首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climatic change evidence and lacustrine varves from maar lakes,Germany   总被引:2,自引:0,他引:2  
Annually laminated, non-glacial lake sediments from Lake Holzmaar (Eifel, western Germany) were investigated using large Merkt thin sections. The absolute age of varve intervals with variations in thickness and composition were correlated to climatic changes recorded by glacier fluctuations in the Alps. Back to 8800 years VT (varve time = varve years before 1950) glacier advances coincide with sedimentation rate minima; prior to 8800 years VT they coincide with sedimentation rate maxima. The early and middle Holocene sediments suggest a periodicity of about 1000 years for cold/warm cycles. A sequence of 512 varve-thickness measurements was subjected to spectral analysis. These provide apparent evidence for a 11-year sun-spot cycle.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program.  相似文献   

2.
Frank Millerd 《Climatic change》2011,104(3-4):629-652
The higher temperatures of climate change may result in a fall in Great Lakes water levels. For vessels carrying imports into and exports out of the Great Lakes lower lake levels will lead to restrictions on vessel drafts and reductions in vessel cargos, increasing the number of trips and the cost of moving cargo. Estimates of these impacts are derived from simulations of a recent year??s international cargo movements, comparing a base case with no climate change to various climate change scenarios. The impacts vary from a 5% increase in vessel variable operating costs for a climate change scenario representing the possible climate in 2030 to over 22% for a scenario representing a doubling of atmospheric carbon dioxide. Impacts vary by commodity and route. For years of naturally occurring low water the impacts are up to 13% higher for even the most moderate climate change scenario. Climate change may also result in a shorter time of ice cover leading to an extension of the navigation season. Climate change is also expected to increase the threat of damage from aquatic invasive species, possibly leading to further requirements for ships to undertake preventive measures.  相似文献   

3.
Paleo-reconstructed hydrologic records offer the potential to evaluate water resources system performance under conditions that may be more extreme than seen in the historical record. This study uses a stochastic simulation framework consisting of a non-homogeneous Markov chain model (NHMM) to simulate the climate state using Palmer Drought Severity Index (PDSI)-reconstructed data, and K-nearest neighbor (K-NN) to resample observational net basin supply magnitudes for the Great Lakes of North America. The method was applied to generate 500 plausible simulations, each with 100 years of monthly net basin supply for the Upper Great Lakes, to place the observed data into a longer temporal context. The range of net basin supply sequences represents what may have occurred in the past 1,000 years and which can occur in future. The approach was used in evaluation of operational plans for regulation of Lake Superior outflows with implications for lake levels of Superior, Michigan, Huron and Erie, and their interconnecting rivers. The simulations generally preserved the statistics of the observed record while providing new variability statistics. The framework produced a variety of high and low net basin supply sequences that provide a broader estimate of the likelihood of extreme lake levels and their persistence than with the historical record. The method does not rely on parametrically generated net basin supply values unlike parametric stochastic simulation techniques, yet still generates new variability through the incorporation of the paleo-record. The process described here generated new scenarios that are plausible based on the paleo and historic record. The evaluation of Upper Great Lakes regulation plans, subject to these scenarios, was used to evaluate robustness of the regulation plans. While the uncertain future climate cannot be predicted, one can evaluate system performance on a wide range of plausible climate scenarios.  相似文献   

4.
Abstract

Large enough to include many oceanic phenomena, the Laurentian Great Lakes are more accurately described as inland seas. With the exception of the shallow Western Basin of Lake Erie, the lakes are thermally stratified in summer, homogeneous in winter, with average temperatures passing through the temperature of maximum density of fresh water (4°C) in both the spring and the fall. The circulation is mainly powered by the wind but is strongly modified by thermal stratification and basin geometry. Effects of the earth's rotation are present in all large‐scale flows. Current speeds are typically 10 cm s?1; they are too small, with rare exceptions, to present difficulties to navigation but a knowledge of the patterns of water movement is essential for interpreting the behaviour of these valuable lakes as complex ecosystems. This paper will review more than a century of physical study of the Great Lakes.  相似文献   

5.
Little is known about climate change and its impacts for the arid coastal and mountainous regions in northern Chile. The Elqui river basin, part of the Norte Chico of Chile between 27oS and 33oS latitude, is located south of the hyper-arid Atacama desert. Despite water scarcity, agricultural development in this region has been enhanced by agronomic practices and the marketing of valuable products. This paper characterizes the actual climate conditions and presents an overview and analyses of past climate variability, and future possible climate trends, emphasizing those relevant to agriculture. Precipitation shows an important decrease during the first decades of the past century. Runoff shows decreasing trends for the first half of the past century and increases for 1960 to 1985. Drought appears to be increasing. Statistical downscaling was accomplished using the Long Ashton Research Station Weather Generator. Both future periods of 2011 to 2030 and 2046–65 showed trends to higher minimum and maximum temperature. The number of hot days (maximum temperature greater than or equal to 30°C) has a strong increasing trend during October to April. Even though the downscaled results for precipitation do not show trends, the continuation of the present trend of low amounts is a concern. We discuss some implications of climatic changes for agriculture and we emphasize the importance of adaptation, especially to deal with water scarcity.  相似文献   

6.
7.
Abstract

We have made a preliminary study of cloud‐to‐ground lightning over southern Ontario and the adjoining Great Lakes region. The lightning data set, using magnetic direction finding, is sufficiently accurate to study lightning climatology. Cloud‐to‐ground flash totals have been found for the three warm seasons 1989–91. A large variation in flash total, lightning‐day frequency and number of high flash density storms occurs over the area, with the maximum in southwestern Ontario. The area of the maximum also has a strong diurnal cycle and relatively few positive flashes. Several physical causes may contribute to this. Lake areas usually have slightly fewer flashes than nearby land areas and warm water usually has more flashes than cold water. The Great Lakes do produce more lightning than ocean areas. Convergence lines of lake breezes and other lake circulations can, however, be sites for storms with intense lightning. High surface temperature and moisture leads to an increase in lightning generation. Over land, upslope flow increases lightning‐producing storms and downslope flow decreases them. High flash density storms may be favoured by smooth rather than rough ground, and by open farmland rather than forest. On the other hand, there does not seem to be a clear urban effect increasing lightning in the Great Lakes  相似文献   

8.
Climatic change impacts on the ecohydrology of Mediterranean watersheds   总被引:2,自引:0,他引:2  
Impact of climate change on ecohydrologic processes of Mediterranean watersheds are significant and require quick action toward improving adaptation and management of fragile system. Increase in water shortages and land use can alter the water balance and ecological health of the watershed systems. Intensification of land use, increase in water abstraction, and decline in water quality can be enhanced by changes in temperature and precipitation regimes. Ecohydrologic changes from climatic impacts alter runoff, evapotranspiration, surface storage, and soil moisture that directly affect biota and habitat of the region. This paper reviews expected impacts of climatic change on the ecohydrology of watershed systems of the Mediterranean and identifies adaptation strategies to increase the resilience of the systems. A spatial assessment of changes in temperature and precipitation estimates from a multimodel ensemble is used to identify potential climatic impacts on watershed systems. This is augmented with literature on ecohydrologic impacts in watershed systems of the region. Hydrologic implications are discussed through the lens of geographic distribution and upstream-downstream dynamics in watershed systems. Specific implications of climatic change studied are on runoff, evapotranspiration, soil moisture, lake levels, water quality, habitat, species distribution, biodiversity, and economic status of countries. It is observed that climatic change can have significant impacts on the ecohydrologic processes in the Mediterranean watersheds. Vulnerability varied depending on the geography, landscape characteristics, and human activities in a watershed. Increasing the resilience of watershed systems can be an effective strategy to adapt to climatic impacts. Several strategies are identified that can increase the resilience of the watersheds to climatic and land use change stress. Understanding the ecohydrologic processes is vital to development of effective long-term strategies to improve the resilience of watersheds. There is need for further research into ecohydrologic dynamics at multiple scales, improved resolution of climatic predictions to local scales, and implications of disruptions on regional economies.  相似文献   

9.
Equations of fish yield in lakes as a function of mean annual air temperature have been published for lake whitefish, northern pike, and walleye. Using the contouring and modelling features of a geographic information system (Tydac Technologies' SPANS), we prepared maps of (i) species distribution, (ii) mean annual air temperature, and (iii) temperature increases predicted by the Goddard Institute for Space Studies' global climate model (GISS-GCM). We combined these maps with the yield equations for the three study species to form a regional model predicting the spatial distribution of yield capability in eastern Canada with and without climate change. The GISS-GCM predicts temperature increases of 2.5 to 7.7 °C (mean = 4.5 °C) in eastern Canada, midway between the values predicted by two other GCMs considered. The regional model predicts a substantial spatial re-distribution of fishery capabilities. Areas now supporting high yields become marginal and areas at the margin of, or outside, the current species range become optimal. Without efforts to prevent temperature increases or large artificial efforts to redistribute preferred fish species, Canadian freshwater fisheries will suffer major disruptions given the temperature increases predicted by the GISS-GCM.  相似文献   

10.
Axel Kleidon 《Climatic change》2009,95(3-4):405-431
No matter what humans do, their levels of metabolic activity are linked to the climatic conditions of the land surface. On the one hand, the productivity of the terrestrial biosphere provides the source of chemical free energy to drive human metabolic activity. On the other hand, human metabolic activity results in the generation of heat within the body. The release of that heat to the surrounding environment is potentially constrained by the climatic conditions at the land surface. Both of these factors are intimately linked to climate: Climatic constraints act upon the productivity of the terrestrial biosphere and thereby the source of free energy, and the climatic conditions near the surface constrain the loss of heat from the human body to its surrounding environment. These two constraints are associated with a fundamental trade-off, which should result in a distinct maximum in possible levels of human metabolic activity for certain climatic conditions. For present-day conditions, tropical regions are highly productive and provide a high supply rate of free energy. But the tropics are also generally warm and humid, resulting in a low ability to loose heat, especially during daylight. Contrary, polar regions are much less productive, but allow for much higher levels of heat loss to the environment. This trade-off should therefore result in an optimum latitude (and altitude) at which the climatic environment allows humans to be metabolically most active and perform maximum levels of physical work. Both of these constraints are affected by the concentration of atmospheric carbon dioxide pCO 2, but in contrary ways, so that I further hypothesize that an optimum concentration of pCO 2 exists and that the optimum latitude shifts with pCO 2. I evaluate these three hypotheses with model simulations of an Earth system model of intermediate complexity which includes expressions for the two constraints on maximum possible levels of human metabolic activity. This model is used to perform model simulations for the present-day and sensitivity experiments to different levels of pCO 2. The model simulations support the three hypotheses and quantify the conditions under which these apply. Although the quantification of these constraints on human metabolic activity is grossly simplified in the approach taken here, the predictions following from this approach are consistent with the geographic locations of where higher civilizations first emerged. Applied to past climatic changes, this perspective can explain why major evolutionary events in human evolutionary history took place at times of global cooling. I conclude that the quantification of these constraints on human metabolic activity is a meaningful and quantitative measure of the “human habitability” of the Earth’s climate. When anthropogenic climate change is viewed from this perspective, an important implication is that global warming is likely to lead to environmental conditions less suitable for human metabolic activity in their natural environment (and for large mammals in general) due to a lower ability to loose heat.  相似文献   

11.
通过 1998年气象及虫情资料的分析 ,证实气象因子对棉虫年度发生程度起着关键性作用 ,尤其是春季气候条件 ,对棉虫发生期的早晚及发生量的多少有着直接影响。  相似文献   

12.
Statistical ice cover models were used to project daily mean basin ice cover and annual ice cover duration for Lakes Superior and Erie. Models were applied to a 1951–80 base period and to three 30-year steady double carbon dioxide (2 × CO2) scenarios produced by the Geophysical Fluid Dynamics Laboratory (GFDL), the Goddard Institute of Space Studies (GISS), and the Oregon State University (OSU) general circulation models. Ice cover estimates were made for the West, Central, and East Basins of Lake Erie and for the West, East, and Whitefish Bay Basins of Lake Superior. Average ice cover duration for the 1951– 80 base period ranged from 13 to 16 weeks for individual lake basins. Reductions in average ice cover duration under the three 2 × CO2 scenarios for individual lake basins ranged from 5 to 12 weeks for the OSU scenario, 8 to 13 weeks for the GISS scenario, and 11 to 13 weeks for GFDL scenario. Winters without ice formation become common for Lake Superior under the GFDL scenario and under all three 2 × CO2 scenarios for the Central and East Basins of Lake Erie. During an average 2 × CO2 winter, ice cover would be limited to the shallow areas of Lakes Erie and Superior. Because of uncertainties in the ice cover models, the results given here represent only a first approximation and are likely to represent an upper limit of the extent and duration of ice cover under the climate change projected by the three 2 × CO2scenarios. Notwithstanding these limitations, ice cover projected by the 2 × CO2 scenarios provides a preliminary assessment of the potential sensitivity of the Great Lakes ice cover to global warming. Potential environmental and socioeconomic impacts of a 2 × CO2 warming include year-round navigation, change in abundance of some fish species in the Great Lakes, discontinuation or reduction of winter recreational activities, and an increase in winter lake evaporation.  相似文献   

13.
14.
西藏近35年地表湿润指数变化特征及其影响因素   总被引:8,自引:0,他引:8  
杜军  李春  拉巴  罗布次仁  廖健 《气象学报》2009,67(1):158-164
利用1971-2005年西藏25个气象站月平均最高气温、最低气温、风速、相对湿度、日照时数、降水量等资料,应用Penman-Monteith模犁计算了最大潜在蒸散、地表湿润指数,分析了其空间分布、年际变化特征及季节差异,并讨论了影响地表湿润指数变化的气象因子.研究表明:近35年,西藏年降水量表现为显著的增加趋势,增幅为15.0 mm/(10 a);年最大潜在蒸散呈不同程度的减小趋势,为-4.6--71.6 mm/(10 a).阿里地区西南部、聂拉木年地表湿润指数为不显著的减小趋势,其他各地均呈增大趋势,增幅为0.02-0.09.就西藏平均而言,年地表湿润指数以0.04/10 a的速率显著增大,尤其足近25年增幅更为明显.各季节地表湿润指数也表现为增大趋势,以夏季增幅最明显.20世纪70年代剑80年代主要表现为以低温低湿为主的年际变化特征,进入90年代后,气温持续升高,地表湿润指数明显增加,呈现山暖湿型的气候特征.降水量和相对湿度的明显增加,以及平均气温日较差的显著减小是地表湿润指数显著增加的主要原因,平均风速和日照时数的明显减少,在湿润指数增加趋势中也起着重要作用.  相似文献   

15.
There has been a 38% decrease in expected annual rainfall totals over the Lowveld, in the eastern part of South Africa, during the last two decades. The downward trend in mean annual rainfall is not replicated in the rest of the summer rainfall region above the escarpment. Rainfall variability over the Lowveld has been increasing since about the 1950s, although the increase in variability appears to have been slowing down in more recent years. Changes in the frequency and intensity of El Niño/Southern Oscillation extreme events are only partly responsible for the observed desiccation and increase in rainfall variability. The CSIRO 9-level general circulation model simulates, for 2 × CO2 conditions, an insignificant decrease of 10% in the annual mean and a slight increase in the inter-annual variability of rainfall over the Lowveld. Other general circulation models likewise simulate only small changes in annual mean rainfall over the region. However, the simulated increase in rainfall variability by the CSIRO 9-level model is likely to be conservative since the model, being linked to a slab ocean, is unable to represent important features of ocean-atmosphere coupling in the region. Significant changes in the frequencies of extreme drought events and of heavy rains in the Lowveld are likely to occur even with only small changes in the rainfall climatology of the region.  相似文献   

16.
Climate parameters, especially temperature, sunlight, and precipitation, play a decisive role in growing and maturing processes. The aim of this study is to investigate the relationship between climate variability and variations in phenological events in viticulture. Long time series of daily meteorological observations are used to quantify these relations. The primary aim is to predict the date of phenological events by relationships between plant morphology and environmental conditions. Causal relationships between environment and internal activities of the vine (phytochemistry, cellular interactions, molecular and cell biology) are not our focus. The dates of the phenological events are important for planning treatments in the vineyards like pest management, for predicting the duration of the ripening phase and estimating the quality of the grapes and the vintage. The focus is layed on the region of the Upper Moselle, especially the Luxembourgian viticulture. First the regional climate and the phenological states of different vine varieties during the time period 1951?C2005 are analysed. Significant trends are detected in annual, spring and summer temperatures. Vine phenology is also found to have changed significantly; budburst date and flowering events occur earlier by about two weeks. In a second step, relationships between phenological events and climate parameters are used to develop a prediction model. The parameterisation used in this study is based on a linear multiple regression method with forward and backward steps. The predictors tested are mainly temperature means for different time periods or temperature derived indices. In addition precipitation and sunshine duration for different time periods are evaluated, but only the temperature based predictors showed sufficient skill. For the budburst event, the significant predictors are the accumulated degree days in March, the mean daily maximum temperature in April and the accumulated frost days from January to March. The flowering event is best predicted by the accumulated degree days in May and April, the mean daily maximum temperature in June, and the date of the budburst event. Depending on the vine variety and the phenological event, the model explains 80?C89% of the variance and has a correlation coefficient above 0.90 with the observations.  相似文献   

17.
The broad-scale distribution of terrestrial ecosystem complexes is determined in large part by climate and can be altered by climatic change due to natural causes or due to human activities such as those leading to increasing atmospheric CO2 concentration. Classifications that recognize the dependence of natural vegetation on climate provide one means of constructing maps to display the impact of climatic change on the geography of major vegetation zones. A world map of the Holdridge Life-Zone Classification, developed from approximately 8,000 meteorological records, is compared with a Holdridge Map with average temperature increments simulated by a. model of climate under elevated atmospheric CO2 concentration. The largest changes are indicated at high latitudes, where the simulated temperature increase is largest and the temperature intervals defining life zones are smallest. Boreal Forest Zones are replaced by either Cool Temperate Forest or Cool Temperate Steppe, depending on average precipitation. Changes in the tropics are smaller; however, in some regions, Subtropical Moist Forest is replaced by Tropical Dry Forest.Research supported by the National Science Foundation's Ecosystem Studies Program under Interagency Agreement Nos. DEB81-15316 and DEB83-15185.  相似文献   

18.
19.
The climate–population relationship has long been conceived. Although the topic has been repeatedly investigated, most of the related works are Eurocentric or qualitative. Consequently, the relationship between climate and population remains ambiguous. In this study, fine-grained temperature reconstructions and historical population data sets have been employed to statistically test a hypothesized relationship between temperature change and population growth (i.e., cooling associated with below average population growth) in China over the past millennium. The important results were: (1) Long-term temperature change significantly determined the population growth dynamics of China. However, spatial variation existed, whilst population growth in Central China was shown to be responsive to both long- and short-term temperature changes; in marginal areas, population growth was only sensitive to short-term temperature fluctuations. (2) Temporally, the temperature–population relationship was obscured in some periods, which was attributable to the factors of drought and social buffers. In summary, a temperature–population relationship was mediated by geographic factors, the aridity threshold, and social factors. Given the upcoming threat posed by climate change to human societies, this study seeks to improve our knowledge and understanding of the climate–society relationship.  相似文献   

20.
All sectors face decarbonization for a 2 °C temperature increase to be avoided. Nevertheless, meaningful policy measures that address rising CO2 from international aviation and shipping remain woefully inadequate. Treated with a similar approach within the United Nations Framework Convention on Climate Change (UNFCCC), they are often debated as if facing comparable challenges, and even influence each others’ mitigation policies. Yet their strengths and weaknesses have important distinctions. This article sheds light on these differences so that they can be built upon to improve the quality of debate and ensuing policy development. The article quantifies ‘2 °C’ pathways for these sectors, highlighting the need for mitigation measures to be urgently accelerated. It reviews recent developments, drawing attention to one example where a change in aviation mitigation policy had a direct impact on measures to cut CO2 from shipping. Finally, the article contrasts opportunities and barriers towards mitigation. The article concludes that there is a portfolio of opportunities for short- to medium-term decarbonization for shipping, but its complexity is its greatest barrier to change. In contrast, the more simply structured aviation sector is pinning too much hope on emissions trading to deliver CO2 cuts in line with 2 °C. Instead, the solution remains controversial and unpopular – avoiding 2 °C requires demand management.

Policy relevance

The governance arrangements around the CO2 produced by international aviation and shipping are different from other sectors because their emissions are released in international airspace and waters. Instead, through the Kyoto Protocol, the International Civil Aviation Authority (ICAO) and the International Maritime Organization (IMO) were charged with developing policies towards mitigating their emissions. Slow progress to date, coupled with strong connections with rapidly growing economies, has led to the CO2 from international transport growing at a higher rate than the average rate from all other sectors. This article considers this rapid growth, and the potential for future CO2 growth in the context of avoiding a 2 °C temperature rise above pre-industrial levels. It explores similarities and differences between these two sectors, highlighting that a reliance on global market-based measures to deliver required CO2 cuts will likely leave both at odds with the overarching climate goal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号