首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
We are investigating chondrule formation by nebular shock waves, using hot plasma as an analog of the heated gas produced by a shock wave as it passes through the protoplanetary environment. Precursor material (mainly silicates, plus metal, and sulfide) was dropped through the plasma in a basic experimental set‐up designed to simulate gas–grain collisions in an unconstrained spatial environment (i.e., no interaction with furnace walls during formation). These experiments were undertaken in air (at atmospheric pressure), to act as a “proof‐of‐principle”—could chondrules, or chondrule‐analog objects (CAO), be formed by gas–grain interaction initiated by shock fronts? Our results showed that if accelerating material through a fixed plasma field is a valid simulation of a supersonic shock wave traveling through a cloud of gas and dust, then CAO certainly could be formed by this process. Melting of and mixing between starting materials occurred, indicating temperatures of at least 1266 °C (the olivine‐feldspar eutectic). The production of CAO with mixed mineralogy from monomineralic starting materials also shows that collisions between particles are an important mechanism within the chondrule formation process, such that dust aggregates are not necessarily required as chondrule precursors. Not surprisingly, there were significant differences between the synthetic CAO and natural chondrules, presumably mainly because of the oxidizing conditions of the experiment. Results also show similarity to features of micrometeorites like cosmic spherules, particularly the dendritic pattern of iron oxide crystallites produced on micrometeorites by oxidation during atmospheric entry and the formation of vesicles by evaporation of sulfides.  相似文献   

2.
Abstract– Here, we show that several geochemical indicators point to number densities during chondrule formation that were far higher than can be accounted for by known nebula processes. The number densities implied by compound chondrules and nonspherical chondrules are shown to be significantly higher than estimated in previous studies. At the implied chondrule number densities, if a chondrule formation region survived a formation event it would have been gravitationally bound and would have collapsed quite rapidly to form an asteroidal‐sized body. The diversity of chondrule compositions and textures in a chondrite group could have formed in a single event in subvolumes of a formation region that were chemically isolated from one another because of slow diffusion in the gas. Within these subvolumes, equilibration between chondrules with different compositions would have been fairly rapid, although small isotopic mass fractionations in elements like Fe, Si, Mg, and O may persist. This could explain the existence of the small isotopic mass fractionations in these elements that have been observed in chondrules. However, the evidence for recycling of chondrules requires that there was more than one chondrule formation event prior to formation of a parent asteroid. Finally, we argue that OC and CO chondrule Mg‐Al systematics are both consistent with single ages or narrow ranges of ages, and that the CO, and possibly the OC, ages date parent body alteration. This would resolve the conundrum of needing to preserve in a turbulent nebula physically and chemically distinct CO and OC chondrule populations for 1–2 Myr.  相似文献   

3.
Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with ~2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (GCR) and the ablation of incident meteoritic dust from Enceladus’ E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100 km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H2+ and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N2+, N+ and CH4+ can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O+ can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O+ ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process of freeing oxygen within aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface, including water frost depositing on grains from cryovolcanism, would further add to abundance of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite organic-ice grains, in part driven by free oxygen in the presence of organics and any heat sources, thereby raising the astrobiological potential for microscopic equivalents of Darwin's “warm ponds” on Titan.  相似文献   

4.
On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long‐lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14C, 22Na, 26Al, 54Mn, 57Co, 58Co, and 60Co, which indicate that the pre‐atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26Al half‐life (0.717 Myr), the cosmic‐ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137Cs and primordial 40K in some of the Chelyabinsk fragments.  相似文献   

5.
We developed a simple, handheld, and user-friendly magnetic susceptibility meter specialized for the identification of meteorites. The measurement is based on an LC resonance circuit. When provided with a rough estimate of the sample mass, the instrument displays directly the mass-normalized magnetic susceptibility expressed in logχm (with χm in 10−9 m3 kg−1), a parameter that is widely used in the classification of meteorites. Moreover, the measurement of the impedance of the LC resonator provides a proxy of the electrical conductivity (C-index) that can be helpful to distinguish metal-bearing samples from magnetite-bearing samples. This C-index offers an additional diagnostic for the identification of meteorites. Our tests demonstrate that the precision and the accuracy of this instrument called “Meteorite meter” (MetMet) are sufficient to allow distinguishing most meteorites from most terrestrial rocks, for a minimum recommended sample mass of 5 g. The distinction of some meteorite groups is also possible, in particular the separation of the three ordinary chondrite groups. Meteorite hunters, collectors, and curators and non-specialists, including children, can use this instrument as a guidance in the identification and classification of meteorites. This kind of instrument has an immense advantage over the widely used testing of meteorites with magnets, as it does not affect the paleomagnetic records of meteorites that are highly valuable for scientists.  相似文献   

6.
7.
We present here several laboratory analyses performed on the freshly fallen Mukundpura CM chondrite. Results of infrared transmission spectroscopy, thermogravimetry analysis, and reflectance spectroscopy show that Mukundpura is mainly composed of phyllosilicates. The rare earth trace elements composition and ultrahigh‐resolution mass spectrometry of the soluble organic matter give results consistent with CM chondrites. Finally, Raman spectroscopy shows no signs of thermal alteration of the meteorite. All the results agree that Mukundpura has been strongly altered by water on its parent body. Comparison of the results obtained on the meteorite with those of other chondrites of known petrologic types leads to the conclusion that Mukundpura is similar to CM1 chondrites, which differ from its original classification as a CM2.  相似文献   

8.
We combine N -body simulations of structure growth with physical modelling of galaxy evolution to investigate whether the shift in cosmological parameters between the first- and third-year results from the Wilkinson Microwave Anisotropy Probe ( WMAP ) affects predictions for the galaxy population. Structure formation is significantly delayed in the WMAP3 cosmology, because the initial matter fluctuation amplitude is lower on the relevant scales. The decrease in dark matter clustering strength is, however, almost entirely offset by an increase in halo bias, so predictions for galaxy clustering are barely altered. In both cosmologies, several combinations of physical parameters can reproduce observed, low-redshift galaxy properties; the star formation, supernova feedback and active galactic nucleus feedback efficiencies can be played off against each other to give similar results. Models which fit observed luminosity functions predict projected two-point correlation functions which scatter by about 10–20 per cent on large scale and by larger factors on small scale, depending both on cosmology and on details of galaxy formation. Measurements of the pairwise velocity distribution prefer the WMAP1 cosmology, but careful treatment of the systematics is needed. Given present modelling uncertainties, it is not easy to distinguish between the WMAP1 and WMAP3 cosmologies on the basis of low-redshift galaxy properties. Model predictions diverge more dramatically at high redshift. Better observational data at   z > 2  will better constrain galaxy formation and perhaps also cosmological parameters.  相似文献   

9.
Radosław Rek 《Solar physics》2010,267(2):361-375
Solar flares take place in regions of strong magnetic fields and are generally accepted to be the result of a resistive instability leading to magnetic reconnection. When new flux emerges into a pre-existing active region it can act as a flare and coronal mass ejection trigger. In this study we observed active region 10955 after the emergence of small-scale additional flux at the magnetic inversion line. We found that flaring began when additional positive flux levels exceeded 1.38×1020 Mx (maxwell), approximately 7 h after the initial flux emergence. We focussed on the pre-flare activity of one B-class flare that occurred on the following day. The earliest indication of activity was a rise in the non-thermal velocity one hour before the flare. 40 min before flaring began, brightenings and pre-flare flows were observed along two loop systems in the corona, involving the new flux and the pre-existing active region loops. We discuss the possibility that reconnection between the new flux and pre-existing loops before the flare drives the flows by either generating slow mode magnetoacoustic waves or a pressure gradient between the newly reconnected loops. The subsequent B-class flare originated from fast reconnection of the same loop systems as the pre-flare flows.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号