首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tuff layers are vital stratigraphic tools that allow correlations to be made between widely dispersed exposures. Despite their widespread occurrence in the central Andes, tuffs from both natural exposures and sedimentary cores extracted from the region's extensive salars (salt pans) are relatively unstudied. Here we lay the foundation for a tephrostratigraphic framework in the central Andes (14–28°S) by chemically and morphologically characterizing ash shards, and in some cases dating 36 Neogene distal tuffs. These tuffs occur in lacustrine and alluvial deposits from the southern Bolivian Altiplano and adjacent Atacama Desert. All tuffs are calc-akaline rhyolites, consistent with their setting in the Central Andean Volcanic Zone. Five of the older tuffs were 40Ar/39Ar dated and yield an age range of 6.63–0.75 Ma. Organic material associated with tuffs deposited into paleolake sediments, paleowetland deposits, or urine-encrusted rodent middens provide constraints on the age of several Late Pleistocene and Holocene tuffs.These tuffs provide key stratigraphic markers and ages for lake cycles and archeological sites on the Bolivian Altiplano and for assessing rates of surficial processes and archeology in both the Atacama and Altiplano. While modern climate, and consequently questions about geomorphic processes and climate change, differs in the hyperarid Atacama and the semi-arid Altiplano, the most extensive air-fall tuffs covered both regions, placing the Atacama and the Bolivian Altiplano in the same tephrostratigraphic province. For example, the Escara B tuff (~1.85 Ma), can be securely identified in both the Altiplano and Atacama. On the Altiplano, dates from the Escara B and E tuffs securely establish the age of the Escara Formation—representing the oldest expansive lake documented on the Bolivian Altiplano. By contrast, the presence of the Escara B tuff below ~6 m of alluvial sediment at the Blanco Encalado site in the Atacama desert yields information about sedimentation rates in this hyperarid region. Indeed, most tuffs from the Atacama Desert are older than 600,000 years, even though they occur within fluvial terraces immediately adjacent to the alluvial fans that are still active. Most of these geomorphic surfaces in the Atacama also possess well-developed saline soils that, when combined with the radiometric ages of the distal tuffs, suggest slow rates of geomorphic change and exceptional landscape stability for this area during the Quaternary.In contrast, younger tuffs are more abundant in the more recent lake records of the Altiplano. The Chita tuff was deposited at ~15,650 cal yr B.P., during the regressive phase of the region's deepest late Quaternary lake cycle—the “Tauca lake cycle”—which spanned 18.1–14.1 cal yr B.P. Two Holocene tuffs, the Sajsi tuff and the Cruzani Cocha tuff, are widespread. The Sajsi tuff was deposited just before 1700 cal yr B.P., whereas the Cruzani Cocha tuff appears to be mid-Holocene in age and shows some chemical affinities to a Holocene tuff (202B) deposited between 4420 and 5460 cal yr B.P. in a urine-encased rodent midden in the Atacama Desert.  相似文献   

2.
In northern Chile, which is part of the Atacama Desert, groundwater supply and storage are controlled by deep structural phenomena. Several geophysical exploration techniques were used to determine the structure and depth of the basement of a broad valley filled with unconsolidated alluvial deposits. The gravity method was applied to obtain a general picture of the basement. This was followed by seismic refraction measurements along two traverse lines which appeared to be of major interest. Additional experiments with the magnetic and the telluric methods supplemented the geophysical investigations. In this paper the results of the different geophysical methods are presented, compared, and evaluated with respect to the usefulness in arid regions. It is concluded that a complementary use of the gravity method and the seismic refraction method is a very fruitful and efficient approach for the geophysical reconnaissance of water-bearing basins in flat and arid zones like the Atacama Desert.  相似文献   

3.
The growth of vertically laminated calcium-sulphate wedges in the Atacama Desert is assumed to be driven by the interaction of moisture supply and salt dynamics in the subsurface. Geochronological data of these wedge laminations is yet sparse but indispensable to resolve wedge-growth phases and episodes of moisture supply and to use these deposits as a palaeoclimate archive in the hyperarid environment. Our pilot study presents a first approach of dating a calcium-sulphate wedge from the Atacama Desert using coarse-grain feldspar luminescence dating. Our results show a widespread and clustered equivalent-dose distribution of two wedge samples from ∼20 Gy up to saturation. Optically stimulated luminescence (OSL) of quartz revealed unsuitable properties for dating wedge deposits. Consequently, we applied post-infrared infrared stimulated luminescence (post-IR IRSL) to coarse-grained feldspars. Since feldspar single-grain measurements yielded a low number of luminescent grains, we used 1 mm aliquots as reliable single-grain proxies for genuine single-grain measurements. Data from energy-dispersive x-ray spectroscopy (EDX) showed that the feldspar single grains have large differences in their internal K content, resulting in an averaged internal K content of 3.9 ± 1.0 % for all luminescent grains. This result was subsequently used for dose rate and age calculations. Our results of equivalent-dose distributions and palaeodoses derived from the minimum age model reveal most recent wedge-growth activities at 10.6 ± 2.2 ka and 7.9 ± 1.8 ka for the two wedge samples.  相似文献   

4.
Receiving <0.1 mm/y of precipitation, Egypt’s hyperarid Western Desert, today lacks naturally occurring surface water. Artesian spring deposits, tufa deposited by springs and carbonate-rich silty lacustrine sediment attest that oases in the Western Desert had surface water during the Pleistocene. Paleolithic artefacts, fossil ungulate teeth, and snails occurring within the Pleistocene deposits and dotting the surface record times when higher rainfall and/or groundwater tables during pluvial events allowed surface water to exist in wetlands, small ponds and lakes, enabling hominin habitation. Archaeological finds ranging from Early to Later Stone Age (ESA–LSA) occur in gravel lags, within sedimentary deposits, and on the older geomorphic surfaces. Near Kharga, large tufa deposits ranging from a few hectares to more than 10 km2 in area, such as Matana and Medauwara, dot the edge of the Libyan Plateau. Molluscs were dated using standard ESR protocols. To test for reworked fossils, multiple samples from a single sample were dated independently. In some units at Medauwara, multiple gastropod populations from different times have been preserved, while others appear to only preserve a single population. To see the effects of the cosmic dose rate on ESR ages, ages were calculated using zero cosmic dose rate, the full modern cosmic dose rate, and time-averaged cosmic and sedimentary dose rates. For gastropods from Matana, no significant difference in ESR ages resulted from different cosmic dose rate assumptions. Therefore, at Matana 2, the shells dated at 27.7 ± 1.9 assuming time-averaged external dose rates, while at Matana 3, they averaged 65.1 ± 4.1 ka, suggesting that water was present for hominin use at times during OIS 2 and 4.  相似文献   

5.
The Atacama Desert has been predominantly hyperarid since the middle Miocene. Combined ionic and X-ray diffraction analysis shows that calcium sulphate is prevalent on three similar alluvial fans in salar basins across a transect of different environments in Antofagasta Province, northern Chile. Differences between the fans were largely due to the effect of local factors on salt input, secondary redistribution and deposit preservation. Thus carbonate was notable in the High Andes (fan C) and Pre-Cordillera (fan B), whereas in the Central Valley (fan A) greater qualities of the more soluble salts (chlorides and nitrates) probably reflect the higher level of aridity and an oceanic source (the camanchaca). Calcium sulphate distribution on the alluvial fans and on adjacent hilltops indicates an aeolian origin. Evidence from the Pre-Cordillera (fan B), however, suggests that salt input may have been episodic, related to changes in conditions within the general aridity and possibly to stone pavement and soil development. Calcium sulphate sources range from an input in Andean precipitation and the camanchaca to abundant regional evaporite deposits. It is probable, however, that products of Andean volcanism constitute the dominant primary source of calcium sulphate, and that the salt has subsequently been distributed widely within the endoreic basins of the region by a combination of groundwater, surface flow and the wind. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
This study developed a correction approach to improve the rainfall field estimation using the TRMM rainfall product in a sparsely-gauged mountainous basin. First, Thiessen polygons were generated to define the measurement domain of each raingauge. Second, the rainfall of TRMM pixels in each Thiessen polygon was corrected using a benchmark method based on the difference between the monthly rainfall estimated by a raingauge and the TRMM pixel that possessed a gauge station (referred to as a gauged pixel). Third, the rainfall values in the gauged pixels were adjusted to the weighted average value of the gauge rainfall and corrected pixel rainfall. Finally, the rainfall in the non-gauged TRMM pixels was corrected as the sum of two terms. The first term is the adjusted rainfall in the corresponding gauged pixel in the same Thiessen polygon, and the second term is the rainfall (after benchmark correction) difference between the current pixel and the gauged pixel. Our results indicate that the corrected rainfall data outperforms the original TRMM product in the simulations of moderate and low flows and outperforms the sparse raingauges in the simulations of both peak and low flows.

EDITOR A. Castellarin; ASSOCIATE EDITOR S. Huang  相似文献   

7.
Semicircular and crescent-shaped accumulations of salt crystals developed on salt crusts were measured on three Tunisian playas in September 1990. These features have been termed salt ramps. Their morphology and chemistry suggest that they are formed in the late stages of shallow ephemeral lake desiccation in playa basins. They form by salt precipitation from shallow brine lakes that are blown across salt-encrusted playa surfaces by the wind. Moreover, they appear to be short-lived features and their degradation is related to the flooding of playas with less saline water, and possibly rainfall and deflation.  相似文献   

8.
John Houston 《水文研究》2002,16(15):3019-3035
The Chacarilla fan in the Atacama Desert is one of several formed in the Late Miocene at the foot of the Pre‐Andean Cordillera overlying the large, complex, Pampa Tamarugal aquifer contained in the continental clastic sediments of the fore‐arc basin. The Pampa Tamarugal aquifer is a strategic source of water for northern Chile but there is continuing doubt over the resource magnitude and recharge. During January 2000 a 1 in 4 year storm in the Andes delivered a 34 million m3 flash flood to the fan apex where c. 70% percolated to the underlying aquifers. Groundwater recharge through the fan is calculated to be a minimum of 200 l/s or 6% of the long‐term catchment rainfall. These figures are supported by hydrochemical data that suggest that recharge may be 9% of long‐term rainfall. Isotopic data suggest groundwater less than 50 years old is transmitted westward through the permeable sheetflood sediments of the fan overlying the main aquifer. Analysis of this and other events shows that the hydrological system is non‐linear with positive feedback. The magnitude of groundwater recharge is dependent on climatic variations, antecedent soil moisture storage and changes in channel characteristics. Long‐term declines in groundwater level may partly result from climatic fluctuations and the causes of such fluctuations are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
The formation of Namibia's extensive pedogenic gypsum crusts (CaSO4·2H2O) is interpreted in a new light. It is suggested that gypsum primarily precipitates at isolated points of evaporitic concentration, such as inland playas, and that deflation of evaporitic‐rich gypsum dust from these playas contributes to the formation of pedogenic gypsum duricrusts on the coastal gravel plains of the Namib Desert surrounding these playas. This study establishes the nature, extent and distribution of playas in the Central Namib Desert and provides evidence for playa gypsum deflation and gravel plain deposition. Remote sensing shows the distribution of playas, captures ongoing deflation and provides evidence of gypsum deflation. It is proposed that, following primary marine aerosol deposition, both inland playas and coastal sabkhas generate gypsum which through the process of playa deflation and gravel plain redeposition contributes to the extensive pedogenic crusts found in the Namib Desert region. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The fact that rainfall data are usually more abundant and more readily regionalized than streamflow data has motivated hydrologists to conceive methods that incorporate the hydrometeorologial information into flood frequency analyses. Some of them, particularly those derived from the French GRADEX method, involve assumptions concerning the relationship between extreme rainfall and flood volumes, under some distributional restrictions. In particular, for rainfall probability distributions exhibiting exponential-like upper tails, it is possible to derive the shape and scale of the probability distribution of flood volumes by hypothesizing the basic properties of such a relationship, under rare and/or extreme conditions. This paper focuses on a parametric mathematical model for the relationship between rare and extreme rainfall and flood volumes under exponentially-tailed distributions. The model is analyzed and fitted to rare and extreme events derived from hydrological simulation of long stochastically-generated synthetic series of rainfall and evaporation for the Indaiá River basin, located in south-central Brazil. The paper also provides a sensitivity analysis of the model parameters in order to better understand flood events under rare and extreme conditions. By working with hydrologically plausible hypothetical events, the modeling approach proved to be a useful way to explore extraordinary rainfall and flood events. The results from this exploratory analysis provide grounds to derive some conclusions regarding the relative positions of the upper tails of the probability distributions of rainfall and flood volumes.  相似文献   

11.
Shallow coastal lakes are under increasing pressure from climate change. Low rainfall and reduced run-off contributed to an unprecedented drought in Lake St. Lucia since 2002. Physico-chemical variables and microalgal biomass are analysed, tracking the transition from drought (2009) to wet conditions (2014). Despite low water levels and habitat loss due to desiccation, microalgal biomass remained high mainly due to cyanobacterial contribution. The system exhibited distinct spatio-temporal patterns in terms of salinity, water level, DIN, microalgal biomass and class composition associated with the drought, transition and wet climatic phases. Regime shifts were detected, coinciding with the end of the drought and the beginning of the wet phase. The St. Lucia ecosystem responds rapidly to changes in climatic phases while sustaining microalgal stocks; it may therefore be relatively resilient to extreme drought events.  相似文献   

12.
Time–frequency characterization is useful in understanding the nonlinear and non-stationary signals of the hydro-climatic time series. The traditional Fourier transform, and wavelet transform approaches have certain limitations in analyzing non-linear and non-stationary hydro-climatic series. This paper presents an effective approach based on the Hilbert–Huang transform to investigate time–frequency characteristics, and the changing patterns of sub-divisional rainfall series in India, and explored the possible association of monsoon seasonal rainfall with different global climate oscillations. The proposed approach integrates the complete ensemble empirical mode decomposition with adaptive noise algorithm and normalized Hilbert transform method for analyzing the spectral characteristics of two principal seasonal rainfall series over four meteorological subdivisions namely Assam-Meghalaya, Kerala, Orissa and Telangana subdivisions in India. The Hilbert spectral analysis revealed the dynamic nature of dominant time scales for two principal seasonal rainfall time series. From the trend analysis of instantaneous amplitudes of multiscale components called intrinsic mode functions (IMFs), it is found that both intra and inter decadal modes are responsible for the changes in seasonal rainfall series of different subdivisions and significant changes are noticed in the amplitudes of inter decadal modes of two seasonal rainfalls in the four subdivisions since 1970s. Further, the study investigated the links between monsoon rainfall with the global climate oscillations such as Quasi Bienniel Oscillation (QBO), El Nino Southern Oscillation (ENSO), Sunspot Number (SN), Atlantic Multidecadal Oscillation (AMO) etc. The study noticed that the multiscale components of rainfall series IMF1, IMF2, IMF3, IMF4 and IMF5 have similar periodic structure of QBO, ENSO, SN, tidal forcing and AMO respectively. As per the seasonal rainfall patterns is concerned, the results of the study indicated that for Assam-Meghalaya subdivision, there is a likelihood of extreme rare events at ~0.2 cycles per year, and both monsoon and pre-monsoon rainfall series have decreasing trends; for Kerala subdivision, extreme events can be expected during monsoon season with shorter periodicity (~2.5 years), and monsoon rainfall has statistically significant decreasing trend and post-monsoon rainfall has a statistically significant increasing trend; and for Orissa subdivision, there are chances of extremes rainfall events in monsoon season and a relatively stable rainfall pattern during post-monsoon period, but both monsoon and post-monsoon rainfall series showed an overall decreasing trend; for Telangana subdivision, there is a likelihood of extreme events during monsoon season with a periodicity of ~4 years, but both monsoon and post-monsoon rainfall series showed increasing trends. The results of correlation analysis of IMF components of monsoon rainfall and five climate indices indicated that the association is expressed well only for low frequency modes with similar evolution of trend components.  相似文献   

13.
The Badain Jaran Desert exhibits the greatest difference in altitude of all of the world’s deserts. On the slopes of megadunes in the desert, there are physical and chemical deposits produced by surface runoff. In addition, we have observed rarely-seen infiltration-excess surface runoff in the megadune depressions as well as spring streams at the base of megadunes. We used electron microscopy, energy spectrum analysis, infiltration experiments, moisture content determinations and grain-size analysis to study the mineral and chemical composition of the runoff precipitates, and grain-size of the deposits associated with the runoff, together with the hydrological balance in the megadune area, and the atmospheric precipitation mechanism responsible for groundwater recharge and for supplying water to lakes. The observations of shallow runoff and infiltration-excess surface runoff indicate the occurrence of strong and effective precipitation in summer, which would provide an important source for groundwater recharge. Several lines of evidence, such as the physical and chemical deposits resulting from shallow subsurface runoff, spring streams, infiltration-excess runoff, and gravity capillary water with a moisture content of 3–6%, demonstrate that precipitation reaches the base of the megadunes through infiltration and subsequently becomes groundwater. The chemical deposits, such as newly-formed calcite and gypsum, and gray-black physical deposits, as well as different stages in the development of fan-shaped landforms resulting from shallow subsurface runoff, indicate that groundwater recharge in the area is the result of long-term precipitation, rather than intermittent individual major rainfall events. Fine sand layers with a low infiltration capacity lead to subsurface runoff emerging at the ground surface. Five factors play an important role in maintaining a positive water balance and in replenishing groundwater via rainfall: effective rainfall as a water source, the high infiltration capacity of the sands enabling rainfall to rapidly become capillary water in the dunes, low evapotranspiration rates due to the sparse vegetation, the fact that the depth of the sand layer influenced by evaporation is shallow enough to maximize the deep infiltration of rainfall, and rapidly-moving gravity capillary water in the sandy dunes. These five factors together constitute a mechanism for groundwater recharge from rainfall, and explain the origin of the groundwater and lakes in the area. Our findings represent a significant advance in research on the hydrological cycle, including groundwater recharge conditions and recharge mechanisms, in this desert region.  相似文献   

14.
This study is about use of spatially distributed rain in physically based hydrological models. In recent years, spatially distributed radar rainfall data have become available. The distributed radar rain is used to precisely model hydrologic processes and it is more realistic than the past practice of distribution methods like Thiessen polygons. Radar provides a highly accurate spatial distribution of rainfall and greatly improves the basin average rainfall estimates. However, quantification of the exact amount of rainfall from radar observation is relatively difficult. Thus, the fundamental idea of this study is to apply hourly gauge and radar rainfall data in a distributed hydrological model to simulate hydrological parameters. Hence the comparison is made between the outcomes of the WetSpa model from radar rainfall distribution and gauge rainfall distributed by the Thiessen polygon technique. The comparative plots of the hydrograph and the results of hydrological components such as evapotranspiration, surface runoff, soil moisture, recharge and interflow, reflect the spatially distributed radar input performing well for model outflow simulation.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR F. Pappenberger  相似文献   

15.
The importance of monitoring changes in the levels of lakes within endorheic basins using remotely sensed data as a means of assessing changes in regional aridity is noted. Large salt playas are highlighted as ephemeral lakes that can display extreme sensitivity to changes in regional rainfall patterns, and which commonly do not have extensively managed catchments. To explore the application of high temporal frequency monitoring of salt playas using remote sensing, the Chott el Djerid, a large salt playa situated in southern Tunisia was targeted. A short time series of 39 Advanced Very High Resolution Radiometer (AVHRR; resolution 1.1 km at nadir) images of the Chott el Djerid (spanning 36 months between 1987 and 1990) were compiled along with climate information from a weather station at Tozeur. Using image histogram manipulation, lake areas were extracted from the time series. A good level of agreement was observed between recorded rainfall events and the presence of surface water on the playa, and for a limited sample of large flood events it was found that there were significant relationships between rainfall, evaporation and estimated lake areas (r2 = 98.5, p < 0.001). Overall, these data suggest that contemporary lake formation is largely controlled by temporal changes in effective precipitation within the basin. In addition, it was found that the coefficient of variation of the time series, and a combination of temporal reflectance profiles extracted from it, could be used to give a direct indication of which sedimentary surfaces on the playa are affected by large flood events, and the extent to which these events may be preserved within the recent sedimentary record at these sites. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

Following the June 2013 disaster in the Uttarakhand Himalayas, many discussions are ongoing with regard to how climate change is seeking revenge on mankind by endowing us with disasters! The event was mostly linked with the occurrence of an extreme event due to climate change. In view of this, an attempt has been made in this paper to analyse the extreme rainfall events experienced by the Uttarakhand during 1901–2013 using more than 100 stations’ daily rainfall data. The study revealed that during the 113-year period, the highest numbers of extreme events were recorded during the decade 1961–1970, and to some extent in the decade 1981–1990. Thereafter, there is a decrease in extreme rainfall events. The comparative study of extreme events prior to 1901 showed that on 17–18 September 1880, a rainstorm which occurred in close vicinity to Uttarakhand caused serious floods and damage to lives and properties. The extreme rainfall recorded by some stations during this unprecedented rainstorm has not been surpassed to date.  相似文献   

17.
The use of cloud tracking techniques and storm identification procedures is proposed in this paper with the aim of predicting the evolution of cloud entities associated with the highest rainfall probability within a given meteorological scenario. Suitable algorithms for this kind of analysis are based on the processing of digital images in the thermal infrared (IR) band from geostationary satellites: a selection of such algorithms is described in some detail together with a few real case applications. Three heavy rainfall events have been selected for this purpose with reference to the extreme meteorological situation observed during Fall 1992 and 1993 over the Mediterranean area. A window from 30 to 60 °N and from 20 °W to 30 °E has been identified for the analysis of data from the radiometer on board the ESA Meteosat platform. In conclusion, the suitability of cloud tracking techniques for predicting the probability of heavy rainfall events is discussed provided that the former are associated with proper modeling of small scale rainfall distribution.  相似文献   

18.
A recharge model for high altitude,arid, Andean aquifers   总被引:1,自引:0,他引:1  
John Houston 《水文研究》2009,23(16):2383-2393
Evidence for groundwater recharge in arid zones is mounting, despite early ideas that recharge was unlikely where evaporation greatly exceeded precipitation. The mechanisms and magnitude of groundwater recharge in the Andes and Atacama Desert are not well known but the subject of current research. Diffuse recharge is expected to be limited to high altitude areas with coarse‐grained soils devoid of vegetation. A recharge model for this environment is developed based on a simple soil moisture budgeting technique and the calculation of actual evaporation based on empirical studies. The model is run with data for the Linzor basins, over 4000 m elevation at 22·2°S on the west slope of the Andes. It is checked against independent estimates based on the chloride mass balance (CMB) method and flood events measured downstream in the Río Salado and found to provide robust and reliable results. The results indicate that irregular and volumetrically limited amounts of diffuse recharge occur at high elevations in half of all years, with a tendency to cluster during La Niña episodes. For the Linzor Basins, mean annual recharge is found to be equivalent to 28 mm a?1, although no recharge occurs in years with precipitation less than 120 mm, and increases proportionately with annual rainfall amounts above this limit. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Heavy rainfall events during the fall season are causing extended damages in Mediterranean catchments. A peaks‐over‐threshold model is developed for the extreme daily areal rainfall occurrence and magnitude in fall over six catchments in Southern France. The main driver of the heavy rainfall events observed in this region is the humidity flux (FHUM) from the Mediterranean Sea. Reanalysis data are used to compute the daily FHUM during the period 1958–2008, to be included as a covariate in the model parameters. Results indicate that the introduction of FHUM as a covariate can improve the modelling of extreme areal precipitation. The seasonal average of FHUM can improve the modelling of the seasonal occurrences of heavy rainfall events, whereas daily FHUM values can improve the modelling of the events magnitudes. In addition, an ensemble of simulations produced by five different general circulation models are considered to compute FHUM in future climate with the emission scenario A1B and hence to evaluate the effect of climate change on the heavy rainfall distribution in the selected catchments. This ensemble of climate models allows the evaluation of the uncertainties in climate projections. By comparison to the reference period 1960–1990, all models project an amplification of the mean seasonal FHUM from the Mediterranean Sea for the projection period 2070–2099, on average by +22%. This increase in FHUM leads to an increase in the number of heavy rainfall events, from an average of 2.55 events during the fall season in present climate to 3.57 events projected for the period 2070–2099. However, the projected changes have limited effects on the magnitude of extreme events, with only a 5% increase in the median of the 100‐year quantiles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The goal of this study is to investigate the uncertainty of an urban sewer system’s response under various rainfall and infrastructure scenarios by applying a recently developed nonparametric copula-based simulation approach to extreme rainfall fields. The approach allows for Monte Carlo simulation of multiple variables with differing marginal distributions and arbitrary dependence structure. The independent and identically distributed daily extreme rainfall events of the corresponding urban area, extracted from nationwide high resolution radar data stage IV, are the inputs of the spatial simulator. The simulated extreme rainfall fields were used to calculate excess runoff using the Natural Resources Conservation Service’s approach. New York City is selected as a case study and the results highlight the importance of preserving the spatial dependence of rainfall fields between the grids, even for simplified hydrologic models. This study estimates the probability of combined sewer overflows under extreme rainfall events and identifies the most effective locations in New York City to install green infrastructure for detaining excess stormwater runoff. The results of this study are beneficial for planners working on stormwater management and the approach is broadly applicable because it does not rely on extensive sewer system information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号