首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diet of different macrozoobenthic trophic groups was investigated in the Arcachon Bay—a semi-enclosed macrotidal ecosystem that shelters the largest Zostera noltei seagrass meadow in Europe—in early spring and late summer 2009, using stable isotopes and fatty acids. Fatty acid profiles and literature information about the biology and physiology of benthic consumers were combined to identify the main organic matter sources for the benthic primary consumers. An isotope mixing model was then run to evaluate the contribution of each organic matter source to each identified trophic group (suspension feeders, sub-surface deposit feeders, micro-and macrograzers, suspension-oriented interface feeders and deposit-oriented interface feeders). Variations in organism' diets with respect to both habitats (intertidal seagrass meadows, intertidal bare sediments and subtidal bare sediments) and study periods were also investigated. At the scale of this study, it appeared that the diet of macrozoobenthos primary consumers was based exclusively on autochthonous material (no use of terrestrial organic matter): mainly microphytobenthos, seagrasses and their epiphytes, and phytoplankton. In addition, the different trophic groups relied on different organic matter pools: for instance, suspension feeders mainly fed on microphytobenthos and phytoplankton, whereas subsurface deposit feeders fed on microphytobenthos, decayed seagrasses and bacteria, and grazers mainly fed on microphytobenthos, and seagrasses and their epiphytes. The same pattern was observed in both early spring and late summer, indicating a stability of the benthic system at a six-month time scale. Finally our results showed that, in Arcachon Bay, the seagrass meadow directly or indirectly (through detritus) plays a significant role in the diet of most benthic consumers.  相似文献   

2.
Abundance, population structure and production of the macro-invertebrates belonging to the functional feeding group of the shredders were studied in the Ichkeul wetland, northern Tunisia, from July 1993 to April 1994. Mean above-ground macrophyte biomass was at a maximum in September followed by a complete breakdown of the Potamogeton pectinatus L. meadow from October onward due to high salinity following an exceptionally dry winter. Only the meadow of Ruppia cirrhosa (Petagna) Grande at Tinja remained in place. Abundance of Gammarus aequicauda (Martynov 1931), Idotea chelipes (Pallas 1766) and Sphaeroma hookeri Leach 1814 was significantly related to the R. cirrhosa biomass. Gammarus aequicauda presented two recruitment periods in spring and autumn, and S. hookeri a third one in winter. The population of I. chelipes was renewed during winter by continued reproduction without any spring generation. Recruitment of all three species was not very successful during the study period. Life span of all three species was between 12 and 15 months. Despite their relatively low biomass and production rate, the shredders have a key function in processing macrophyte matter to different trophic levels through fragmentation and accelerating the decomposition of macrophyte biomass accumulated at the end of the growth season in the Ichkeul lagoon.  相似文献   

3.
Burrows of the thalassinidean shrimps Neaxius acanthus and Corallianassa coutierei are striking aspects in tropical seagrass beds of the Spermonde Archipelago, Indonesia. Burrow construction, behaviour, burrow type and associated commensal community were investigated to clarify the ecological role and food requirements of these shrimps and their commensals. Gut content analysis and stable-isotope data were used to unravel the food sources and the trophic interactions among the commensal community.Individuals of Neaxius acanthus were caught on Bone Batang Island. In narrow aquaria filled with sediment they constructed burrows resembling those found in the field. During burrow construction and maintenance only little sediment was brought to the surface, most was sorted and compacted to create a distinct lining. Maintenance work by single shrimps typically took about 5 min, after which the shrimp walked up to the entrance and rested for a similar period of time. There were no differences in behaviour between day and night. Intrasexual encounters inside the burrow were characterised by a high level of aggression and all resulted in one participant being driven out of the burrow. Intersexual encounters led to coexistence with both animals taking turns in burrow maintenance and guarding the entrance. Offered seagrass leaves were pulled underground, cut into pieces and eventually integrated into the lining. Burrows of Corallianassa coutierei resembled a deep U-shape. Chambers branching off halfway down and at the deepest point contained seagrass fragments. All steep parts of the burrow were lined similar to burrows of N. acanthus.No commensals were found associated with Corallianassa coutierei. However, burrows of Neaxius acanthus in the field typically contained a pair of shrimps, up to 8 individuals of the commensal bivalve Barrimysia cumingii and large numbers of gammarid amphipods. Other animals found associated with the burrow were the goby Austrolethops wardi, a palaemonid shrimp species and two species of tube-building polychaetes, one of which was also found as an epibiont on N. acanthus.Stable-isotope and gut content analyses indicate that the diet of Neaxius acanthus, its commensal Austrolethops wardi, and Corallianassa coutierei is mainly derived from detrital seagrass leaves, with a potential contribution of sediment organic matter and seagrass epiphytes. In contrast the isotopic signature of Barrimysia cumingii suggests the presence of symbiotic sulphide metabolism bacteria. This study underlines that, besides their interactions with the surrounding ecosystem, thalassinid shrimp burrows play an important role as a sub-habitat with a unique associated fauna.  相似文献   

4.
Marine turtles are considered keystone consumers in tropical coastal ecosystems and their decline through overexploitation has been implicated in the deterioration of reefs and seagrass pastures in the Caribbean. In the present study, we analysed stomach contents of green (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) harvested in the legal turtle fishery of the Turks and Caicos Islands (Caribbean) during 2008–2010. Small juveniles to adult‐sized turtles were sampled. Together with data from habitat surveys, we assessed diet composition and the taxonomic distinctness (and other species diversity measures) in the diets of these sympatric marine turtle species. The diet of green turtles (n = 92) consisted of a total of 47 taxa: including three species of seagrass (present in 99% of individuals), 29 species of algae and eight sponge species. Hawksbill turtles (n = 45) consumed 73 taxa and were largely spongivorous (16 species; sponges present in 100% of individuals) but also foraged on 50 species of algae (present in 73% of individuals) and three species of seagrass. Plastics were found in trace amounts in 4% of green turtle and 9% of hawksbill turtle stomach samples. We expected to find changes in diet that might reflect ontogenetic shifts from small (oceanic‐pelagic) turtles to larger (coastal‐benthic) turtles. Dietary composition (abundance and biomass), however, did not change significantly with turtle size, although average taxonomic distinctness was lower in larger green turtles. There was little overlap in prey between the two turtle species, suggesting niche separation. Taxonomic distinctness routines indicated that green turtles had the most selective diet, whereas hawksbill turtles were less selective than expected when compared with the relative frequency and biomass of diet items. We discuss these findings in relation to the likely important trophic roles that these sympatric turtle species play in reef and seagrass habitats.  相似文献   

5.
The feeding habit of Austrolethops wardi (Gobiidae) in the seagrass beds of Barrang Lompo and Bone Batang Island in the Spermonde Archipelago, South West Sulawesi, Indonesia, was investigated through gut content analysis. The feeding preferences of this species are very similar on both islands: A. wardi, a burrow associate of Neaxius acanthus, was found to feed almost exclusively on seagrass (which was found in 100% of the investigated stomachs and made up >94% of food items). However, seagrass epiphytes (<5% of food items) and animal food (<1% of food items) occurred in the guts as well, the latter predominantly in terms of copepods and to a lesser degree in other small invertebrates. These results indicate that animal food is of little importance for A. wardi. Some specimens even contained no parts of animal food.  相似文献   

6.
Talitrid amphipods are the most abundant herbivores on exposed sandy beaches. Despite their important role as trophic intermediates between macrophytes and higher levels (i.e. insect and bird) of beach food webs, very little information is available on their feeding patterns. The main aim of this study was to investigate intraspecific differences in the feeding behaviour of Talitrus saltator. We tested the hypotheses that: (1) adult females and males showed different isotope signatures and therefore relied on different sources of food; and (2) patterns of variation of isotope signatures of juveniles differed from those of adult specimens, evidencing a diet shift during the development. We used stable isotope signatures and tested for differences upon the level on the shore, times of the year and beaches experiencing similar morpho-dynamic and environmental conditions. Finally, we investigated the trophic significance of macrophyte detritus in the diet of males, females and juveniles. Results showed that adult males had a more variable diet than females and juveniles (inferred from δ13C and δ15N values). Dual-isotope graphs suggested that Sargassum muticum and Cystoseira baccata wrack could be among the main food sources for both juvenile and adult stage.  相似文献   

7.
Fauna species living in seagrass meadows depend on different food sources, with seagrasses often being marginally important for higher trophic levels. To determine the food web of a mixed-species tropical seagrass meadow in Sulawesi, Indonesia, we analyzed the stable isotope (δ13C and δ15N) signatures of primary producers, particulate organic matter (POM) and fauna species. In addition invertebrates, both infauna and macrobenthic, and fish densities were examined to identify the important species in the meadow. The aims of this study were to identify the main food sources of fauna species by comparing isotopic signatures of different primary producers and fauna, and to estimate qualitatively the importance of seagrass material in the food web. Phytoplankton and water column POM were the most depleted primary food sources for δ13C (range −23.1 to −19.6‰), but no fauna species depended only on these sources for carbon. Epiphytes and Sargassum sp. had intermediate δ13C values (−14.2 to −11.9‰). Sea urchins, gastropods and certain fish species were the main species assimilating this material. Seagrasses and sedimentary POM had the least depleted values (−11.5 to −5.7‰). Between the five seagrass species significant differences in δ13C were measured. The small species Halophila ovalis and Halodule uninervis were most depleted, the largest species Enhalus acoroides was least depleted, while Thalassia hemprichii and Cymodocea rotundata had intermediate values. Fourteen fauna species, accounting for 10% of the total fauna density, were shown to assimilate predominantly (>50%) seagrass material, either directly or indirectly by feeding on seagrass consumers. These species ranged from amphipods up to the benthic top predator Taeniura lymma. Besides these species, about half of the 55 fauna species analyzed had δ13C values higher than the least depleted non-seagrass source, indicating they depended at least partly for their food on seagrass material. This study shows that seagrass material is consumed by a large number of fauna species and is important for a large portion of the food web in tropical seagrass meadows.  相似文献   

8.
Heavy nutrient loads in coastal waters often lead to excessive growth of microalgal and macroalgal epiphytes on seagrass leaves, with varying effects on the underlying seagrasses. This study evaluates the photosynthetic performance, epiphytic biomass and tissue nutrient content of two tropical seagrasses, Cymodocea serrulata and Thalassia hemprichii, in two intertidal areas along the Dar es Salaam coast in the Indian Ocean, a nutrient-rich region at Ocean Road (near the city centre), and a nutrient-poor region at Mjimwema (south of the city centre). Epiphyte biomass was significantly higher at the nutrient-rich site, and epiphytes were associated with reduced photosynthetic performance in both seagrass species at both sites. Likewise, nitrogen and phosphorus tissue content was higher in both species at the nutrient-rich site than at the nutrient-poor site. Epiphytic species composition on the seagrass leaves varied between seagrass species and between sites. Cymodocea serrulata had a higher number of epiphytic species at Mjimwema than at Ocean Road, whereas Thalassia hemprichii had more epiphytic species at Ocean Road than at Mjimwema. Seagrass photosynthetic performance, epiphytic biomass and nutrient content of the seagrasses were shown to be affected by nutrient concentration in the water column. Thus, for the future monitoring of the seagrass meadow, we recommend the use of combined measures such as seagrass performance, epiphytic biomass, nutrient contents and nutrient concentration levels in the water column.  相似文献   

9.
Preference tests were performed over a two-week period in September 2001 in which isopods (Idotea baltica) and amphipods (Gammarus oceanicus) were offered choices of three common species of algae from the Baltic Sea: Enteromorpha intestinalis, Cladophora spp., and Fucus vesiculosus. After a 48-hour starvation period, 20 individuals of each grazer species were placed in aquaria containing approximately 1.0 g of each algal species. Fifteen trials for each grazer species were run for 20 hours. We found that G. oceanicus ate significantly more Cladophora spp. and E. intestinalis than F. vesiculosus (p<0.001), with a preference order of: Cladophora spp.>E. intestinalis>F. vesiculosus. Similarly, I. baltica ate significantly more of both the filamentous green algae than F. vesiculosus (p<0.001), with a preference order of: E. intestinalis>Cladophora spp.>F. vesiculosus. Given the preference of isopods and amphipods for filamentous green algae, we might expect these algae to be maintained at low biomass levels. However, this is clearly not the case in the Baltic Sea. Nutrient enrichment (bottom-up effects) is the accepted dominant reason for the non-controlling impact of algal grazers, but other reasons may include cascading trophic effects resulting from the removal of large piscivorous fish (top-down effects).  相似文献   

10.
The feeding behaviour of two potentially competing species, the longspine snipefish, Macroramphosus scolopax, and the boarfish Capros aper was examined. While both species are very abundant along the Mediterranean coast and are regularly caught by demersal trawlers, they are of no commercial value. The diets of boarfish and longspine snipefish were investigated from samples collected between January 2001 and May 2002. Variations in the diet with fish size and season, as well as diet overlap and diversity were explored. Mysid shrimps, amphipods and gastropods were the most important food items in the diet of longspine snipefish. During ontogenetic development, M. scolopax occupies different trophic levels: the diet shifts from being predominantly composed of mysids (Anchialina agilis, Lophogaster typicus, Erythrops sp., Leptomysis spp.) in the smaller longspine snipefish [<6.5 cm total length (TL)] towards decapods (Anapagurus laevis) and amphipods (Leucothoe incisa, Eusirus longipes, Hyperidea) in the larger individuals (>6.5 cm TL). Crustacean decapods and copepods were the most important prey in the stomachs of boarfish. Mysids (Lo. typicus), euphausiids and nematodes were present in the larger individuals (>8 cm TL). A more generalist diet, still containing copepods, crustacean decapods, gastropods (Limacina retroversa) and a large variety of amphipods (e.g. Phtysica marina, Stenotoe bosphorana) and mysids (e.g. A. agilis, Leptomysis spp., Erythrops sp.), dominated the diet of C. aper between 2 and 8 cm TL. Diet overlap between longspine snipefish and boarfish was very low and the differences in stomach species diversity were explained by season and fish size.  相似文献   

11.
Carbon and nitrogen isotopic composition was used to identify the main sources of carbon and describe the main trophic pathways in Deluge Inlet, a near-pristine mangrove estuary in tropical north Queensland, Australia. Producers' δ13C varied from −28.9‰ for mangroves to −18.6‰ for seagrass. Animals were also well separated in δ13C (−25.4‰ to −16.3‰ for invertebrates and −25.2‰ to −17.2‰ for fish), suggesting considerable differences in ultimate sources of carbon, from a substantial reliance on mangrove carbon to an almost exclusive reliance on seagrass. In general, invertebrates had lower δ15N than fish, indicating lower trophic levels. Among fish, δ15N values reflected well the assumed trophic levels, as species from lower trophic levels had lower δ15N than species from higher trophic levels. Trophic levels and trophic length were estimated based on δ15N of invertebrate primary consumers (6.1‰), with results suggesting a food web with four trophic levels. There was also evidence of a high level of diet overlap between fish species, as indicated by similarities in δ13C for fish species of higher trophic levels. Stable isotope data was also useful to construct a general model for this food web, where five main trophic pathways were identified: one based on both mangrove and microphytobenthos, one on plankton, two on both microphytobenthos and seagrass, and one based mainly on seagrass. This model again suggested the presence of four trophic levels, in agreement with the value calculated based on the difference in δ15N between invertebrate primary consumers and top piscivores.  相似文献   

12.
The food and feeding habits of hoki (Macruronus novaezelandiae), southern blue whiting (Micromesistius australis), javelin fish (Lepi‐dorhynchus denticulatus), ling (Genypterus blacodes), smooth rattail (Coelorinchus aspercephalus), silverside (Argentina elongata), and small‐scaled notothenid (Notothenia microlepidota) sampled from the Campbell Plateau in 1979 were examined. The importance of prey items in the diet has been assessed by an ‘index of relative importance’, which combines measurements of frequency of occurrence, number, and weight of prey. Hoki, southern blue whiting, and javelin fish are pelagic feeders. Hoki preyed largely on natant decapod crustaceans, amphipods, and myctophid and photichthyid fishes. The main prey of southern blue whiting were amphipods, natant decapods, and euphausiids. Javelin fish fed on natant decapods, amphipods, and small squid. Seasonal and regional differences in feeding, and dietary changes with length of fish were evident. Ling, smooth rattail, silverside, and small‐scaled notothenid are predominantly benthic feeders. Ling preyed on natant decapods, macrourid fishes, and small hoki. The diet of rattail comprised natant decapod crustaceans, opal fishes (Hemerocoetes spp.), and poly‐chaetes. Silverside fed almost solely on salps. Salps, amphipods, brachyuran crustaceans, and opal fishes were the main prey of small‐scaled notothenid.  相似文献   

13.
We conducted a field experiment to assess the response of phytal harpacticoids to nutrient‐driven increases of epiphyte load in Posidonia oceanica meadows. First, we evaluated differences in species richness, diversity and assemblage structure of phytal harpacticoids in P. oceanica meadows with differing epiphyte loads. Secondly, we conducted a field experiment where epiphyte load was increased through an in situ addition of nutrients to the water column and evaluated the responses of the harpacticoid assemblages. We predicted that there would be changes in the harpacticoid assemblages as a result of nutrient‐driven increases of epiphyte load, and that these changes would be of a larger magnitude in meadows of low epiphyte load. Our results show that the harpacticoid fauna (>500 μm) present in P. oceanica meadows in the Bay of Palma comprised taxa which are considered phytal and other less abundant ones previously described as sediment dwellers or commensal on other invertebrate species. Nutrient addition had an overall significant effect on epiphyte biomass and on harpacticoid abundance, diversity and assemblage structure, possibly as a response to the increased resources and habitat complexity provided by epiphytes. The abundance of dominant species at each location was favoured by nutrient addition and in some cases correlated with epiphytic biomass, although never strongly. This may indicate that structural complexity or diversity of the epiphytic cover might be more important than the actual epiphytic biomass for the harpacticoid species investigated. More species‐specific studies are necessary to ascertain this and clarify the relationships between harpacticoids and epiphytes in seagrass meadows. To our knowledge, this is the first account of harpacticoid species associated with P. oceanica leaves and the epiphytic community they harbour in the Mediterranean Sea.  相似文献   

14.
The trophic relationships in the association of the Yeso scallop Mizuhopecten yessoensis and its dominant endobiontic polychaete Polydora brevipalpa, which burrows into the scallop??s shell, and their potential food sources were studied using the method of fatty acid biochemical markers. It is shown that the differences in the diet of the scallop and the polychaete allow them to coexist in a close association. The trophic role of the association in the benthic community was revealed. The association selectively utilizes the food sources of the environment. It almost does not consume organic matter of bottom sediments, which allows it to coexist with other species in the community of higher order. There is minimal food competition between the association and detritivorous species; however, association can limit the development of species mostly foraging on diatom algae.  相似文献   

15.
Data on the food consumption, feeding activity and periodicity of two burrowing fish, the congrid eel Gnathophis mystax (Delaroche, 1809) and the false moray Chlopsis bicolor Rafinesque, 1810 are presented. In all, 455 specimens were collected by bottom trawl in the central Mediterranean Sea at depths ranging from 140 to 160 m during four 24‐h day–night sampling cycles. The diet of G. mystax and C. bicolor was investigated by means of stomach content analysis. Diet varied significantly with length and maturity stage. During ontogenetic development G. mystax occupied different trophic levels: diet shifted from amphipods, predominantly in the smaller congrid eels [<25 cm total length (TL)] to fish in the larger individuals (>30 cm TL). Before the transition to the icthyophagous phase, the congrid eel showed a more generalistic foraging behaviour where decapods (Solenocera membranacea, Parapenaeus longirostris, Alpheus glaber), cephalopods (Sepiola spp. and Alloteuthis media), benthic (Gobiidae, Callionymus maculatus, Arnoglossus laterna) and benthopelagic fish (Argentina sphyraena) dominated the diet. Smaller C. bicolor (<25 cm TL) fed primarily on amphipods and cephalopods; bigger specimens fed also on decapods both natantian (A. glaber, Processa canaliculata) and reptantian (Medorippe lanata, Goneplax rhomboides). Daily ration values, computed from the Eggers method, ranged from 2.48% to 2.99% wet body weight for C. bicolor and G. mystax, respectively. Diel patterns in stomach fullness and the trophic niche overlap between the two species were also discussed.  相似文献   

16.
Seagrasses support a great diversity of epiphytic organisms. There are no detailed published accounts of algae and animals growing on seagrasses in South Africa. The seagrass Thalassodendron leptocaule (previously known as Thalassodendron ciliatum) is unique among southern African seagrasses in that it occurs on exposed rocky outcrops along the Mozambican and north-eastern South African coasts; most other seagrasses are restricted to sheltered bays and estuaries. Here we present accounts of species of flora and fauna identified growing epiphytically on this seagrass in northern KwaZulu-Natal. A total of 52 taxa of macroalgae and 204 species of macroinvertebrates were identified as epiphytic on South African T. leptocaule. The most frequently observed macroalgal epiphytes were predominantly Rhodophyta and were common among periodically exposed, intertidal and subtidal habitats. The crustose red coralline algae Pneophyllum amplexifrons and Hydrolithon farinosum were frequently observed, primarily on stems and leaves of the seagrass respectively. The most diverse groups of epiphytic invertebrates were Arthropoda, Annelida and Mollusca, which together comprised 76% of the macroinvertebrate species recorded. This seagrass species is evidently an important substratum and ecosystem that supports a hidden wealth of biodiversity.  相似文献   

17.
The diet of at least 28 species of mesopelagic fish from the Pacific coast of Hokkaido was examined. The dominant family was the Gonostomatidae (42%) which was represented by five species. The most abundant species wasCyclothone atraria which together with the other species of this genus preyed predominantly on copepods. Euphausiids and copepods were dominant in the diet ofGonostoma gracile. The next most abundant family was the Myctophidae (32%) which was represented by seven species. The dominant species,Stenobrachius nannochir, preyed mainly on copepods. Copepods were also the dominant food item of the other myctophids except forLampanyctus jordani which fed mainly on euphausiids. The other important family was the Bathylagidae (21%).Leuroglossus schmidti was the dominant species and its diet was more diverse with ostracods, copepods, molluscs and larvaceans being the most important food items.Bathylagus ochotensis had a similar diet. Copepods were the most important food items for all but a few species and their occurrence in the fish stomachs was related to the known vertical distribution of both predators and prey. Ostracods and euphausiids were also important prey items, the latter especially in large fish species. Molluscs and larvaceans were restricted to the two species of the family Bathylagidae.  相似文献   

18.
The concept of essential fish habitats (EFHs) is widely accepted for conservational and management purposes. EFHs are often considered as high quality habitats for fisheries species and subsequently of high values for society. In this study, fish and Substrate-Associated Prey (SAP) were sampled during the productive summer season 1998 (fish) and 2003 and 2004 (SAP) in shallow coastal rocky- and soft-bottom habitats on the Swedish west coast. The aim was to study the spatial and monthly variation of SAP as well as abundance and biomass of fish, and to examine if food items found in the diet of the fish assemblage were derived from SAP. We also examined if the diet of Ctenolabrus rupestris, a resident and abundant fish species in the shallow coastal habitats, and the diet of four seasonally abundant and commercially important fish species (Gadus morhua, Pleuronectes platessa, Salmo trutta and Scomber scombrus) were derived from SAP. There were significantly higher mean species number and abundance of the SAP assemblage on rocky compared to soft bottoms and the highest values were found on the rocky bottoms in August and in the shallowest (0–3 m) depth strata. There were no significant differences in number of fish species caught in the two habitats, although mean number of fish and mean biomass were significantly higher on rocky bottoms. Both habitats showed the same seasonal variation and the highest values of number of fish species, abundance and biomass were observed in June. On rocky bottoms, gastropods and amphipods were the most frequent food items in the diet of the entire fish assemblage and these items were also the most abundant SAP in this habitat. The dominant food items of the soft-bottom fish assemblage were decapods and fish, which were not common SAP. However, except for S. scombrus, the diet of the selected fish species showed a strong association to the SAP availability. Gadus morhua displayed the strongest association to SAP on rocky bottoms and P. platessa and C. rupestris to SAP on soft bottoms. Further, for C. rupestris, multivariate statistical analysis showed a significant association to the SAP assemblage on both rocky and soft bottoms. These results provide vital new information for the management and conservation of Essential Fish Habitats on the Swedish west coast.  相似文献   

19.
Notolabrus fucicola Richardson, a large common labrid inhabiting shallow waters around New Zealand and southern Australia, were collected monthly (December 1996‐February 1998) around Kaikoura on the east coast of the South Island, New Zealand. Their diet, temporal variation in prey and gut fullness, and ontogenetic differences were examined. N. fucicola is a generalist predator, the major prey items being bivalves, amphipods, and crabs, which varied temporally in their diet. There were size specific changes in their diet. Small fish (100–180 mm) ate mostly amphipods and isopods, whereas larger fish (> 180 mm) ate mainly bivalves, crabs, and gastropods. There was a temporal variation in gut fullness but no significant difference between sexes.  相似文献   

20.
There is a growing need to incorporate biotic interactions, particularly those between predators and their prey, when predicting climate-driven shifts in marine fishes. Predators dependent on a narrow range of prey species should respond rapidly to shifts in the distribution of their prey, whereas those with broad trophic adaptability may respond to shifts in their prey by altering their diet. Small pelagic fishes are an extremely important component of the diet of many marine predators. However, their populations are expected to shift in distribution and fluctuate in abundance as the climate changes. We conducted a comparative study of the seasonal diet of adult Pomatomus saltatrix over two periods (June–December 2006 and 2012) and examined the available data on small pelagic fishes biomass in a global hotspot (the coastal region of southern Angola, southern Africa) to gain an understanding of the tropic adaptability of the species. Despite a drop (630 000 t to 353 000 t) in the abundance of their dominant prey (Sardinella aurita) in the region, it remained the most important prey item during both study periods (Period 1 = 99.3% RI, Period 2 = 85.3% RI, where %RI is a ranking index of relative importance). However, the diet during Period 2 was supplemented with prey typically associated with the nearshore zone. The seasonal data showed that P. saltatrix were capable not only of switching their diet from S. aurita to other prey items, but also of switching their trophic habitat from the pelagic to the nearshore zone. These findings suggest that P. saltatrix will not necessarily co-migrate if there is a climate-driven shift in the distribution of small pelagic fishes (their dominant prey). Accordingly, understanding the trophic adaptability of predators is critical for understanding their response to the impacts of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号