首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We provide the circumstances and details of the fireball observation, search expeditions, recovery, strewn field, and physical characteristics of the Ko?ice meteorite that fell in Slovakia on February 28, 2010. The meteorite was only the 15th case of an observed bolide with a recovered mass and subsequent orbit determination. Despite multiple eyewitness reports of the bolide, only three videos from security cameras in Hungary were used for the strewn field determination and orbit computation. Multiple expeditions of professionals and individual searchers found 218 fragments with total weight of 11.3 kg. The strewn field with the size of 5 × 3 km is characterized with respect to the space distribution of the fragments, their mass and size‐frequency distribution. This work describes a catalog of 78 fragments, mass, size, volume, fusion crust, names of discoverers, geographic location, and time of discovery, which represents the most complex study of a fresh meteorite fall. From the analytical results, we classified the Ko?ice meteorite as an ordinary H5 chondrite.  相似文献   

2.
The Ko?ice meteorite fall occurred in eastern Slovakia on February 28, 2010, 22:25 UT. The very bright bolide was imaged by three security video cameras from Hungary. Detailed bolide light curves were obtained through clouds by radiometers on seven cameras of the European Fireball Network. Records of sonic waves were found on six seismic and four infrasonic stations. An atmospheric dust cloud was observed the next morning before sunrise. After careful calibration, the video records were used to compute the bolide trajectory and velocity. The meteoroid, of estimated mass of 3500 kg, entered the atmosphere with a velocity of 15 km s?1 on a trajectory with a slope of 60° to the horizontal. The largest fragment ceased to be visible at a height of 17 km, where it was decelerated to 4.5 km s?1. A maximum brightness of absolute stellar magnitude about ?18 was reached at a height of 36 km. We developed a detailed model of meteoroid atmospheric fragmentation to fit the observed light curve and deceleration. We found that Ko?ice was a weak meteoroid, which started to fragment under the dynamic pressure of only 0.1 MPa and fragmented heavily under 1 MPa. In total, 78 meteorites were recovered in the predicted fall area during official searches. Other meteorites were found by private collectors. Known meteorite masses ranged from 0.56 g to 2.37 kg. The meteorites were classified as ordinary chondrites of type H5 and shock stage S3. The heliocentric orbit had a relatively large semimajor axis of 2.7 AU and aphelion distance of 4.5 ± 0.5 AU. Backward numerical integration of the preimpact orbit indicates possible large variations of the orbital elements in the past due to resonances with Jupiter.  相似文献   

3.
In this study, we conduct a detailed analysis of the Ko?ice meteorite fall (February 28, 2010), to derive a reliable law describing the mass distribution among the recovered fragments. In total, 218 fragments of the Ko?ice meteorite, with a total mass of 11.285 kg, were analyzed. Bimodal Weibull, bimodal Grady, and bimodal lognormal distributions are found to be the most appropriate for describing the Ko?ice fragmentation process. Based on the assumption of bimodal lognormal, bimodal Grady, bimodal sequential, and bimodal Weibull fragmentation distributions, we suggest that, prior to further extensive fragmentation in the lower atmosphere, the Ko?ice meteoroid was initially represented by two independent pieces with cumulative residual masses of approximately 2 and 9 kg, respectively. The smaller piece produced about 2 kg of multiple lightweight meteorite fragments with the mean around 12 g. The larger one resulted in 9 kg of meteorite fragments, recovered on the ground, including the two heaviest pieces of 2.374 kg and 2.167 kg with the mean around 140 g. Based on our investigations, we conclude that two to three larger fragments of 500–1000 g each should exist, but were either not recovered or not reported by illegal meteorite hunters.  相似文献   

4.
The Ko?ice meteorite was observed to fall on 28 February 2010 at 23:25 UT near the city of Ko?ice in eastern Slovakia and its mineralogy, petrology, and geochemistry are described. The characteristic features of the meteorite fragments are fan‐like, mosaic, lamellar, and granular chondrules, which were up to 1.2 mm in diameter. The fusion crust has a black‐gray color with a thickness up to 0.6 mm. The matrix of the meteorite is formed mainly by forsterite (Fo80.6); diopside; enstatite (Fs16.7); albite; troilite; Fe‐Ni metals such as iron and taenite; and some augite, chlorapatite, merrillite, chromite, and tetrataenite. Plagioclase‐like glass was also identified. Relative uniform chemical composition of basic silicates, partially brecciated textures, as well as skeletal taenite crystals into troilite veinlets suggest monomict breccia formed at conditions of rapid cooling. The Ko?ice meteorite is classified as ordinary chondrite of the H5 type which has been slightly weathered, and only short veinlets of Fe hydroxides are present. The textural relationships indicate an S3 degree of shock metamorphism and W0 weathering grade. Some fragments of the meteorite Ko?ice are formed by monomict breccia of the petrological type H5. On the basis of REE content, we suggest the Ko?ice chondrite is probably from the same parent body as H5 chondrite Morávka from Czech Republic. Electron‐microprobe analysis (EMPA) with focused and defocused electron beam, whole‐rock analysis (WRA), inductively coupled plasma mass and optical emission spectroscopy (ICP MS, ICP OES), and calibration‐free laser induced breakdown spectroscopy (CF‐LIBS) were used to characterize the Ko?ice fragments. The results provide further evidence that whole‐rock analysis gives the most accurate analyses, but this method is completely destructive. Two other proposed methods are partially destructive (EMPA) or nondestructive (CF‐LIBS), but only major and minor elements can be evaluated due to the significantly lower sample consumption.  相似文献   

5.
Results of nondestructive gamma‐ray analyses of cosmogenic radionuclides (7Be, 22Na, 26Al, 46Sc, 48V, 54Mn, 56Co, 57Co, 58Co, and 60Co) in 19 fragments of the Ko?ice meteorite are presented and discussed. The activities varied mainly with position of fragments in the meteoroid body, and with fluxes of cosmic‐ray particles in the space affecting radionuclides with different half‐lives. Monte Carlo simulations of the production rates of 60Co and 26Al compared with experimental data indicate that the pre‐atmospheric radius of the meteoroid was 50 ± 5 cm. In two Ko?ice fragments, He, Ne, and Ar concentrations and isotopic compositions were also analyzed. The noble‐gas cosmic‐ray exposure age of the Ko?ice meteorite is 5–7 Myr, consistent with the conspicuous peak (or doublet peak) in the exposure age histogram of H chondrites. One sample likely contains traces of implanted solar wind Ne, suggesting that Ko?ice is a regolith breccia. The agreement between the simulated and observed 26Al activities indicate that the meteoroid was mostly irradiated by a long‐term average flux of galactic cosmic rays of 4.8 particles cm?2 s?1, whereas the short‐lived radionuclide activities are more consistent with a flux of 7.0 protons cm?2 s?1 as a result of the low solar modulation of the galactic cosmic rays during the last few years before the meteorite fall.  相似文献   

6.
Using the observed attributes of the Hoba meteorite, that it is a single mass which survived impact intact, we investigate the possible conditions leading to its fall. Specifically, we asses the scenario in which the Hoba progenitor is envisioned as encountering Earth’s atmosphere at a shallow angle of entry, with a low velocity and stabilized profile to the oncoming airflow. In order to physically survive impact we find, via the planar impact approximation, that the Hoba meteorite must have landed with a speed smaller than a few hundred meters per second. We find that the envisioned model can satisfy, in its extreme limit of low entry speed, maximum area profile and near horizontal entry angle the required landing conditions. We deduce that the progenitor mass for the Hoba meteorite was likely of order 5 × 105 kg, and that a simple impact crater, now eroded, having a diameter of some 20 m and a depth of about 5 m was produced upon impact. We estimate that the typical arrival time interval for such massive, Hoba-like meteorite falls is of order 5 × 106 years.  相似文献   

7.
Abstract— The Tuxtuac meteorite fell in Zacatecas state, Mexico, on 16 October 1975, at 1820 hours. Two partly crusted masses, weighing 1924 g and 2340 g, were recovered. The stone is an ordinary chondrite, LL5, with olivine Fa30 and 19.22 weight % total iron. The silicates contain numerous voids and a froth-like mesostasis is present within some chondrules. Metal phases present are kamacite (5.7–6.4% Ni, 6–7% Co) and high nickel metal (taenite 37–41% Ni, 1.7 ± 0.3% Co; tetrataenite 47–52% Ni, 0.8–1.4% Co). The stone is unusual for an LL-group chondrite in that it exhibits neither large-scale brecciation features nor dark veins.  相似文献   

8.
Abstract In the fall of 1961, fragments of an olivine-bronzite chondrite were found about 2 miles NNW of Oshkosh, Wisconsin, the total weight being 144.8 g. This paper fixes the exact location and describes the circumstances of the find.  相似文献   

9.
Meteorites are delivered from the asteroid belt by way of chaotic zones (Wisdom 1985a). The dominant sources are believed to be the chaotic zones associated with the ν6 secular resonance, the 3:1 mean motion resonance, and the 5:2 mean motion resonance. Though the meteorite transport process has been previously studied, those studies have limitations. Here I reassess the meteorite transport process with fewer limitations. Prior studies have not been able to reproduce the afternoon excess (the fact that approximately twice as many meteorites fall in the afternoon as in the morning) and suggested that the afternoon excess is an observational artifact; here it is shown that the afternoon excess is in fact consistent with the transport of meteorites by way of chaotic zones in the asteroid belt. By studying models with and without the inner planets it is found that the inner planets significantly speed up the transport of meteorites.  相似文献   

10.
In Wisdom (2017), I presented new simulations of meteorite transport from the chaotic zones associated with major resonances in the asteroid belt: the ν6 secular resonance, the 3:1 mean motion resonance with Jupiter, and the 5:2 mean motion resonance with Jupiter. I found that the observed afternoon excess (the fact that approximately twice as many meteorites fall in the afternoon as in the morning) of the ordinary chondrites is consistent with chaotic transport from the 3:1 resonance, contradicting prior reports. Here I report an additional study of the transport of meteorites from ν6 secular resonance and the 3:1 mean motion resonance. I use an improved integration algorithm, and study the evolution of more particles. I confirm that the afternoon excess of the ordinary chondrites is consistent with transport from the 3:1 resonance.  相似文献   

11.
Abstract— Antarctic meteorites are considerably smaller, on average, than those recovered elsewhere in the world, and seem to represent a different portion of the mass distribution of infalling meteorites. When an infall rate appropriate to the size of Antarctic meteorites is used (1000 meteorites 10 grams or larger/km2/106 years), it is found that direct infall can produce the meteorite accumulations found on eight ice fields in the Allan Hills region in times ranging from a few thousand to nearly 200 000 years, with all but the Allan Hills Main and Near Western ice fields requiring less than 30 000 years. Meteorites incorporated into the ice over time are concentrated on the surface when the ice flows into a local area of rapid ablation. The calculated accumulation times, which can be considered the average age of the exposed ice, agree well with terrestrial ages for the meteorites and measured ages of exposed ice. Since vertical concentration of meteorites through removal of ice by ablation is sufficient to explain the observed meteorite accumulations, there is no need to invoke mechanisms to bring meteorites from large areas to the relatively small blue-ice patches where they are found. Once a meteorite is on a bare ice surface, freeze-thaw cycling and wind break down the meteorite and remove it from the ice. The weathering lifetime of a 100-gram meteorite on Antarctic ice is on the order of 10 000 ± 5000 years.  相似文献   

12.
Abstract The Belle Plaine III meteorite is one of three meteorites, all of about the same size, found within a 2 mile strip southeast of Belle Plaine, Kansas. The meteorite weighs 23.9 kg, and consists of about 28% metallic minerals and 72% silicates. Nickel-iron, magnetite, hypersthene and olivene are the major constituents. The meteorite is an olivene-hypersthene chondrite.  相似文献   

13.
Abstract— The paper presents the infrared transmission spectrum of the Salzwedel meteorite. Further, the spectrum is used to characterize the meteorite's mineralogical composition.  相似文献   

14.
Abstract. About 1950 an iron meteorite weighing 19 1/4 pounds was found a mile west of Withrow in Douglas County, Washington. The discovery site happens to be a little less than 5 miles SSE from that of the Waterville meteorite. However, the two irons are definitely not from a single fall. Withrow is a medium octahedrite showing secondary recrystallization of the type ascribed to cosmic heating. It was apparently picked up not more than a few years after it fell. Weathering is minimal, and effects of passage through the atmosphere are well preserved.  相似文献   

15.
Abstract The Anoka, Minnesota, meteorite was found on the Joe Fields Farm at location coordinates 45° 12′ N, 93° 26′ W. It is a fine octahedrite distinguished by large fields of dense plessite. The chemical analysis of the meteorite is 84.9 percent iron, 11.75 nickel and 0.51 cobalt.  相似文献   

16.
The formation of thermal anomalies around the impact sites of large cosmic bodies on the Earth is studied. The parameters of thermal anomalies are compared for the impacts of bodies of various scales—from one to several hundred kilometers in diameter. The cooling time of the rocks under impact craters of various scales is estimated. The estimates obtained are used to model the input of heat by the impacts of small (less than 500 km in diameter) planetesimals late in the accretion of the Earth. The boundary conditions for calculating the thermal evolution of the early Earth are refined by simultaneously analyzing the sizes of impact thermal anomalies and the model size distributions of projectiles (the mass spectrum of planetesimals).  相似文献   

17.
The existence of gaps in the perihelion distribution of the orbits of multikilometer-sized asteroids that approach the orbits of terrestrial-group planets is confirmed. This property of the orbits of large asteroids suggests the existence among them of a family of last meteorite parent bodies. Astrophysical data were considered for S-asteroids of the Main Belt and those that approach terrestrial planets. The u–x color index, which is related to the position of the absorption band at 950 nm in the asteroid spectra, was chosen for a qualitative comparison of the surface composition of these asteroids (identical or differing composition). The ux color-index distributions were analyzed statistically according to the perihelion (q) and mean heliocentric distances (a) of the S-asteroids. It is shown that these distributions are -shaped, peaking at q 1.8 AU and a 2.2 AU. The wings of the distributions can be approximated by linear regressions. A comparison of the ux color-index mean values for S-asteroids in the regions of the Earth and Mars and of the Main Belt prompts the conclusion that the last meteorite parent bodies in the vicinity of the orbits of the Earth and Mars come primarily from various regions of the asteroid Main Belt.  相似文献   

18.
Abstract— Thirty years of recoveries in East Antarctica have led to significant understanding of the regional characteristics associated with meteorite stranding surfaces. In Antarctica these sites are characterized by patches of snow‐free blue ice at high altitude on the icesheet in regions where iceflow is highly restricted. Melting is extremely rare or absent and sublimation rates are high, even though meteorite stranding surfaces are predominantly found within regions where accumulation typically dominates. Localized environmental conditions that persist for thousands of years or longer appear to be the dominant factor rather than shorter‐term or seasonal cycles. In this paper we describe our discovery of regions in Northeast Greenland with blue ice areas that exhibit many of the requisite characteristics, suggesting that they are excellent prospects for future meteorite recovery efforts.  相似文献   

19.
Multi-ring impact basins have been found on the surfaces of almost all planetary bodies in the Solar system with solid crusts. The details of their formation mechanism are still unclear. We present results of our numerical modeling of the formation of the largest known terrestrial impact craters. The geological and geophysical data on these structures accumulated over many decades are used to place constraints on the parameters of available numerical models with a dual purpose: (i) to choose parameters in available mechanical models for the crustal response of planetary bodies to a large impact and (ii) to use numerical modeling to refine the possible range of original diameters and the morphology of partially eroded terrestrial craters. We present numerical modeling results for the Vredefort, Sudbury, Chicxulub, and Popigai impact craters and compare these results with available geological and geophysical information.  相似文献   

20.
Abstract The Fremont Butte meteorite was found near Fremont Butte, Colorado, in 1963. A single individual was found weighing 6.6 kg. It is an olivine-hypersthene or L group chondrite showing brecciation and a small number of well formed chondrules and olivine phenocrysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号