共查询到20条相似文献,搜索用时 15 毫秒
1.
Polygonal crack systems with domal microrelief imaged by the Mars Exploration Rover (MER) Opportunity show remarkable similarity to terrestrial crack systems developed on outcrop surfaces. Study of Jurassic Navajo Sandstone surfaces show development of crack systems in relatively isotropic host rock as a result of tensile weathering stresses. These terrestrial analogs are utilized to understand potential weathering processes on Mars. 相似文献
2.
Aaron P. Wilson Matthew J. Genge Agata M. Krzesiska Andrew G. Tomkins 《Meteoritics & planetary science》2019,54(9):1-19
The atmospheric entry heating of micrometeorites (MMs) can significantly alter their pre‐existing mineralogy, texture, and organic material. The degree of heating depends predominantly on the gravity and atmospheric density of the planet on which they fall. For particles falling on Earth, the alteration can be significant, leading to the destruction of much of the pre‐entry organics; however, the weaker gravity and thinner atmosphere of Mars enhance the survival of MMs and increase the fraction of particles that preserve organic material. This paper investigates the entry heating of MMs on the Earth and Mars in order to examine the MM population on each planet and give insights into the survival of extraterrestrial organic material. The results show that particles reaching the surface of Mars experience a lower peak temperature compared to Earth and, therefore, experience less evaporative mass loss. Of the particles which reach the surface, 68.2% remain unmelted on Mars compared to only 22.8% on Earth. Due to evaporative mass loss, unmelted particles that reach the surface of Earth are restricted to sizes <70 μm whereas particles >475 μm survive unmelted on Mars. Approximately 10% of particles experience temperatures below ~800 K, that is, the sublimation temperature of refractory organics found in MMs. On Earth, this fraction is significantly lower with less than 1% expected to remain below this temperature. Lower peak temperatures coupled with the larger sizes of particles surviving without significant heating on Mars suggest a much higher fraction of organic material surviving to the Martian surface. 相似文献
3.
We report on the first observations of bright dust devil tracks (BDDTs) on Earth, observed in the Turpan depression desert in northwestern China, where raindrop impacts on sand surfaces form aggregates of sand, silt and clay resulting in rough surface textures, which are destroyed by passages of dust devils leading to smooth surface textures within the tracks. The differences in photometric properties between the track and outside the tracks cause the albedo differences leading to the formation of BDDTs and similar processes might lead to BDDTs on Mars in areas with thick dust covers. 相似文献
4.
Alaura C. Singleton Gordon R. Osinski Claire Samson Scott Holladay 《Planetary and Space Science》2010,58(4):472-481
Polygonal terrain is found in a variety of polar environments on Earth and Mars. As a result, many areas of northern Canada may represent ideal terrestrial analogues for specific regions of Mars - in particular the northern plains. In the Canadian Arctic, polygon troughs are commonly underlain by wedges of massive ice, with rare examples of other wedge types. If the same is true for Mars, this raises interesting implications for the processes that concentrate H2O at the Martian poles. This study uses an electromagnetic induction sensor to investigate the electromagnetic characteristics of terrestrial polar ice-wedge polygons. Surveys were conducted in two regions of the Canadian Arctic using a DUALEM-1S dual-geometry electromagnetic induction sensor, which measures electrical conductivity in the first 1.5-2 m of the subsurface. At locations where strong geomorphological evidence of ice was found, polygon troughs corresponded to local conductive anomalies. Trenching confirmed the presence of ice wedges at one site and allowed ground-truthing and calibration of the geophysical data. Previously unknown bodies of massive ice were also identified through the use of this geophysical technique. This study shows that an electromagnetic induction sounder is a useful instrument for detecting and mapping out the presence of subsurface ice in the Canadian Arctic. Taking together with its small size, portability and ruggedness, we suggest that this would also be a useful instrument for any future missions to Mars’ polar regions. 相似文献
5.
E. Severova 《Earth, Moon, and Planets》1992,56(1):83-91
A number of the models of Mars was constructed on the basis of different mass concentration of chemical elements and equation of station, proposed by different authors. It was shown that, in the majority of cases the pressure, necessary for the second phase transition, is reached in the mantle. 相似文献
6.
New triple oxygen isotope data of bulk and separated fractions from SNC meteorites: Evidence for mantle homogeneity of Mars 下载免费PDF全文
Arshad Ali Iffat Jabeen David Gregory Robert Verish Neil R. Banerjee 《Meteoritics & planetary science》2016,51(5):981-995
We report precise triple oxygen isotope data of bulk materials and separated fractions of several Shergotty–Nakhla–Chassigny (SNC) meteorites using enhanced laser‐assisted fluorination technique. This study shows that SNCs have remarkably identical Δ17O and a narrow range in δ18O values suggesting that these meteorites have assimilated negligibly small surface materials (<5%), which is undetectable in the oxygen isotope compositions reported here. Also, fractionation factors in coexisting silicate mineral pairs (px‐ol and mask‐ol) further demonstrate isotopic equilibrium at magmatic temperatures. We present a mass‐dependent fractionation line for bulk materials with a slope of 0.526 ± 0.016 (1SE) comparable to the slope obtained in an earlier study (0.526 ± 0.013; Franchi et al. 1999). We also present a new Martian fractionation line for SNCs constructed from separated fractions (i.e., pyroxene, olivine, and maskelynite) with a slope of 0.532 ± 0.009 (1SE). The identical fractionation lines run above and parallel to our terrestrial fractionation line with Δ17O = 0.318 ± 0.016‰ (SD) for bulk materials and 0.316 ± 0.009‰ (SD) for separated fractions. The conformity in slopes and Δ17O between bulk materials and separated fractions confirm oxygen isotope homogeneity in the Martian mantle though recent studies suggest that the Martian lithosphere may potentially have multiple oxygen isotope reservoirs. 相似文献
7.
K. Righter K. Pando N. Marin D. K. Ross M. Righter L. Danielson T. J. Lapen C. Lee 《Meteoritics & planetary science》2018,53(2):284-305
Volatile element concentrations in planets are controlled by many factors such as precursor material composition, core formation, differentiation, magma ocean and magmatic degassing, and late accretionary processes. To better constrain the role of core formation, we report new experiments defining the effect of temperature, and metallic S and C content on the metal-silicate partition coefficient (or D(i) metal/silicate) of the volatile siderophile elements (VSE) Bi, Cd, In, and Sn. Additionally, the effect of pressure on metal-silicate partitioning between 1 and 3 GPa, and olivine-melt partitioning at 1 GPa have been studied for Bi, Cd, In, Sn, As, Sb, and Ge. Temperature clearly causes a decrease in D(i) metal/silicate for all elements. Sulfur and C have a large influence on activity coefficients in metallic Fe liquids, with C causing a decrease in D(i) metal/silicate, and S causing an increase. Pressure has only a small effect on D(Cd), D(In), and D(Ge) metal/silicate. Depletions of Bi, Cd, In, and Sn in the terrestrial and Martian mantles are consistent with high PT core formation and metal-silicate equilibrium at the high temperatures indicated by previous studies. A late Hadean matte would influence Bi the most, due to its high D(sulfide/silicate) ~2000, but segregation of a matte would only reduce the mantle Bi content by 50%; all other less chalcophile elements (e.g., Sn, In, and Cd) would be minimally affected. The lunar depletions of highly VSE require a combination of core formation and an additional depletion mechanism—most likely the Moon-forming giant impact, or lunar magma ocean degassing. 相似文献
8.
Walter S. KIEFER 《Meteoritics & planetary science》2003,38(12):1815-1832
Abstract— Radiometric age dating of the shergottite meteorites and cratering studies of lava flows in Tharsis and Elysium both demonstrate that volcanic activity has occurred on Mars in the geologically recent past. This implies that adiabatic decompression melting and upwelling convective flow in the mantle remains important on Mars at present. I present a series of numerical simulations of mantle convection and magma generation on Mars. These models test the effects of the total radioactive heating budget and of the partitioning of radioactivity between crust and mantle on the production of magma. In these models, melting is restricted to the heads of hot mantle plumes that rise from the core‐mantle boundary, consistent with the spatially localized distribution of recent volcanism on Mars. For magma production to occur on present‐day Mars, the minimum average radioactive heating rate in the martian mantle is 1.6 times 10?12 W/kg, which corresponds to 39% of the Wanke and Dreibus (1994) radioactivity abundance. If the mantle heating rate is lower than this, the mean mantle temperature is low, and the mantle plumes experience large amounts of cooling as they rise from the base of the mantle to the surface and are, thus, unable to melt. Models with mantle radioactive heating rates of 1.8 to 2.1 times 10 ?12 W/kg can satisfy both the present‐day volcanic resurfacing rate on Mars and the typical melt fraction observed in the shergottites. This corresponds to 43–50% of the Wanke and Dreibus radioactivity remaining in the mantle, which is geochemically reasonable for a 50 km thick crust formed by about 10% partial melting. Plausible changes to either the assumed solidus temperature or to the assumed core‐mantle boundary temperature would require a larger amount of mantle radioactivity to permit present‐day magmatism. These heating rates are slightly higher than inferred for the nakhlite source region and significantly higher than inferred from depleted shergottites such as QUE 94201. The geophysical estimate of mantle radioactivity inferred here is a global average value, while values inferred from the martian meteorites are for particular points in the martian mantle. Evidently, the martian mantle has several isotopically distinct compositions, possibly including a radioactively enriched source that has not yet been sampled by the martian meteorites. The minimum mantle heating rate corresponds to a minimum thermal Rayleigh number of 2 times 106, implying that mantle convection remains moderately vigorous on present‐day Mars. The basic convective pattern on Mars appears to have been stable for most of martian history, which has prevented the mantle flow from destroying the isotopic heterogeneity. 相似文献
9.
Baerbel K. Lucchitta 《Icarus》1981,45(2):264-303
On Earth, glacial and periglacial features are common in areas of cold climate. On Mars, the temperature of the present-day surface is appropriate for permafrost, and the presence of water is suspected from data relating to the outgassing of the planet, from remote-sensing measurements over the polar caps and elsewhere on the Martian surface, and from recognition of fluvial morphological features such as channels. These observations and the possibility that ice could be in equilibrium with the atmosphere in the high latitudes north and south of ±40° latitude suggest that glacial and periglacial features should exist on the planet. Morphological studies based mainly on Viking pictures indicate many features that can be attributed to the action of ice. Among these features are extensive talus aprons; debris avalanches; flows that resemble glaciers or rock glaciers; ridges that look like moraines; various types of patterned ground, scalloped scarps, and chaotically collapsed terrain that could be attributed to thermokarst processes; and landforms that may reflect the interaction of volcanism and ice. 相似文献
10.
The chlorine isotope composition of Martian meteorites 2. Implications for the early solar system and the formation of Mars 下载免费PDF全文
Zachary Sharp Jeffrey Williams Charles Shearer Carl Agee Kevin McKeegan 《Meteoritics & planetary science》2016,51(11):2111-2126
We determined the chlorine isotope composition of 16 Martian meteorites using gas source mass spectrometry on bulk samples and in situ secondary ion microprobe analysis on apatite grains. Measured δ37Cl values range from ?3.8 to +8.6‰. The olivine‐phyric shergottites are the isotopically lightest samples, with δ37Cl mostly ranging from ?4 to ?2‰. Samples with evidence for a crustal component have positive δ37Cl values, with an extreme value of 8.6‰. Most of the basaltic shergottites have intermediate δ37Cl values of ?1 to 0‰, except for Shergotty, which is similar to the olivine‐phyric shergottites. We interpret these data as due to mixing of a two‐component system. The first component is the mantle value of ?4 to ?3‰. This most likely represents the original bulk Martian Cl isotope value. The other endmember is a 37Cl‐enriched crustal component. We speculate that preferential loss of 35Cl to space has resulted in a high δ37Cl value for the Martian surface, similar to what is seen in other volatile systems. The basaltic shergottites are a mixture of the other two endmembers. The low δ37Cl value of primitive Mars is different from Earth and most chondrites, both of which are close to 0‰. We are not aware of any parent‐body process that could lower the δ37Cl value of the Martian mantle to ?4 to ?3‰. Instead, we propose that this low δ37Cl value represents the primordial bulk composition of Mars inherited during accretion. The higher δ37Cl values seen in many chondrites are explained by later incorporation of 37Cl‐enriched HCl‐hydrate. 相似文献
11.
McKay CP 《The Planetary report》1987,7(6):26-27
As we understand more about life on Earth and about the chemical and biological potential of other planets and objects in our solar system, it's not too much of a leap to consider creating a habitable environment on another planet. Scientists have begun to ponder the possibility of transforming Mars, the most Earthlike of the nearby planets. Various scenarios have been proposed, and in many ways these scenarios duplicate the processes that transformed the early Earth. Here we look at some of the possibilities. 相似文献
12.
《Icarus》1987,71(2):225-240
Based on our new and previous determinations of halogens in SNC meteorites, the bulk concentrations of halogens in the SPB, which is thought to be Mars, are estimated. The two-component model for the formation of terrestrial planets as proposed byA. E. Ringwood (Geochem. J. 11, 111–135 (1977) andOn the Origin of the Earth and Moon, Springer-Verlag, New York, 1979) andH. Wa¨nke (Philos. Trans. Roy. Soc. London, Ser. A 303, 287–302 (1981) is further substantiated. It is argued that almost all of the H2O added to Mars during its homogeneous accretion was converted on reaction with metallic Fe to H2, which escaped. By comparing the solubilities of H2O and HCl in molten silicates, the amount of H2O left in the mantle of Mars at the end of accretion can be related to the abundance of Cl. In this way an H2O content in the Martian mantle of 36 ppm is obtained, corresponding to an ocean covering the whole planet to a depth of about 130 m.The huge quantities of H2 produced by the reaction of H2O with metallic iron should also have removed other volatile species by hydrodynamic escape. Thus it is postulated that the present atmospheres of Venus, Earth, and Mars were formed by degassing the interiors of the planets, after the production of H2 had ceased, i.e., after metallic iron was no longer available. It is also postulated that the large differences in the amounts of primordial rare gases in the atmospheres of Venus, Earth, and Mars are due mainly to different loss factors.Except for gaseous species, Mars is found to be richer in volatile (halogens) and moderately volatile elements than the Earth. The resulting low release factor of40Ar for Mars is attributed to a low degree of fractionation, leading to a relatively small crustal enrichment of even the most incompatible elements like K. 相似文献
13.
The Dry Valleys of Antarctica are an excellent analog of the environment at the surface of Mars. Soil formation histories involving slow processes of sublimation and migration of water-soluble ions in polar desert environments are characteristic of both Mars and the Dry Valleys. At the present time, the environment in the Dry Valleys is probably the most similar to that in the mid-latitudes on Mars although similar conditions may be found in areas of the polar regions during their respective Mars summers. It is thought that Mars is currently in an interglacial period, and that subsurface water ice is sublimating poleward. Because the Mars sublimation zones seem to be the most similar to the Antarctic Dry Valleys, the Dry Valleys-type Mars climate is migrating towards the poles. Mars has likely undergone drastic obliquity changes, which means that the Dry Valleys analog to Mars may be valid for large parts of Mars, including the polar regions, at different times in geologic history. Dry Valleys soils contain traces of silicate alteration products and secondary salts much like those found in Mars meteorites. A martian origin for some of the meteorite secondary phases has been verified previously; it can be based on the presence of shock effects and other features which could not have formed after the rocks were ejected from Mars, or demonstrable modification of a feature by the passage of the meteorite through Earth's atmosphere (proving the feature to be pre-terrestrial). The martian weathering products provide critical information for deciphering the near-surface history of Mars. Definite martian secondary phases include Ca-carbonate, Ca-sulfate, and Mg-sulfate. These salts are also found in soils from the Dry Valleys of Antarctica. Results of earlier Wright Valley work are consistent with what is now known about Mars based on meteorite and orbital data. Results from recent and current Mars missions support this inference. Aqueous processes are active even in permanently frozen Antarctic Dry Valleys soils, and similar processes are probably also occurring on Mars today, especially at the mid-latitudes. Both weathering products and life in Dry Valleys soils are distributed heterogeneously. Such variations should be taken into account in future studies of martian soils and also in the search for possible life on Mars. 相似文献
14.
We compare the electron densities of two martian ionospheric layers, which we call M1 and M2, measured by Mars Global Surveyor during 9-27 March 1999, with the electron densities of the terrestrial E and F1 layers derived from ionosonde data at six sites. The day-to-day variations are all linked to changes in solar activity, and provide the opportunity of making the first simultaneous study of four photochemical layers in the solar system. The ‘ionospheric layer index’, which we introduce to characterize ionospheric layers in general, varies between layers because different atmospheric chemistry and solar radiations are involved. The M2 and F1 layer peaks occur at similar atmospheric pressure levels, and the same applies to the M1 and E layers. 相似文献
15.
On Earth, measurements of the ratios of stable carbon isotopes have provided much information about geological and biological processes. For example, fractionation of carbon occurs in biotic processes and the retention of a distinctive 2-4% contrast in 13C/12C between organic carbon and carbonates in rocks as old as 3.8 billion years constitutes some of the firmest evidence for the antiquity of life on the Earth. We have developed a prototype tunable diode Laser spectrometer which demonstrates the feasibility of making accurate in situ isotopic ratio measurements on Mars. This miniaturized instrument, with an optical path length of 10 cm, should be capable of making accurate 13C/12C and 15N/14N measurements. Gas samples for measurement are to be produced by pyrolysis using soil samples as small as 50 mg. Measurements of 13C/12C, 18O/16O and 15N/14N have been made to a precision of better than 0.1% and various other isotopes are feasible. This laser technique, which relies on the extremely narrow emission linewidth of tunable diode lasers (<0.001 cm(-1)) has favorable features in comparison to mass spectrometry, the standard method of accurate isotopic ratio measurement. The miniature instrument could be ready to deploy on the 2003 or other Mars lander missions. 相似文献
16.
Methane, a potential biosignature, has recently been detected in the martian atmosphere. This Note focuses on field investigations/operational simulations and laboratory studies which resulted in successful detection of methane within arid terrestrial soils, as distinct from the usual methanogen environment, but in at least partial analogy to martian conditions. 相似文献
17.
Mary C. Bourke 《Icarus》2010,205(1):183-197
Barchan dune asymmetry refers to the extension of one barchan limb downwind. It is a common dune form on Earth and also occurs on Mars and Titan. A new classification of barchan limbs is presented where three types of limb morphology are identified: linear, kinked and beaded. These, along with other dune-scale morphological signatures, are used to identify three of the causes of barchan asymmetry on Mars: bi-directional winds, dune collision and the influence of inclined topography.The potential for specific dune asymmetric morphologies to indicate aspects of the formative wind regime on planetary surfaces is shown. For example, the placement of dune limbs can indicate the general direction and relative strength of formative oblique winds; an extreme barchan limb length may indicate a long duration oblique wind; a kinked limb may be evidence of the passage of a storm; beaded limbs may represent surface-wave instabilities caused by an increase in wind energy parallel to the dune. A preliminary application of these signatures finds evidence for bi-modal winds on Mars. However, these and other morphological signatures of wind direction and relative strength should be applied to planetary landforms with caution as more than one process (e.g., bi-modal winds and collision) may be operating together or sequentially on the dunefield. In addition, analysis should be undertaken at the dunefield scale and not on individual dunes. Finally, morphological data should be acquired from similar-scale dunes within a dunefield.In addition to bi-modal wind regimes on Mars, the frequent parallel alignment of the extended barchan limb to the dune suggests that dune collision is also an important cause of asymmetry on Mars. Some of the more complex dunefield patterns result from a combination of dune collision, limb extension and merging with downwind dunes.Dune asymmetric form does not inhibit dune migration in the Namib Desert or on Mars. Data from the Namib suggest that dune migration rates are similar for symmetric and asymmetric dunes. Further modeling and field studies are needed to refine our understanding of the potential range of limb and dune morphologies that can result from specific asymmetry causes. 相似文献
18.
Eolian sediments on Earth are mostly formed from quartz; they consist, in large part, of eolian sand deposits in deserts, silt and loess deposits in and adjoining present and former glaciated areas, and finally clay-sized particles carried in suspension for relatively long distances and deposited in oceanic areas by winds. The quartz particles in these regimes originally came from a granitic source; stresses in granitic rock formation, glacial action, and wind abrasion are largely responsible for making the particles available for the three kinds of eolian deposits. With respect to eolian sediments on Mars, it appears that an entirely different set of criteria must apply, but some critical parameters can usefully be compared. Evidence for free quartz on Mars is lacking and sand-sized particles are probably basaltic, although there does appear to be a deficit in the sand size range. Glacial action does not appear to be available as a large-scale particle producer but high-velocity winds could be efficient producers of very fine particles. Fine particles may aggregate in a similar way to that observed in the Australian regions where “parna” is seen; this could supply a silt mode on Mars. Impact experiments with basalt in eolian abrasion devices suggest that basalt sand-sized particles fragment rapidly to produce silt and clay-sized detritus. Cohesive forces must be more effective on Mars since the gravitational contribution to the bond/weight ratio (R) is lowe; if R = 1 at about 100 μm on Earth, then R = 1 at about 140 μm on Mars and a much greater range of deposits will be stable. Compared to the terrestrial situation, both larger and smaller particles can be expected to make significant contributions to eolian sediments on Mars. The low gravity and the high speed of moving particles and the relatively weak rock material of which they are composed will allow large-scale fine particle production. 相似文献
19.
E. Hauber K. Gwinner M. Kleinhans D. Reiss G. Di Achille G.-G. Ori F. Scholten L. Marinangeli R. Jaumann G. Neukum 《Planetary and Space Science》2009,57(8-9):944-957
A variety of sedimentary deposits is observed in Xanthe Terra, Mars, including Gilbert-type deltas, fan deltas dominated by resedimentation processes, and alluvial fans. Sediments were provided through deeply incised valleys, which were probably incised by both runoff and groundwater sapping. Mass balances based on High-Resolution Stereo Camera (HRSC) digital terrain models show that up to ~30% of the material that was eroded in the valleys is present as deltas or alluvial fan deposits. Stratigraphic relationships and crater counts indicate an age of ~4.0 to ~3.8 Ga for the fluvial activity. Hydrologic modeling indicates that the deposits were probably formed in geologically very short time scales. Our results point to episodes of a warmer and wetter climate on early Mars, followed by a long period of significantly reduced erosion rates. 相似文献
20.
I. A. FRANCHI I. P. WRIGHT A. S. SEXTON C. T. PILLINGER 《Meteoritics & planetary science》1999,34(4):657-661
Abstract— The small difference between the O-isotopic mass fractionation lines of the Earth and Mars has been measured precisely using a laser fluorination system. The precision achieved from the two sample sets is better than ±0.014‰, with the offset (Δ17O) between Mars and Earth measured as +0.321‰. This result shows that all the Shergotty—Nakhla—Chassigny (SNC) meteorites define a high level of isotopic homogeneity, comparable to that of crustal material on the Earth, indicating that these meteorites originate, unequivocally, from a single, common parent body (Mars). Allan Hills 84001, with its ancient age (4.56 Ga), shows that any initial heterogeneity imparted into Mars from the nebula was homogenised very early in the formation history of the planet. 相似文献