首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Occasional population outbreaks of the crown‐of‐thorns sea star, Acanthaster planci, are a major threat to coral reefs across the Indo‐Pacific. The presumed association between the serial nature of these outbreaks and the long larval dispersal phase makes it important to estimate larval dispersal; many studies have examined the population genetic structure of A. planci for this purpose using different genetic markers. However, only a few have focused on reef‐scale as well as archipelago‐scale genetic structure and none has used a combination of different genetic markers with different effective population sizes. In our study, we used both mtDNA and microsatellite loci to examine A. planci population genetic structure at multiple spatial scales (from <2 km to almost 300 km) within and among four islands of the Society Archipelago, French Polynesia. Our analysis detected no significant genetic structure based on mtDNA (global FST = ?0.007, P = 0.997) and low levels of genetic structure using microsatellite loci (global FST = 0.006, P = 0.005). We found no significant isolation by distance patterns within the study area for either genetic marker. The overall genetically homogenized pattern found in both the mitochondrial and nuclear loci of A. planci in the Society Archipelago underscores the significant role of larval dispersal that may cause secondary outbreaks, as well as possible recent colonization in this area.  相似文献   

2.
For most marine invertebrate species, dispersal is achieved mainly or exclusively by pelagic larvae. When the duration of the pelagic larval stage is long, genetic homogeneity over large geographic scales is expected. However, genetic structure has often been reported over small spatial scales, suggesting that more complex processes occur than a simple positive relationship between pelagic larval duration and gene flow. Concholepas concholepas has a larval stage that can last up to 3 months in the water column with a wide distributional range covering from 6°S to 56°S. We used a hierarchical sampling technique to test if the genetic homogeneity of this highly dispersive species is maintained throughout its total geographic range in spite of environmental heterogeneity. In the three studied regions (Antofagasta Bay, Valdivia and Patagonia), a spatial pattern of isolation by distance in conjunction with a spatial genetic structure was observed. Within each region, different spatial genetic patterns were detected. In Antofagasta Bay and Valdivia there was evidence of substantial gene flow among populations, whereas in Patagonia, populations showed genetic structure and a unique, genetically isolated location was identified. These results revealed the existence of spatial differences in the genetic patterns among regions with different coastal topographies in C. concholepas, and give us new insights into the inter‐relationships of larval dispersal potential, actual larval dispersal and physical processes. Regarding the sustainable management of C. concholepas, two important issues are derived from this study: (i) to highlight the need for a regional context in the management of C. concholepas, (ii) to determine the distinctiveness of the most austral population and to focus on the conservation efforts due to the relevance of this area.  相似文献   

3.
The coherency among larval stages of marine taxa, ocean currents and population connectivity is still subject to discussion. A common view is that organisms with pelagic larval stages have higher dispersal abilities and therefore show a relatively homogeneous population genetic structure. Contrary to this, local genetic differentiation is assumed for many benthic direct developers. Specific larval or adult migratory behavior and hydrographic effects may significantly influence distribution patterns, rather than passive drifting abilities alone. The Southern Ocean is an ideal environment to test for the effects of ocean currents on population connectivity as it is characterized by several well‐defined and strong isolating current systems. In this study we studied the genetic structure of the decapod deep‐sea shrimp Nematocarcinus lanceopes, which has planktotrophic larval stages. We analysed 194 individuals from different sample localities around the Antarctic continent using nine microsatellite markers. Consistent with a previous study based on mitochondrial DNA markers, primarily weak genetic patterns among N. lanceopes populations around the continent were found. Using ocean resistance modeling approaches we were able to show that subtle genetic differences among populations are more likely explained by ocean currents rather than by geographic distance for the Atlantic Sector of the Southern Ocean.  相似文献   

4.
During the past 30 years, 42 molecular studies have been undertaken in New Zealand to examine the phylogeography of coastal benthic invertebrates and plants. Here, we identify generalities and/or patterns that have emerged from this research and consider the processes implicated in generating genetic structure within populations. Studies have used various molecular markers and examined taxonomic groups with a range of life histories and dispersal strategies. Genetic disjunctions have been identified at multiple locations, with the most frequently observed division occurring between northern and southern populations at the top of the South Island. Although upwelling has been implicated as a cause of this disjunction, oceanographic evidence is lacking and alternative hypotheses exist. A significant negative correlation between larval duration and genetic differentiation (r2 = 0.39, P < 0.001, n = 29) across all studies suggests that larval duration might be used as a proxy for dispersal potential. However, among taxa with short larval durations (<10 days) there was greater variability in genetic differentiation than among taxa with longer pelagic periods. This variability implies that when larval duration is short, other factors may determine dispersal and connectivity among populations. Although there has been little congruence between the phylogeographic data and recognised biogeographic regions, recent research has resolved population subdivision at finer spatial scales corresponding more closely with existing biogeographic classifications. The use of fast‐evolving and ecologically significant molecular markers in hypothesis‐driven research could further improve our ability to detect population subdivision and identify the processes structuring marine ecosystems.  相似文献   

5.
Bottlenose dolphins are widespread off South America with patchy distributions throughout coastal, nearshore and offshore waters. Only limited information on the connectivity between individuals from these different habitats exists, despite the importance of understanding the overall population structure. A group of bottlenose dolphins in an insular habitat off Brazil may help provide evidence of the structure of a larger pelagic population in Brazilian waters. It is unknown whether the dolphins that use this habitat seasonally are part of an open population, a closed population of transient animals, or even individuals from offshore or nearshore groups. To explore the nature of these seasonal visitors we combined two strategies. First, by assessing the population parameters, we described a small group of individuals (maximum of 38 individuals in 2004 and five individuals in 2010) characterized by wide‐ranging behavior, low survival probabilities (64%) and an apparent population decline. Secondly, by exploring their social organization at a fine scale, we observed that within a stable group, the dyadic associations are fluid and mostly of short duration, similar to well‐known coastal bottlenose dolphin societies. The evidence of a non‐structured social network seems to be coupled with apparent seasonal use of this insular protected area for calf rearing and/or reproductive strategies. Overall, our findings suggest that this group may not be an aggregation of individuals from different populations in a specific area, but a relatively stable group formed by the same animals. While continuing research efforts are necessary along the South America coast, the abandonment of the study area by this group may hamper the understanding of population structure and connectivity among pelagic and coastal populations of bottlenose dolphins, as well as the ecological and behavioral mechanisms driving their seasonal occurrence in oceanic habitats.  相似文献   

6.
Larval dispersal is critical for the maintenance of species populations in patchy and ephemeral hydrothermal vent habitats. On fast‐spreading ridges, such as the East Pacific Rise, rates of habitat turnover are comparable to estimated lifespans of many of the inhabiting species. Traditionally, dispersal questions have been addressed with two very different approaches, larval studies and population genetics. Population genetic studies of vent‐endemic species have been informative for determining whether patterns of dispersal are suggestive of stepping stone or island models and estimating rates of gene flow (effective migrants per generation) over broad geographic ranges. However, these studies leave fundamental questions unanswered about the specific mechanisms by which larvae disperse and species maintain their populations and biogeographic ranges. With the goal of examining genetic structure and elucidating alternative larval dispersal mechanisms, we employed a genomic DNA fingerprinting technique, amplified fragment length polymorphisms (AFLPs). To assess the potential utility of AFLPs, and genetic structure of the hydrothermal vent tubeworm Riftia pachyptila, genomic ‘fingerprints’ were recovered from 29 individuals from five vent fields spanning a distance of up to c. 5000 km along the East Pacific Rise. In contrast to previous population genetic studies that found little to no genetic structure using allozymes and mitochondrial DNA, genetic analyses of 630 polymorphic AFLP loci identified distinct subclades within R. pachyptila populations. Significant levels of differentiation were observed among populations from all vent regions as well as within each region. Discrete assemblages of tubeworms separated by as little as c. 400 m within a given vent region were genetically distinguishable and cohorts (based on size‐frequency distribution) within an aggregation were found to be most closely related. These results suggest that mechanisms of larval dispersal act to retain cohort fidelity in R. pachyptila.  相似文献   

7.
The skunk clownfish (Amphiprion akallopisos) has a disjunct distribution, occurring in the Eastern Indian Ocean (EIO) and the Western Indian Ocean (WIO), separated by several thousands of kilometres. Information on connectivity of marine species is very important for the correct spacing of marine protected areas, a powerful instrument for the protection of coral reefs. The population genetic structure of A. akallopisos was analysed in order to investigate connectivity amongst populations and to explain the disjunct distribution of the species. A fragment of the mitochondrial control region was used to investigate the genetic population structure. Fin clips were collected from 263 individuals at 14 sites in the WIO and three sites in the EIO. The obtained DNA sequences were used to calculate genetic diversity, evaluate demographic history and to construct a haplotype network. An analysis of molecular variance (AMOVA) was conducted to evaluate the significance of the observed genetic population structure. None of the identified 69 haplotypes was shared between the WIO and EIO. Haplotype as well as nucleotide diversity was considerably higher in the EIO than in the WIO. Significant genetic population structure was revealed by an AMOVA with an overall φst‐value of 0.28 (P < 0.001) in the Indian Ocean. The overall AMOVA (φst = ?0.00652) was not significant in the EIO, but was significant in the WIO (φst = 0.016; P < 0.01). Demographic analysis indicated population expansion in the EIO and WIO. Population genetic analysis revealed highly restricted gene flow between the EIO and WIO. Genetic diversity was much higher in the EIO than in the WIO, suggesting that the EIO is the geographical origin of the species. Given the large distance between the disjunct populations and the short pelagic larval duration, long‐distance dispersal is rather unlikely. A stepping stone model involving islands in the Central Indian Ocean is a more likely scenario for colonization of the WIO.  相似文献   

8.
We studied the population ecology of the snail Melampus bidentatus in relation to patch composition and landscape structure across several salt marsh systems in Connecticut, USA. These marshes have changed significantly over the past 40–50 years including loss of total area, increased areas of short Spartina alterniflora, and decreased areas and fragmentation of Spartina patens. These changes are consistent with tidal inundation patterns that indicate frequent flooding of high marsh areas. Melampus bidentatus densities were highly variable, both among different salt marsh systems and locations within specific marshes, but were generally similar among short Sp. alterniflora and Sp. patens patches within locations. Densities were lowest where the marsh was regularly inundated at high tide and only remnant Sp. patens patches remained. Almost no snails were found in bare patches. Areas that had large Sp. patens patches adjacent to short Sp. alterniflora supported the highest M. bidentatus densities. Population size‐structure varied significantly among patch types, with higher proportions of large individuals in short Sp. alterniflora and hummocked Sp. patens patches than in large and remnant Sp. patens patches. This was likely due to size‐selective predation and/or higher snail growth rates due to better food resource conditions in short Sp. alterniflora patches. Egg mass densities and the number of eggs per egg mass were highest in short Sp. alterniflora. Our results indicate that M. bidentatus is resilient to the level and patterns of salt marsh change evident at our study sites. Indeed, snail densities were significantly higher than reported in other field studies, suggesting that increased patch areas of short Sp. alterniflora and associated environmental conditions at our study sites may provide more favorable habitats than previously when marshes were dominated by extensive Sp. patens meadows. However, there may be threshold conditions that could overwhelm the ability of M. bidentatus to maintain itself within salt marsh systems where changes in hydrology, sedimentation and other factors lead to increased numbers of bare patches and ponds and loss of short Sp. alterniflora and Sp. patens. Studies of the responses of resident and transient fauna to salt marsh change are critically needed in order to better understand the implications for salt marsh ecosystem dynamics and services.  相似文献   

9.
Marine organisms with a pelagic stage are often assumed to display minor population structure given their extended larval development and subsequent high long‐distance dispersal ability. Nonetheless, considerable population structure might still occur in species with high dispersal ability due to current oceanographic and/or historical processes. Specifically, for the wider Caribbean and Gulf of Mexico, theoretical and empirical considerations suggest that populations inhabiting each of the following areas should be genetically distinct: Panama, Belize, Southwest Florida (Tampa), and Southeast Florida (Fort Pierce). This study tests the hypothesis of significant genetic differentiation in Palaemon floridanus populations across the wider Caribbean and Gulf of Mexico. Population level comparisons were conducted using sequences of the mtDNA COI. In agreement with predictions, AMOVA and pairwise FST values demonstrated population differentiation among most pairs of the studied populations. Only Panama and East Florida populations were genetically similar. An isolation‐with‐migration population divergence model (implemented in IMA2) indicated that population divergence with incomplete lineage sorting can be invoked as the single mechanism explaining genetic dissimilarity between populations from the east and west coast of Florida. Historical demographic analyses indicated demographic expansion of P. floridanus in some localities [recent in Panama and ancient in East Florida and the wider Caribbean (entire dataset)] but constant population in other localities (in Belize and West Florida). This study rejects the idea of panmixia in marine species with high long‐distance dispersal ability. Contemporary and historical processes might interact in a complex manner to determine current phylogeographic patterns.  相似文献   

10.
Genetic diversity is the basis for adaptation and therefore of primary scientific interest, especially in species that are threatened by anthropogenic challenges, e.g. climate change and/or pollution. Coral reefs are among the most threatened but also the most diverse ecosystems and have therefore been studied quite extensively. So far, most investigations have focused on scleractinian corals while the equally important reef builders, the hydrozoans, have been less considered. Here we provide the first study of genotypic variability as well as intra‐colonial genetic variability, the co‐occurrence of more than one genotype within a single colony, in Milleporidae based on microsatellites. We analysed two geographically distinct populations from the Millepora dichotoma complex, one from the Red Sea and one from the Great Barrier Reef. Additionally, a population of Millepora platyphylla was analysed from French Polynesia. We compared microsatellite multilocus genotypes and cytochrome c oxidase subunit I haplotypes for each of the three field sites to detect levels of genotypic diversity at the intra‐ and inter‐specific levels. Furthermore, we examined all species for the occurrence of intra‐colonial genetic variability, a recently described mechanism in scleractinian corals that might enhance the adaptive potential of sessile organisms. We found both species and all field sites to be genotypically variable. Twelve mitochondrial haplotypes and 27 multilocus microsatellite genotypes were identified. In addition, intra‐colonial genetic variability was detected in the M. dichotoma complex from the Great Barrier Reef as well as in M. platyphylla from French Polynesia. All of the intra‐colonial genetically variable colonies consisted of one main genotype and a second divergent genotype caused by somatic mutations (mosaicism). Our study proves that Milleporidae are genetically variable and that the phenomenon of intra‐colonial genetic variability also occurs in this important reef‐building family.  相似文献   

11.
Although several studies have evaluated the genetic structure and phylogeographic patterns in many species of marine invertebrates, a general model that applies to all of them remains elusive. For example, some species present an admixture of populations with high gene flow, whereas others exhibit more complex patterns characterized by small‐scale unstructured genetic heterogeneity, even at a local scale. These differences are thought to be due to clear biological aspects such as direct versus indirect development, or the presence of lecithotrophic versus planktotrophic larvae, but few studies compare animals with similar distributions and life modes. Here, we explore the phylogeographic and genetic structure patterns in two chiton (Chiton olivaceus and Lepidopleurus cajetanus) and one abalone (Haliotis tuberculata) species co‐occurring in the same habitat. Samples were obtained from shallow rocky bottoms along the Iberian Peninsula (Atlantic and Mediterranean coasts), Italy, Croatia and Greece, and the mitochondrial markers COI and 16S rRNA gene were sequenced. Our data show evidence of admixture and population expansion in C. olivaceus and H. tuberculata, whereas L. cajetanus exhibited a ‘chaotic patchiness’ pattern defined by a high genetic variability with locality‐exclusive haplotypes, high genetic divergence, and a lack of geographic structure. Shared haplotypes were sampled in both coasts of Iberia (for H. tuberculata) and in the Western and Eastern Mediterranean (for C. olivaceus), potentially indicating high dispersal ability and a recent expansion. The processes underlying the fine‐scale structuring in L. cajetanus remain a mystery. These results are especially interesting because the reproductive mode of the two chitons is similar but differs from that of the abalone, with a veliger larva, while instead the genetic structure of C. olivaceus and H. tuberculata are similar, thus contrasting with predictions based on the life history of the three molluscs and showing that the genetic patterns of marine species may be shaped by many factors, including historical ones.  相似文献   

12.
The pleated ascidian Styela plicata (Lesueur, 1823) is a solitary species commonly found in ports and marinas around the world. It has been recorded in the Mediterranean region since the mid‐19th century. In the present work, the species’ genetic diversity was analysed, employing a 613‐bp portion of the mitochondrial cytochrome c oxidase subunit I (COI) gene from 149 individuals collected in 14 ports along Italian coasts at spatial scales ranging from 1 to approximately 2200 km. Haplotype and nucleotide diversity values were = 0–0.933 (total = 0.789) and π = 0–0.145 (total π = 0.0094), respectively. A general southward trend of increasing within‐population genetic diversity was observed. Analysis of molecular variance revealed significant genetic structuring but no significant differences were detected among basins, and no isolation by distance was found. Our data were integrated with the COI sequences available from previous studies and re‐analysed in order to investigate the possible routes of introduction of this ascidian into the Mediterranean Sea. The presence of the two COI haplogroups detected in previous molecular investigations on S. plicata at intercontinental spatial scale was confirmed in the Mediterranean Sea. The results revealed multiple introductions of S. plicata, although some locations appear to have experienced rapid expansion from few founding individuals with reduced genetic diversity. However, continuous introductions would confound the pattern deriving from single founder events and make it difficult to estimate the time needed for gene diffusion into established populations. This mixing of effects creates difficulties in understanding the past and current dynamics of this introduction, and managing this alien invasive ascidian whose genetic structure is continuously shuffled by vessel‐mediated transport.  相似文献   

13.
Pleistocene glaciations were among the important historic events that shaped the population structures of marine organisms. Genetic studies of different marine fauna and flora have demonstrated the effect of Pleistocene glaciations on taxa that reside in marginal seas. However, how marine island species responded to Pleistocene glaciations remains relatively unstudied, especially in Asia. Genetic analyses based on the island‐associated barnacle Chthamalus moro collected from 14 sites in Asia reveal that C. moro comprises three distinct lineages, with COI divergence ranging from 3.9 to 8.3%. Population genetic analyses on respective lineages reveal signs of demographic expansion within the Pleistocene epoch at different times. The Ogasawara lineage, which has a more oceanic distribution, expanded the earliest, followed by the population expansion of the Ryukyu and Southern lineages that inhabit islands closer to the continent. The data suggest that the inhabitants of outer islands may have been less affected by Pleistocene glaciations than those that reside closer to the continent, as the former were able to maintain a large, stable, effective population size throughout the late Pleistocene.  相似文献   

14.
Pasiphaea multidentata is a deep‐water caridean shrimp fished in the Mediterranean in association with the commercially exploited red‐shrimp Aristeus antennatus. A previous study describes seasonality in the reproductive pattern of P. multidentata using external morphological parametres. This study assesses the spatio‐temporal variations in the population structure, sex ratio, ovary cycle and gametogenesis of P. multidentata from three different fishing grounds in the Blanes canyon and adjacent margin (North‐western Mediterranean) over an annual cycle. The oogenetic pattern of this species is typical of a caridean shrimp. There is a pool of previtellogenic oocytes at all times that develop from the periphery of the gonad towards the centre during maturation. Previtellogenic oocytes grow to approximately 200 μm before undergoing vitellogenesis. The vitellogenic oocytes are surrounded by a monolayer of accessory cells. The maximum size observed for a mature oocyte was 1420 μm. The oocyte‐size distribution confirmed the seasonal reproductive pattern of this species; in winter, the ovaries contained mainly previtellogenic oocytes, some of which start maturing in spring, resulting in a slightly bimodal distribution. In summer, the vitellogenic oocytes reach approximately 1000 μm and in late autumn the ovaries are fully mature and ready to spawn. There were no significant differences in the reproductive and population structure patterns of P. multidentata among the three sites, suggesting that the population’s distribution is not affected by the geomorphology of the area, in particular the presence of the canyon. The populations are dominated by females at all sites and all seasons, with the arrival of juveniles in spring. The seasonal variations in the reproduction and recruitment of P. multidentata and the lack of spatial segregation within the population are discussed in terms of the species’ known biology, the effects of canyons in energy supply to the deep‐sea floor and the relationships of this species with the red‐shrimp A. antennatus.  相似文献   

15.
The climate‐envelope approach to predicting climate‐induced species range shift is limited. There are many possible reasons for this, but one novel explanation is that species adapt to changes in temperature at the expense of adaptation to other stressors. Here we test this hypothesis using the limpet Patella depressa (Mollusca, Patellidae), over a large geographical area covering most of the Atlantic coast of the Iberian Peninsula, known to consist of a genetically inter‐connected population. We examine limpet shell morphology on four shores in each of three regions, from Northern Spain to Southern Portugal. Within each region, shell morphology (measured as maximum shell profile to length ratio) varied between shore types differing in their insolation, wave action, microhabitat availability and biological factors. However, this ratio, which is known to be an adaptive response to heat stress, was found to be consistently higher in more southern latitudes despite differences between shore types being found in all regions. This implies that localized adaptation to shore type (most likely through phenotypic plasticity) is compromised by factors that change over latitudinal or regional scales, or which could occur in response to climate change. Although such climate‐induced changes may initially be localized, compromised adaptation (through phenotypic or genetic plasticity) may result in altered community interactions and potentially large shifts in community structure.  相似文献   

16.
The Wild Coast in south-eastern South Africa is strongly influenced by the warm, southward-flowing Agulhas Current. This current has a significant impact on dispersal in the coastal biota of the region, and facilitates high levels of connectivity among populations. However, it is not known how the region's high-velocity hydrology affects genetic population structure in endemic estuarine species, populations of which are frequently isolated from the sea. Here, we compared genetic structure in two estuarine crabs of the family Hymenosomatidae. Both are presumed to have low dispersal potential, but they differ in terms of their life histories. Hymenosoma longicrure has abbreviated larval development and can complete its entire life cycle within estuaries, whereas Neorhynchoplax bovis is a direct developer that lacks planktonic larvae. Using DNA sequence data from the mitochondrial COI gene and the intron of the nuclear ANT gene, we found that levels of genetic structure differ considerably between the species. Depending on the genetic marker used, H. longicrure is genetically homogeneous (COI) or displays low levels of genetic structure and minor evidence of recruitment near natal sites (ANT). In contrast, connectivity in N. bovis is much lower, as this species has a unique combination of alleles at each site, indicating that recruitment is mostly local. These results support previous findings suggesting that even a short larval dispersal phase is sufficient to maintain high levels of connectivity and prevent genetic divergence among populations.  相似文献   

17.
The genetic diversity and differentiation of four Zostera marina populations along the southern coast of Korea were estimated using random amplified polymorphic DNA (RAPD) markers to determine the effects of natural and anthropogenic stresses and reproductive strategy on within‐population genetic diversity. The mean number of alleles and gene diversities, indicating population genetic diversity, was highest in the Z. marina population that was exposed to repeated environmental disturbances, and lowest in the most undisturbed population. The higher genetic diversity in the disturbed population was associated with a higher contribution of sexual reproduction to population persistence. This suggests that both the level of disturbances and the reproductive strategy for population persistence contributed significantly to population genetic diversity at the study sites. According to the analysis of molecular variance (AMOVA), 76% genetic variation was attributable to differences among individuals within populations. The observed genetic differentiation (FST = 0.241) among Z. marina populations at the study sites appeared to result from reduced meadow size, increased genetic drift, and a high incidence of asexual reproduction. Increased population genetic diversity can enhance resistance and resilience to environmental disturbances; thus, this investigation of seagrass population genetics provides valuable new insights for the conservation, management, and restoration of seagrass habitats.  相似文献   

18.
It has been proposed that the elkhorn coral Acropora palmata is genetically separated into two distinct provinces in the Caribbean, an eastern and a western population admixing in Western Puerto Rico and around the Mona Passage. In this study, the genetic structure of A. palmata sampled at 11 Puerto Rican localities and localities from Curaçao, the Bahamas and Guadeloupe were examined. Analyses using five microsatellite markers showed that 75% of sampled colonies had unique genotypes, the rest being clone mates. Genetic diversity among genets was high (HE = 0.761) and consistent across localities (0.685–0.844). FST ranged from ?0.011 to 0.047, supporting low but significant genetic differentiation between localities within the previously reported eastern and western genetic provinces. Plots of genetic per geographic distances and significant Mantel tests supported isolation‐by‐distance (IBD) within Puerto Rico. Analysis with the software STRUCTURE favored a scenario with weak differentiation between two populations, assigning Eastern Puerto Rican locations (Fajardo and Culebra), Guadeloupe and Curaçao to the Caribbean eastern population and Western Puerto Rican locations (west of Vega Baja and Ponce), Mona and the Bahamas to the Caribbean western population. Vieques and San Juan area harbored admixed profiles. Standardized FST per 1000 km unit further supported higher differentiation between localities belonging to different STRUCTURE populations, with IBD being stronger within Puerto Rico than on larger regional scales. This stronger genetic transition seems to separate localities between putative eastern and western provinces in the Eastern Puerto Rican region, but not around the Mona Passage.  相似文献   

19.
The collector sea urchin Tripneustes gratilla has been identified as a species with potential for aquaculture production in South Africa. The species’ roe is considered a culinary delicacy in Asia and Europe. However, T. gratilla remains genetically uncharacterised in South Africa. Therefore, the purpose of this study was to provide baseline genetic information consisting of estimates of genetic diversity and population stratification, which may aid in future sustainable use of this urchin resource. A total of 22 species-specific microsatellite markers were used for the genetic characterisation of T. gratilla samples from along the South African coast, at Haga Haga, Coffee Bay, Hibberdene, Ballito Bay and Sodwana Bay. A moderate level of genetic diversity was observed, with an average number of alleles of 7.89 and an average effective number of alleles of 6.57, as well as an average observed heterozygosity of 0.55. Population differentiation tests suggest that the geographically representative samples form part of a single, large interbreeding population, with a global Fst estimate of 0.02 (p > 0.05). This finding is likely explained by high levels of gene flow between these locations caused by extensive larval dispersal during the planktonic larval stage. The panmixia observed within these natural populations of T. gratilla indicate that they could be managed as a single genetic stock.  相似文献   

20.
The Persian Gulf and Oman Sea are characterized by an interesting paleoclimatic history and different ecological settings, and offer a unique study area to investigate the genetic structure of marine organisms including fishes. The Ornate goby Istigobius ornatus is widely distributed throughout the tropical Indo‐West Pacific including the Persian Gulf and Oman Sea. Here, we present the population structure, genetic diversity, and demographic history of four populations of I. ornatus from the latter two regions using the D‐loop marker of mitochondrial DNA. The results reveal a shallow genealogy, a star‐like haplotype network, significance of neutrality tests, and unimodal mismatch distribution. This is concordant with a recent demographic expansion of I. ornatus in the Persian Gulf and Oman Sea at about 63,000–14,000 years ago, which appears to be related to Late Pleistocene sea level fall and rise. The results of the pairwise Fst estimates imply high gene flow along the coast of the Persian Gulf, which is probably due to larval dispersion, whereas the Oman Sea population clearly differs from all Persian Gulf populations. The AMOVA result indicates that 7.74% of the variation is related to differences among ecoregions, while inter‐ and intra‐population differences explained ?3.20% and 95.47% of the variation, respectively. The haplotype network depicts two groups of haplotypes, most of them were specific to the Persian Gulf. No further evidence for geographic lineage substructuring was evident. The Mantel test result indicates that isolation by distance is not the main mechanism that promoted the genetic differentiation among the studied populations of I. ornatus. We suggest that cumulative effects of ecological and geographic barriers such as salinity, oceanographic conditions, and the presence of the Strait of Hormuz have shaped the genetic structure of I. ornatus in the Persian Gulf and Oman Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号