi-Au; (2) remotely sensed data of argillic, phyllic, and iron oxide alteration layers; and (3) geological and structural layers of Oligo-Miocene intrusions and fault. In addition, a fuzzy prospectivity model (γ?=?0.9) is implemented to assess the AHP-VIKOR approach. Two credible validation methods comprising normalized density index and success rate curve are adapted for quantitative evaluation of predictive models and enhancing the probability of exploration success. The achieved results proved the higher accuracy of the AHP-VIKOR model compared with the fuzzy model in delimiting the favorable areas.  相似文献   

8.
Pathways for adaptive and integrated disaster resilience   总被引:7,自引:2,他引:5  
The GIS-multicriteria decision analysis (GIS-MCDA) technique is increasingly used for landslide hazard mapping and zonation. It enables the integration of different data layers with different levels of uncertainty. In this study, three different GIS-MCDA methods were applied to landslide susceptibility mapping for the Urmia lake basin in northwest Iran. Nine landslide causal factors were used, whereby parameters were extracted from an associated spatial database. These factors were evaluated, and then, the respective factor weight and class weight were assigned to each of the associated factors. The landslide susceptibility maps were produced based on weighted overly techniques including analytic hierarchy process (AHP), weighted linear combination (WLC) and ordered weighted average (OWA). An existing inventory of known landslides within the case study area was compared with the resulting susceptibility maps. Respectively, Dempster-Shafer Theory was used to carry out uncertainty analysis of GIS-MCDA results. Result of research indicated the AHP performed best in the landslide susceptibility mapping closely followed by the OWA method while the WLC method delivered significantly poorer results. The resulting figures are generally very high for this area, but it could be proved that the choice of method significantly influences the results.  相似文献   

9.
The analytical hierarchy process (AHP) is one of the most effective methods for criteria ranking/weighting to have been successfully incorporated into GIS analyses. We present a new method for optimizing pairwise comparison decision-making matrices in AHP method, which has been developed on the basis of an interval pairwise comparison matrix (IPCM) derived from expert knowledge. The method has been used for criteria ranking in land subsidence susceptibility mapping (LSSM) as a practical test case, for which an interval matrix was generated by pairwise comparison. To compare the capability of the AHP method (a traditional approach) with that of the proposed IPCM method (a novel approach), 11 creations of LSSM were ranked using each approach in turn. The criteria weightings obtained were then used to produce LSSM maps based on each of these approaches. The results were tested against a data set of known land subsidence occurrences, indicating an improvement in accuracy of about 14% in the LSSM map that was developed using the IPCM method. This improvement was achieved by minimizing the uncertainty associated with criteria ranking/weighting in a traditional AHP and could form a basis for future research into minimizing the uncertainty in weightings derived using the AHP method. Our results will be of considerable importance for researchers involved in GIS-based multi-criteria decision analysis (MCDA) and those dealing with GIS-based spatial decision-making methods.  相似文献   

10.
In this paper, point pattern analysis, fractal analysis and Fry analysis were employed to study the spatial pattern of known occurrences of mineral deposits of the type sought, whereas distance distribution method was applied to study the spatial associations between various geological features and known occurrences of mineral deposits of the type sought. In the Aroroy district (Philippines), the results of the applications of these spatial analytical techniques support a conceptual model of district-scale mechanism of geologic controls on low-sulphidation epithermal Au mineralization, which involves a more-or-less regular mesh of interlinked zones of extension faults/fractures at and/or around intersections of NNW- and NW-trending strike-slip faults/fractures. Integration of spatial evidential data layers representing these structural controls and surficial geochemical anomalies, via knowledge-guided application of data-driven evidential belief functions, results in delineation of prospective areas occupying about 25% of the district, in which there is about 70% likelihood of undiscovered occurrences of low-sulphidation epithermal Au deposits.  相似文献   

11.
路基下岩溶稳定性评价的模糊多层次多属性决策方法研究   总被引:1,自引:0,他引:1  
程晔  赵明华  曹文贵 《岩土力学》2007,28(9):1914-1918
影响高速公路路基下岩溶稳定性的因素很多,影响程度各不相同且包含各种模糊信息。基于实际工程资料,综合运用层次分析方法和模糊多属性决策方法,建立路基下岩溶顶板稳定性评价的模糊多层次多属性决策模型;采用Laagoven和Buckley关于层次分析方法中权重比矩阵元素模糊化的建议,推导出权重比矩阵元素为三角模糊数的模糊权值向量计算公式,再按照模糊平均加权方法(F-SAW)得到每个评语的模糊效应值;最后以此结果进行模糊集排序,得到岩溶顶板稳定性的评语。实际工程的应用结果表明了方法的可行性和有效性,为岩溶区路基稳定性评价提供了新的思路和方法。  相似文献   

12.
A major challenge for mineral exploration geologists is the development of a transparent and reproducible approach to targeting exploration efforts, particularly at the regional to camp scales, in terranes under difficult cover where exploration and opportunity costs are high. In this study, a three-pronged approach is used for identifying the most prospective ground for orogenic gold deposits in the Paleoproterozoic Granite-Tanami Orogen (GTO) in Western Australia.A key input to the analyses is the recent development of a 4D model of the GTO architectural evolution that provides new insights on the spatio-temporal controls over orogenic gold occurrences in the area; in particular, on the role of pre-mineralization (pre-1795 Ma) DGTOE–DGTO1–DGTO2 architecture in localization of gold deposits and the spatial distribution of rock types in 3D. This information is used to build up a model of orogenic gold minerals system in the area, which is then integrated into the three mutually independent but complementary mineral prospectivity maps namely, a concept-driven “manual” and “fuzzy” analysis; and a data-driven “automated” analysis.The manual analysis involved: (1) generation of a process-based gold mineral systems template to aid target selection; (2) manual delineation of targets; (3) manual estimation of the probability of occurrence of each critical mineralization process based on the available information; and (4) combining the above probabilities to derive the relative probability of occurrence of orogenic gold deposits in each of the targets. The knowledge-based Geological Information System (GIS) analysis attempts to replicate the expert knowledge used in the manual approach, but queried in a more systematic format to eliminate human heuristic bias. This involves representing the critical mineralization processes in the form of spatial predictor maps and systematically querying them through the use of a fuzzy logic model to integrate the predictor maps and to derive the western GTO orogenic gold prospectivity map. The data-driven ‘empirical’ GIS analysis uses no expert knowledge. Instead it employs statistical measures to evaluate the spatial associations between known deposits and predictor maps to establish weights for each predictor layer then combines these layers into a predictive map using a Weights of Evidence (WofE) approach.Application of a mineral systems approach in the manual analysis and the fuzzy analysis is critical: potential high value targets identified by these approaches in the western GTO lie largely under cover, whereas traditional manual targeting is biased to areas of outcrop or sub-crop amenable to direct detection technology such as exploration geochemistry, and therefore towards areas that are data rich.The results show the power of combining the three approaches to prioritize areas for exploration. While the manual analysis identifies and employs human intuition and can see through incomplete datasets, it is difficult to filter out human bias and to systematically apply to a large region. The fuzzy method is more systematic, and highlights areas that the manual analysis has undervalued, but lacks the intuitive power of the human mind that refines the target by seeing through incomplete datasets. The empirical WoE method highlights correlations with favorable host stratigraphy and highlights the control of an early set of structures potentially undervalued in the knowledge driven approaches, yet is biased due to the incomplete nature of exploration datasets and lack of abundant gold deposits due to the extensive cover.The results indicate that the most prospective areas for orogenic gold in western GTO are located in the central part of the study area, largely in areas blind to previous exploration efforts. According to our study, the procedure to follow should be to undertake the analyses in the following order: manual prospectivity analysis, followed by the conceptual fuzzy approach, followed by the empirical GIS-based method. Undertaking the manual analysis first is important to prevent explorationists from being biased by the automated GIS-based outputs. It is however emphasized that all of the prospectivity outputs from these three methods are possible, and they should not be treated as ‘treasure maps’, but instead, as decision-support aids. Therefore, a final manual prospectivity analysis redefined by the mutual consideration of output from all of the methods is required.The strategy employed in this study constitutes a new template for best-practice in terrane- to camp-scale exploration targeting that can be applied to different terranes and deposit types, particularly in terranes under cover, and provides a step forward in managing uncertainty in the exploration targeting process.  相似文献   

13.
Mineral exploration programs commonly use a combination of geological, geophysical and remotely sensed data to detect sets of optimal conditions for potential ore deposits. Prospectivity mapping techniques can integrate and analyse these digital geological data sets to produce maps that identify where optimal conditions converge. Three prospectivity mapping techniques – weights of evidence, fuzzy logic and a combination of these two methods – were applied to a 32,000 km2 study area within the southeastern Arizona porphyry Cu district and then assessed based on their ability to identify new and existing areas of high mineral prospectivity. Validity testing revealed that the fuzzy logic method using membership values based on an exploration model identified known Cu deposits considerably better than those that relied solely on weights of evidence, and slightly better than those that used a combination of weights of evidence and fuzzy logic. This led to the selection of the prospectivity map created using the fuzzy logic method with membership values based on an exploration model. Three case study areas were identified that comprise many critical geological and geophysical characteristics favourable to hosting porphyry Cu mineralisation, but not associated with known mining or exploration activity. Detailed analysis of each case study has been performed to promote these areas as potential targets and to demonstrate the ability of prospectivity modelling techniques as useful tools in mineral exploration programs.  相似文献   

14.
This study presents a geographic information systems-based multi-criteria site selection of non-hazardous regional landfill in Polog Region, Macedonia. The multi-criteria decision framework integrates legal requirements and physical constraints that relate to environmental and economic concerns and builds a hierarchy model for landfill suitability. The methodology is used for preliminary assessment of the most suitable landfill sites by combining fuzzy set theory and analytic hierarchy process (AHP). The fuzzy set theory is used to standardize criteria using different fuzzy membership functions while the AHP is used to establish the relative importance of the criteria. The AHP makes pairwise comparisons of relative importance between hierarchy elements grouped by environmental and economic decision criteria. The landfill suitability is achieved by applying weighted linear combination that uses a comparison matrix to aggregate different importance scenarios associated with environmental and economic objectives. The results from the study suggested that a least suitable landfill area of 1.0% from the total is generated when environmental and economic objectives are valued equally while a most suitable landfill area of 1.8% area is generated when the economic objective is valued higher. Such results are aimed for enhancement of regional landfill site selection in the country that is compliant with modern EU standards.  相似文献   

15.
One of the major strengths of a GIS is the ability to integrate and combine multiple layers of geoscience data for producing mineral potential maps showing favorable areas for mineral exploration. Once the data is prepared properly, the GIS, jointly with other statistical and geostatistical software packages, can be used to manipulate and visualize the data in order to produce a mineral prospectivity map. Many spatial modeling techniques can be employed to produce mineral potential maps. This paper demonstrates a technique to define favorable areas for REE mineralization with AHP technique using geological, geochemical, geophysical, alteration and faults density spatial data in the Kerman-Kashmar Tectonic Zone of central Iran. The AHP is a powerful and flexible multi-criteria decision-making tool for dealing with complex problems where both qualitative and quantitative aspects need to be considered. This approach is knowledgedriven method and can be applied in other areas for conventional use in mineral exploration.  相似文献   

16.
17.
《Ore Geology Reviews》2003,22(1-2):117-132
A data-driven application of the theory of evidential belief to map mineral potential is demonstrated with a redefinition of procedures to estimate evidential belief functions. The redefined estimates of evidential belief functions take into account not only the spatial relationship of an evidence with the target mineral deposit but also consider the relationships among the subsets of spatial evidences within a set of evidential data layer. Proximity of geological features to mineral deposits is translated into spatial evidence and evidential belief functions are estimated for the proposition that mineral deposits exist in a test area. The integrated maps of degrees of belief for the proposition that mineral deposits exist in a test area is classified into a binary mineral potential map. For the Baguio district (Philippines), the binary gold potential map delineates (a) about 74% of the training data (i.e., locations of large-scale gold deposits) and (b) about 64% of the validation data (i.e., locations of small-scale gold deposits). The results demonstrate the usefulness of a geologically constrained mineral potential mapping using data-driven evidential belief functions to guide further surficial exploration work in the search for yet undiscovered gold deposits in the Baguio district. The results also indicate the usefulness of evidential belief functions for mapping uncertainties in the geologically constrained integrated predictive model of gold potential.  相似文献   

18.
During the last decades, growth of urbanization and industrialization led to an increase in solid waste generation. Landfilling is the most prevalent ultimate disposal method for the municipal solid wastes in developing countries. The rapid municipal solid waste generation in Markazi province (central part of Iran) causes the need for precision in finding a suitable landfill site selection. In the present study, 12 factors (environmental and socioeconomic factors) have been applied to select the landfill site in Markazi province, Iran. The different methods including the analytic network process (ANP) combined with fuzzy linguistic quantifier, ordered weighted average (OWA), and weighted linear combination (WLC) approach in geographic information system was applied to find an appropriate landfill site. The OWA operator function permits the evaluation of the wide spectrum of consequences (with different scenario) obtained from different management strategies. Results revealed that integration of fuzzy logic, ANP, and OWA provides flexible and better ideas compared to the Boolean logic and WLC to select a suitable landfill site.  相似文献   

19.
模糊证据权方法在镇沅(老王寨)地区金矿资源评价中的应用   总被引:11,自引:0,他引:11  
成秋明  陈志军 《地球科学》2007,32(2):175-184
采用模糊证据权方法和GeoDASGIS技术开展了镇沅(老王寨)及其邻区的金矿资源潜力评价.分别采用GeoDASGIS软件提供的局部奇异性分析技术、S-A异常分解技术、主成分分析技术、证据权、模糊证据权等技术对相关地球化学元素进行了系统的处理和分析.应用主成分分析方法确定了可能的2种不同成矿类型,并采用主成分得分确定了组合异常点,在此基础上分别采用普通证据权和模糊证据权方法编制了成矿后验概率图,圈定了有利成矿地段.对比普通证据权方法与模糊证据权方法所得结果表明,模糊证据权方法可减小图层离散化造成的有用信息损失,提高预测结果精度.  相似文献   

20.
Landfill site selection is a complex and time-consuming process, which requires evaluation of several factors where many different attributes are taken into account. Decision makers always have some difficulties in making the right decision in the multiple attribute environments. After identifying candidate sites, these sites should be ranked using decision-making methods. This study applies Chang’s fuzzy AHP-based multiple attribute decision-making (MADM) method for selection of the best site of landfills based on a set of decision criteria. The Fuzzy Analytic Hierarchy Process (FAHP) was designed to make pairwise comparisons of selected criteria by domain experts for assigning weights to the decision criteria. Analytic Hierarchy Process (AHP) is used to make pairwise comparisons and assign weights to the decision criteria. It is easier for a decision maker to describe a value for an alternative by using linguistic terms and fuzzy numbers. In the fuzzy-based AHP method, the rating of each alternative was described using the expression of triangular fuzzy membership functions. Once the global weights of the criteria is calculated by AHP, they are incorporated into the decision matrices composed by decision maker and passed to fuzzy-AHP method which is used to determine preference order of siting alternatives. In this study, a computer program based on the Chang’s fuzzy method was also developed in MATLAB environment for ranking and selecting the landfill site. As an example of the proposed methodology, four different hypothetical areas were chosen and implemented to demonstrate the effectiveness of the program. By using this program, the precision was improved in comparison with traditional methods and computational time required for ranking and selecting the suitable landfill site was significantly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号