首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
Tertiary basaltic magmatism in Serbia occurred through three episodes: (i) Paleocene/Eocene, when mostly east Serbian mafic alkaline rocks (ESPEMAR) formed, (ii) Oligocene/Miocene, dominated by high-K calc–alkaline basalts, shoshonites (HKCA–SHO) and ultrapotassic (UP) rocks, and (iii) Pliocene episode when rocks similar to (ii) originated. In this study, the geodynamics inferred from petrogenesis of the (i) and (ii) episodes are discussed.

The ESPEMAR (62–39 Ma) occur mainly as mantle xenolith-bearing basanites. Their geochemical features, such as the REE patterns, elevated HFSE contents and depleted Sr–Nd isotope signatures, indicate a relatively small degree of melting of an isotopically depleted mantle source. Their mantle-normalized trace element patterns are flat to concave and “bell-shaped”, characteristic of an OIB source free of subduction component. 87Sr/86Sri and 143Nd/144Ndi isotope ratios (0.7030–0.7047 and 0.5127–0.5129, respectively) indicate a depleted source for the ESPEMAR similar to the European Asthenospheric Reservoir (EAR).

The HKCA–SHO rocks (30–21 Ma) occur as basalts, basaltic andesites and trachyandesites. They show enrichment in LILE and depletion in HFSE with all the distinctive features of calc–alkaline arc-type magmatism. This is coupled with somewhat enriched Sr–Nd isotope signature (87Sr/86Sri=0.7047–0.7064, 143Nd/144Ndi=0.5124–0.5126). All these features are characteristic of subduction-related metasomatism and fluxing of the HKCA–SHO mantle source with fluids/melts released from subducted sedimentary material.

UP rocks (35–21 Ma) appear as (i) Si-rich lamproites and related rocks and (ii) olivine leucitites and related rocks. UP rocks have high-LILE/HFSE ratios with enrichment for some LILE around 1000× primitive mantle, troughs at Nb and Ti, and peaks of Pb in their mantle-normalized patterns. They also show highly fractionated REE patterns (La/Yb up to 27, LaN up to 400). The isotopic ratios approach crustal values (87Sr/86Sri=0.7059–0.7115 and 143Nd/144Ndi=0.5122–0.5126), and that signature is typical for ultrapotassic rocks worldwide.

The Paleocene/Eocene episode and formation of the ESPEMAR is referred to as asthenospheric-derived magmatism. This magmatism originated through passive riftlike structures related to possible short relaxational phases during predominantly collisional and compressional conditions. The Oligocene/Miocene episode and formation of HKCA–SHO and UP rocks were dominated by lithospheric-controlled magmatism. Its origin is connected with the activity of a wide dextral wrench corridor generated along the axis of the Dinaride orogen which collapsed in response to thickened crust caused by earlier compressional processes.

To explain conditions of these two magmatic events, a three-stage geodynamic model has been proposed: (1) subduction–termination/collision stage (Paleocene/Eocene), (2) collision stage (Eocene) and (3) postcollision/collapse stage (Oligocene/early Miocene).  相似文献   


2.
Seismic refraction surveys conducted in 1976 and 1979 over the broken ice surface of the Arctic Ocean, reveal distinctly different crustal structures for the Fram, Makarov and Canada basins. The Canada Basin, characterized by a 2–4 km thick sedimentary layer and a distinct oceanic layer 3B of 7.5 km/s velocity has the thickest crust and is undoubtedly the oldest of the three. The crust of the Makarov Basin has a thin sedimentary layer of less than 1 km and is about 9 km in total thickness. The Fram Basin has a similarly thin sedimentary layer but is 3–4 km thicker than the Makarov as it approaches the Lomonosov Ridge near the North Pole. The ridge itself is cored by material with a velocity of 6.6 km/s and may be a metagabbro similar to oceanic layer 3A. This ridge root material extends to a depth of about 27 km, where a change occurs to upper-mantle material with a velocity of 8.3 km/s. The core is overlain by up to 6 km of material with a velocity of about 4.7 km/s which could be oceanic layer 2A basalts or continental crystalline rocks with some sedimentary material.The Fram Basin probably began to open contemporaneously with the North Atlantic about 70 m.y. ago, by spreading along the Nansen-Gakkel Ridge. Although not yet dated, the Makarov Basin is probably no older than the initiation of the Fram Basin and may be much younger. The Alpha Ridge may once have been part of the Lomonosov Ridge, splitting off to form the Makarov Basin between 70 and 25 m.y. ago and possibly contributing to the Eurekan Orogeny of 25 m.y. ago, evident on Ellesmere Island. In contrast, the likely age of the Canada Basin lies in the 125–190 m.y. range and may have been formed by the counter-clockwise rotation of Alaska and the Northwind Ridge away from the Canadian Arctic Islands. The Lomonosov Ridge emerges from this scenario as a block resulting from a strike-slip shear zone on the European continental shelf, related to the opening of the Canada basin (180-120 my) and then becomes an entity broken from this shelf by the opening of the Eurasia Basin (70-0 m.y.).  相似文献   

3.
We have mapped the transition from the continental Faroe block (the Faroe Islands and surrounding shelf) to the thickened oceanic crust of the Faroe–Iceland Ridge in the North Atlantic using the results of a detailed sea-to-land seismic profile with wide-angle to normal-incidence recordings of explosive and airgun shots fired at sea along the Faroe–Iceland Ridge. Interpretation of all available seismic and gravity data indicates that this aseismic ridge is composed of 30±3-km-thick oceanic crust, with a gradual transition to ancient continental crust from 100 to 40 km northwest of the Faroe Islands, close to the shelf edge. This confirms that the crust beneath the Faroe Islands, which may be up to 46 km thick, comprises continental material in agreement with previous seismic and geochemical results. Results suggest that the upper 5.2±0.7 km of the Faroe crust consists of Tertiary basalts generated during continental breakup, overlying the continental crust beneath. The lower crust, where seismic constraint is poor, may exhibit high seismic velocities (7.1–7.6 km s−1) which we attribute to underplating or intrusion by mafic melts during continental breakup in the early Tertiary.  相似文献   

4.
Three long, strike-parallel, seismic-refraction profiles were made on the continental shelf edge, slope and upper rise off New Jersey during 1975. The shelf edge line lies along the axis of the East Coast Magnetic Anomaly (ECMA), while the continental rise line lies 80 km seaward of the shelf edge. Below the unconsolidated sediments (1.7–3.6 km/sec), high-velocity sedimentary rocks (4.2–6.2 km/sec) were found at depths of 2.6–8.2 km and are inferred to be cemented carbonates. Although multichannel seismic-reflection profiles and magnetic depth-to-source data predicted the top of oceanic basement at 6–8 km beneath the shelf edge and 10–11 km beneath the rise, no refracted events occurred as first arrivals from either oceanic basement (layer 2, approximately 5.5 km/ sec) or the upper oceanic crust (layer 3A, approximately 6.8 km/sec). Second arrivals from 10.5 km depth beneath the shelf edge are interpreted as events from a 5.9 km/sec refractor within igneous basement. Other refracted events from either layers 2 or 3A could not be resolved within the complex second arrivals. A well-defined crustal layer with a compressional velocity of 7.1–7.2 km/sec, which can be interpreted as oceanic layer 3B, occurred at 15.8 km depth beneath the shelf and 12.9 km beneath the upper rise. A well-reversed mantle velocity of 8.3 km/sec was measured at 18–22 km depth beneath the upper continental rise. Comparison with other deep-crustal profiles along the continental edge of the Atlantic margin off the United States, specifically in the inner magnetically quiet zone, indicates that the compressional wave velocities and layer depths determined on the U.S.G.S. profiles are very similar to those of nearby profiles. This suggests that the layers are continuous and that the interpretation of the oceanic layer 3B under the shelf edge east of New Jersey implies progradation of the shelf outward over the oceanic crust in that area. This agrees with magnetic anomaly evidence which shows the East Coast Magnetic Anomaly landward of the shelf edge off New Jersey and with previous seismic reflection data which reveal extensive outbuilding of the shelf edge during the Jurassic and Lower Cretaceous, probably by carbonate bank-margin accretion.  相似文献   

5.
During late May and early June of 1993, we conducted two shallow, high-resolution seismic reflection surveys (Mini-Sosie method) across the southern escarpment of the Benton Hills segment of Crowleys Ridge. The reflection profiles imaged numerous post-late Cretaceous faults and folds. We believe these faults may represent a significant earthquake source zone.

The stratigraphy of the Benton Hills consists of a thin, less than about 130 m, sequence of mostly unconsolidated Cretaceous, Tertiary and Quaternary sediments which uncomfortably overlie a much thicker section of Paleozoic carbonate rocks. The survey did not resolve reflectors within the upper 75–100 ms of two-way travel time (about 60–100 m), which would include all of the Tertiary and Quaternary and most of the Cretaceous. However, the Paleozoic-Cretaceous unconformity (Pz) produced an excellent reflection, and locally a shallower reflector within the Cretaceous (K) was resolved. No coherent reflections below about 200 ms of two-way travel time were identified.

Numerous faults and folds, which clearly offset the Paleozoic-Cretaceous unconformity reflector, were imaged on both seismic reflection profiles. Many structures imaged by the reflection data are coincident with the surface mapped locations of faults within the Cretaceous and Tertiary succession. Two locations show important structures that are clearly complex fault zones. The English Hill fault zone, striking N30°–35°E, is present along Line 1 and is important because earlier workers indicated it has Pleistocene Loess faulted against Eocene sands. The Commerce fault zone striking N50°E, overlies a major regional basement geophysical lineament, and is present on both seismic lines at the southern margin of the escarpment.

The fault zones imaged by these surveys are 30 km from the area of intense microseismicity in the New Madrid seismic zone (NMSZ). If these are northeast and north-northeast oriented fault zones like those at Thebes Gap they are favorably oriented in the modern stress field to be reactivated as right-lateral strike slip faults. Currently, earthquake hazards assessments are most dependent upon historical seismicity, and there are little geological data available to evaluate the earthquake potential of fault zones outside of the NMSZ. We anticipate that future studies will provide evidence that seismicity has migrated between fault zones well beyond the middle Mississippi Valley. The potential earthquake hazards represented by faults outside the NMSZ may be significant.  相似文献   


6.
mer Elitok  Kirsten Drüppel 《Lithos》2008,100(1-4):322-353
The Beyşehir–Hoyran ophiolite is situated in the western part of the Tauride belt (SW Turkey) and crops out at two localities north of the lake Beyşehir. It mainly comprises harzburgitic peridotites that were tectonically emplaced to their present position during the Late Eocene. The ophiolites themselves are tectonically overlain by either slope basin deposits with lava blocks (Eğirler formation) or massive Triassic limestone blocks (Deliktaş formation). High-grade sub-ophiolitic metamorphic rocks, i.e. epidote amphibolite, amphibolite, and pyroxene amphibolite, together with minor quartzite and calcschist, are observed at the base of the ophiolite sequence, where they occur as thin tectonic slices with an inverted metamorphic gradient. Average P–T conditions of 630–770 °C and c. 6 ± 1.5 kbar are calculated for the metamorphism of the amphibolites by conventional geothermobarometry, corresponding to a burial depth of 18–20 km. Both the sub-ophiolitic metamorphic rocks and the overlying mantle tectonites were intruded by isolated tholeiitic (Nb/Y = 0.041–0.108) diabase dikes, which do not transect the tectonic contact between the two units. Geochemical investigations of the amphibolites of the sub-ophiolitic rock suite show two different geochemical affinities, with the first group being alkaline in character (Nb/Y = 1–3.86) and the second one being tholeiitic (Nb/Y = 0.064–0.13). REE patterns, trace element plots and tectonomagmatic discrimination diagrams indicate that the most probable protoliths for alkaline amphibolites are within-plate type alkali basalts, whereas those of the tholeiitic group resemble tholeiitic island arc basalts. Similarities between the geochemical characteristics of the amphibolites and those of the volcanic rocks of the Eğirler formation strongly suggest that the latter are the protoliths of the amphibolites.  相似文献   

7.
王善书 《沉积学报》1985,3(4):121-130
南海北部指北纬16°00'至23°00'与东经108°00'至120°00'之间的海域。包括广东大陆以南、海南、台湾两岛之间的广阔大陆架和陆坡区以及北部湾。东西长约1300公里,南北宽约200至400公里。面积约40万平方公里。经过地球物理勘探普查工作及几十口钻井资料,证实该区第三纪沉积广泛分布,厚逾万米。按沉积岩厚度大于1000米所圈定的范围约在30万平方公里以上,形成了北部湾、莺歌海、琼东南、珠江口及台湾西南五个沉积盆地(图1、2)。在北部湾、琼东南、珠江口及台湾西南盆地中,分别在下第三系流沙港组、陵水组、珠江组,上第三系角尾组、韩江组发现了储油气层(表1)。  相似文献   

8.
The Quebradagrande Complex of Western Colombia consists of volcanic and Albian–Aptian sedimentary rocks of oceanic affinity and outcrops in a highly deformed zone where spatial relationships are difficult to unravel. Berriasian–Aptian sediments that display continental to shallow marine sedimentary facies and mafic and ultramafic plutonic rocks are associated with the Quebradagrande Complex. Geochemically, the basalts and andesites of the Quebradagrande Complex mostly display calc-alkaline affinities, are enriched in large-ion lithophile elements relative to high field strength elements, and thus are typical of volcanic rocks generated in supra-subduction zone mantle wedges. The Quebradagrande Complex parallels the western margin of the Colombian Andes’ Central Cordillera, forming a narrow, discontinuous strip fault-bounded on both sides by metamorphic rocks. The age of the metamorphic rocks east of the Quebradagrande Complex is well established as Neoproterozoic. However, the age of the metamorphics to the west – the Arquía Complex – is poorly constrained; they may have formed during either the Neoproterozoic or Lower Cretaceous. A Neoproterozoic age for the Arquía Complex is favored by both its close proximity to sedimentary rocks mapped as Paleozoic and its intrusion by Triassic plutons. Thus, the Quebradagrande Complex could represent an intracratonic marginal basin produced by spreading-subsidence, where the progressive thinning of the lithosphere generated gradually deeper sedimentary environments, eventually resulting in the generation of oceanic crust. This phenomenon was common in the Peruvian and Chilean Andes during the Uppermost Jurassic and Lower Cretaceous. The marginal basin was trapped during the collision of the Caribbean–Colombian Cretaceous oceanic plateau, which accreted west of the Arquía Complex in the Early Eocene. Differences in the geochemical characteristics of basalts of the oceanic plateau and those of the Quebradagrande Complex indicate these units were generated in very different tectonic settings.  相似文献   

9.
Mineralogical data, coupled with whole-rock major and trace element data of mafic xenoliths from two occurrences of the Egyptian Tertiary basalts, namely Abu Zaabal (AZ) near Cairo and Gabal Mandisha (GM) in the Bahariya Oases, are presented for the first time. Chemically, AZ basalts are sodic transitional, while those of GM are alkaline. In spite of the different petrographic and geochemical features of the host rocks, mafic xenoliths from the two occurrences are broadly similar and composed essentially of clinopyroxene, plagioclase, alkali feldspar, and Fe–Ti oxides. The analytical results of host rocks, xenoliths and their minerals suggest that the xenoliths are cognate to their host magmas rather than basement material. The mafic xenoliths are olivine-free and contain alkali feldspar contrary to the phenocryst assemblage of the host rocks, confirming that they are not cumulates from the host magma. The geochemical and mineralogical characteristics show that the precursor magmas of these xenoliths are more fractionated and possibly contaminated compared to those of the host rocks. Estimated crystallization conditions are  1–3 kbar for xenoliths from both areas, and temperature of  950–1100 °C vs. 920–1050 °C for AZ and GM, respectively. These cognate xenoliths probably crystallized from early-formed, highly-fractionated anhydrous magma batches solidified in shallow crustal levels, possibly underwent some AFC during their ascent, and later ripped-up during fresh magma pulses. The xenoliths, although rare, provide an evidence for the importance of crystal fractionation at early evolution of the Egyptian Tertiary basalts.  相似文献   

10.
《International Geology Review》2012,54(12):1429-1445
ABSTRACT

A multi-disciplinary study of the KR1 segment of the Australian–Antarctic Ridge has been conducted since 2011. We present geochemical and age dating results for samples dredged from three sites on the KR1 seamount trail. The majority of the samples are alkaline ocean island basalts with subdominant enriched tholeiites. The samples from the DG05 bathymetric depression include ice-rafted erratics from Antarctica, which consist of gabbro, diabase, various granitoids, volcanic rocks such as trachyte and rhyolite and deformed or undeformed sedimentary rocks. The main provenance of glacial erratics is considered to be the Ross Sea region. However, Carboniferous to Cretaceous ages of erratics indicate that some of these may originate from the western regions of West Antarctica. Based on the size and topography of the volcanic features and geochemical characteristics of the alkaline ocean island basalts (La/SmN = 2.62–3.88; Tb/YbN = 1.54–2.67) and the enriched tholeiites, the KR1 seamount trail is interpreted to be a submarine hotspot chain that is the product of alkaline volcanic eruption and seafloor spreading.  相似文献   

11.
The Malatya Basin is situated on the southern Taurus-Anatolian Platform. The southern part of the basin contains a sedimentary sequence which can be divided into four main units, each separated by an unconformity. From base to top, these are: (1) Permo-Carboniferous; (2) Upper Cretaceous–Lower Paleocene, (3) Middle-Upper Eocene and (4) Upper Miocene. The Upper Cretaceous–Tertiary sedimentary sequence resting on basement rocks is up to 700 m thick.The Permo-Carboniferous basement consist of dolomites and recrystallized limestones. The Upper Cretaceous–Lower Paleocene transgressive–regressive sequence shows a transition from terrestrial environments, via lagoonal to shallow-marine limestones to deep marine turbiditic sediments, followed upwards by shallow marine cherty limestones. The marine sediments contain planktic and benthic foraminifers indicating an upper Campanian, Maastrichtian and Danian age. The Middle-Upper Eocene is a transgressive–regressive sequence represented by terrestrial and lagoonal clastics, shallow-marine limestones and deep marine turbidites. The planktic and benthic foraminifers in the marine sediments indicate a Middle-Upper Eocene age. The upper Miocene sequence consists of a reddish-brown conglomerate–sandstone–mudstone alternation of alluvial and fluvial facies.During Late Cretaceous–Early Paleocene times, the Gündüzbey Group was deposited in the southern part of a fore-arc basin, simultaneously with volcanics belonging to the Yüksekova Group. During Middle-Late Eocene times, the Yeşilyurt Group was deposited in the northern part of the Maden Basin and the Helete volcanic arc. The Middle-Upper Eocene Malatya Basin was formed due to block faulting at the beginning of the Middle Eocene time. During the Late Paleocene–Early Eocene, and at the end of the Eocene, the study areas became continental due to the southward advance of nappe structures.The rock sequences in the southern part of the Malatya Basin may be divided into four tectonic units, from base to top: the lower allochthon, the upper allochthon, the parautochthon and autochthonous rock units.  相似文献   

12.
Cenozoic continental arc magmatism and associated mineralization in Ecuador   总被引:4,自引:0,他引:4  
Most of the economic ore deposits of Ecuador are porphyry-Cu and epithermal style gold deposits associated with Tertiary continental arc magmatism. This study presents major and trace element geochemistry, as well as radiogenic isotope (Pb, Sr) signatures, of continental arc magmatic rocks of Ecuador of Eocene to Late Miocene (~50–9 Ma, ELM) and Late Miocene to Recent (~8–0 Ma, LMR) ages. The most primitive ELM and LMR rocks analyzed consistently display similar trace element and isotopic signatures suggesting a common origin, most likely an enriched MORB-type mantle. In contrast, major and trace element geochemistry, as well as radiogenic isotope systematics of the whole sets of ELM and LMR samples, indicate strikingly different evolutions between ELM and LMR rocks. The ELM rocks have consistently low Sr/Y, increasing Rb/Sr, and decreasing Eu/Gd with SiO2, suggesting an evolution through plagioclase-dominated fractional crystallization at shallow crustal levels (<20 km). The LMR rocks display features of adakite-type magmas (high Sr/Y, low Yb, low Rb/Sr) and increasing Eu/Gd and Gd/Lu ratios with SiO2. We explain the adakite-type geochemistry of LMR rocks, rather than by slab melting, by a model in which mantle-derived melts partially melt and assimilate residual garnet-bearing mafic lithologies at deeper levels than those of plagioclase stability (i.e., >20 km), and most likely at sub-crustal levels (>40–50 km). The change in geochemical signatures of Tertiary magmatic rocks of Ecuador from the ELM- to the LMR-type coincides chronologically with the transition from a transpressional to a compressional regime that occurred at ~9 Ma and has been attributed by other investigations to the onset of subduction of the aseismic Carnegie ridge.The major districts of porphyry-Cu and epithermal deposits of Ecuador (which have a small size, <<200 Mt, when compared to their Central Andean counterparts) are spatially and temporally associated with ELM magmatic rocks. No significant porphyry-Cu and epithermal deposits (except the epithermal high-sulfidation mineralization of Quimsacocha) appear to be associated with Late Miocene-Recent (LMR, ~8–0 Ma) magmatic rocks. The apparent infertility of LMR magmas seems to be at odds with the association of major porphyry-Cu/epithermal deposits of the Central Andes with magmatic rocks having adakite-type geochemical signatures similar to LMR rocks. The paucity of porphyry-Cu/epithermal deposits associated with LMR rocks might be only apparent and bound to exposure level, or real and bound (among other possibilities) to the lack of development of shallow crustal magmatic chambers since ~9 Ma as a result of a prolonged compressional regime in the Ecuadorian crust. More work is needed to understand the actual metallogenic potential of LMR rocks in Ecuador.Editorial handling: J. Richards  相似文献   

13.
Seismic investigations to determine the crustal structure in the southwestern part of the Iberian Peninsula have been initiated in 1970. First experiments were carried out during July 1970, when a series of ten shots was fired off Cabo de Sines (Portugal) in shallow water and recorded up to distances of 185 km along a SE-profile towards Huelva (Spain). The profile was reversed in December 1970, when a series of twelve shots was fired off the south coast near Fuzeta (east of Faro) and recorded up to distances of about 260 km along a NW-profile towards Cabo da Roca west of Lisboa. A considerable increase in the seismic efficiency of the explosions could be achieved by generating standing waves in the water.

The structure deduced exhibits some peculiar features. Below the Palaeozoic sediments a fairly high velocity of 6.4 km/sec is found for the dome-shaped basement in that area. The lower crust, which is separated from the upper crust by a distinct velocity inversion (with a minimum velocity of about 5.3–5.6 km/sec), is characterized by a velocity of 7.1 km/sec. From the geological evidence and the sequence of seismic velocities it must be concluded that the upper crustal block in the southwestern part of the Iberian Peninsula has been uplifted by about 2–5 km since Permo-Triassic time, thus emphasizing the significance of vertical movement in tectonic activity.

The top of the upper mantle (8.15 km/sec) was detected at a depth of 30 km close to the Atlantic coast in the west, while near the Algarve coast in the south the depth to the M-discontinuity is about 34–35 km. This result in conjunction with studies of earthquake focal mechanisms confirms the suggestion that the Iberian block is being underthrust under the African plate.  相似文献   


14.
The eastern part of the Western Cordillera of Ecuador includes fragments of an Early Cretaceous (≈123 Ma) oceanic plateau accreted around 85–80 Ma (San Juan–unit). West of this unit and in fault contact with it, another oceanic plateau sequence (Guaranda unit) is marked by the occurrence of picrites, ankaramites, basalts, dolerites and shallow level gabbros. A comparable unit is also exposed in northwestern coastal Ecuador (Pedernales unit).

Picrites have LREE-depleted patterns, high Ndi and very low Pb isotopic ratios, suggesting that they were derived from an extremely depleted source. In contrast, the ankaramites and Mg-rich basalts are LREE-enriched and have radiogenic Pb isotopic compositions similar to the Galápagos HIMU component; their Ndi are slightly lower than those of the picrites. Basalts, dolerites and gabbros differ from the picrites and ankaramites by flat rare earth element (REE) patterns and lower Nd; their Pb isotopic compositions are intermediate between those of the picrites and ankaramites. The ankaramites, Mg-rich basalts, and picrites differ from the lavas from the San Juan–Multitud Unit by higher Pb ratios and lower Ndi.

The Ecuadorian and Gorgona 88–86 Ma picrites are geochemically similar. The Ecuadorian ankaramites and Mg-rich basalts share with the 92–86 Ma Mg-rich basalts of the Caribbean–Colombian Oceanic Plateau (CCOP) similar trace element and Nd and Pb isotopic chemistry. This suggests that the Pedernales and Guaranda units belong to the Late Cretaceous CCOP. The geochemical diversity of the Guaranda and Pedernales rocks illustrates the heterogeneity of the CCOP plume source and suggests a multi-stage model for the emplacement of these rocks. Stratigraphic and geological relations strongly suggest that the Guaranda unit was accreted in the late Maastrichtian (≈68–65 Ma).  相似文献   


15.
班- 怒带东段丁青蛇绿岩中镁铁质岩石年代学及构造背景   总被引:1,自引:0,他引:1  
丁青蛇绿岩位于班公湖-怒江缝合带东段,分为东、西两个蛇绿岩体,丁青西蛇绿岩体缺乏基性岩年代学研究。对丁青西地质填图显示,蛇绿岩主要由方辉橄榄岩、纯橄榄岩、辉绿岩、玄武岩及辉长岩组成。其中玄武岩、辉长岩及辉绿岩出露在宗白区域,玄武岩和辉绿岩与下侏罗统沉积岩呈构造接触,辉长岩呈岩脉侵入到下侏罗统沉积岩中。岩石地球化学研究表明,玄武岩和辉长岩同属于碱性基性岩石,其中玄武岩具有典型洋岛玄武岩的稀土和微量元素特征,可能形成于与地幔柱有关的洋岛环境。在玄武质凝灰岩中挑选出的锆石测年,获得U-Pb年龄为198.7±3.8Ma,属早侏罗世。辉长岩的稀土和微量元素含量低于典型洋岛玄武岩,但其REE和微量元素具有OIB的特征,与典型OIB相比,辉长岩的HREE发生了一定程度富集。辉长岩锆石的U-Pb年龄为164.3±2.6Ma,认为辉长岩在形成过程中受到了软流圈地幔和岩石圈下部LVZ中富集熔体的共同作用,其形成于大陆边缘裂谷环境;辉绿岩成分属于拉斑系列岩石,其REE和微量元素曲线显示辉绿岩同时具有N-MORB和E-MORB的特征。辉绿岩锆石U-Pb年龄为114.2±1.3Ma,其形成晚于玄武岩。结合区域地质,认为辉绿岩形成于受地幔柱影响的弧后扩张脊环境。本研究提供了丁青西蛇绿岩新的年代学和岩石学证据,为探讨丁青蛇绿岩的形成和演化历史提供了新的证据。  相似文献   

16.
The Eocene rocks exposed in the Fayum Area, Egypt, are well known for their fossil vertebrates but in recent times the sharks and rays have been largely neglected. Extensive surface collecting, supplemented with bulk samples, has produced large collections from the Midawara, Gehannam, Birket Qarun and Qasr el-Sagha formations, spanning the Bartonian and Priabonian stages and from palaeoenvironments varying from open muddy shelf to very shallow estuarine systems. In total about 90 species of sharks and rays are recorded, many of them previously unrecognised, resulting in some of the most diverse fossil chondrichthyan assemblages known from the Tertiary. Teeth of these species suggest that they occupied a wide range of ecological niches from top predator to tiny benthic invertebrate feeder to planktivore. Many of the species are limited in their stratigraphical range and show potential to be used, at least locally, as biostratigraphical indicators for stratigraphically poorly constrained vertebrate sites elsewhere in North Africa. Distinctly different faunas from different sedimentary environments indicate a strong environmental control on the distribution of many species.  相似文献   

17.
充分利用印度扇深水区及浅水陆棚区地震、测井、岩芯、地化等资料,预测了印度扇深水区古-始新统烃源岩特征,并探讨了烃源岩的发育模式。研究结果表明:印度扇深水区古-始统地层主要以海进体系域为主,在始新统顶部发育厚度较薄的高位体系域,沉积于外陆棚深水相沉积环境,具备烃源岩发育的有利条件。古-始新统烃源岩空间分布范围广,厚度大,最大厚度达900 m以上。烃源岩有机质类型以Ⅱ~Ⅲ型干酪根为主,为混合型生源母质。现今凹陷内大部分烃源岩处于高-过成熟的生干气阶段。综合各地质要素分析,建立了印度扇深水区古-始新统烃源岩发育模式。在古-始新世沉积期,深水凹陷的古地理格局总体变化不大,处于赤道附近的低纬度地带,气候湿热。在有利的有机质保存条件下,古海洋生产力和陆源有机质输入量控制了深水区古-始新统烃源岩的有机质丰度。研究结果将有效指导印度扇深水区的油气勘探工作。  相似文献   

18.

始新世是新生代重要的暖期,其气候环境的特征与演化备受学界关注。位于秦岭东段的卢氏盆地保存了>1000 m厚的连续的始新世河湖相沉积物,是揭示古气候和环境变化规律的宝贵沉积记录。在前人工作基础上,本研究利用沉积学、古生物学、碎屑年代学等方法对卢氏盆地始新世地层的沉积特征、年代和环境进行了分析。结果表明:1)碎屑磷灰石裂变径迹与碎屑锆石U-Pb年龄指示沉积序列年代晚于约60 Ma,与前人将张家村组-卢氏组化石组合对比到中始新世的结论基本吻合。2)始新统张家村组沉积相演化表现为冲积扇→河流→洪泛平原或滨湖,反映盆地拉张、初期成湖的过程;卢氏组为滨浅湖→深湖/半深湖→滨浅湖或洪泛平原→浅湖/半深湖,反映湖泊开始稳定出现后的扩张、收缩和复活过程;大峪组为河流→洪泛平原→冲积扇,反映湖泊淤满消亡后河流与冲洪积物相继充填的历史。3)沉积相、化石组合、盐类矿物种类揭示中始新世卢氏盆地古气候为半湿润半干旱,地表景观呈现径流活跃、动物种类多样、树木茂盛、发育淡水至微咸水湖的特征,并可能具有一定的季节性。卢氏盆地沉积序列提供了始新世暖期中国中部气候环境变化的重要证据。

  相似文献   

19.
Since the beginning of the Tertiary the sedimentology of the Gulf of Mexico Basin has been dominated by the depositional activity of the Mississippi River. The sedimentologic influence of the Mississippi diminishes with distance east or west of the Louisiana shelf, however. The Texas and northwest Florida shelf margins, for example, are characterized by a series of smaller deltas. In the inner and mid-shelf areas of these regions the near-surface sedimentary units include infilled stream channels and small deltas. Such features are commonly observed in sub-bottom seismic records from the middle and inner shelf of the northeastern Gulf, along the Apalachicola River coast of northwest Florida.

The Apalachicola River is the principal source of clastic sediment to the northeastern Gulf of Mexico. During the late Holocene virtually all of the river's sediment load has been deposited in the modern Apalachicola Delta and in the river's estuary, Apalachicola Bay, which has been filling rapidly. During late Quaternary lowstands, prior to the development of the modern estuary, the river traversed the present-day inner and mid-shelf, incising a network of channels. Based on seismic records, many of these buried shelf channels were considerably larger than their modern counterparts.

During lowstands the Apalachicola River also deposited coarse sediment on the shelf as deltaic and associated river-mouth sediments. These deposits comprise the modern near-surface sediments of the inner and middle shelf. An investigation of subsurface sedimentary features observed in seismic profiles provides details on the late Quaternary development of the northeastern Gulf of Mexico shelf. Seismic reflection profiles obtained on the inner and mid-shelf regions of northwest Florida reveal an approximately 50 m thickness of late Quaternary sediments, comprised of two and sometimes three discrete clastic sequences. Two lower fluvial sequences total as much as 40–50 m in thickness. A transgressive marine sand deposit overlies the older features in some places, varying in thickness from 0 to 5 m. Identification of seismic facies, combined with stratigraphic data from a suite of coastal boreholes, enables correlation of offshore seismic stratigraphic units with late Tertiary and Quaternary coastal stratigraphy.  相似文献   


20.
川东南—黔北地区下志留统龙马溪组发育富含有机质泥页岩,是华南地区海相地层中的优质烃源岩之一,且分布广泛,厚度大,是有利的页岩气勘探区。通过研究区30条野外露头剖面和12口钻井的资料分析,结合岩性、元素地球化学、测井地球物理及古生物等相标志研究,对川东南—黔北地区下志留统龙马溪组沉积环境、沉积演化及其对烃源岩的影响进行了研究,在川东南—黔北地区龙马溪组识别出泥质深水陆棚、泥质浅水陆棚、砂泥质浅水陆棚、砂质浅水陆棚、灰泥质浅水陆棚、灰质浅水陆棚、浊流沉积、台地边缘浅滩-生物礁浊流等8种沉积类型,其中泥质深水陆棚是龙马溪组烃源岩形成的主要沉积环境。通过对沉积环境的研究,认为龙马溪组底部缺氧的滞留环境和缓慢的沉积速率是龙马溪组优质烃源岩发育的主要因素。研究为区内页岩气勘探开发提供有力保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号