首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The outer portions of many type I chondrules (Fa and Fs <5 mol%) in CR chondrites (except Renazzo and Al Rais) consist of silica‐rich igneous rims (SIRs). The host chondrules are often layered and have a porphyritic core surrounded by a coarse‐grained igneous rim rich in low‐Ca pyroxene. The SIRs are sulfide‐free and consist of igneously‐zoned low‐Ca and high‐Ca pyroxenes, glassy mesostasis, Fe, Ni‐metal nodules, and a nearly pure SiO2 phase. The high‐Ca pyroxenes in these rims are enriched in Cr (up to 3.5 wt% Cr2O3) and Mn (up to 4.4 wt% MnO) and depleted in Al and Ti relative to those in the host chondrules, and contain detectable Na (up to 0.2 wt% Na2O). Mesostases show systematic compositional variations: Si, Na, K, and Mn contents increase, whereas Ca, Mg, Al, and Cr contents decrease from chondrule core, through pyroxene‐rich igneous rim (PIR), and to SIR; FeO content remains nearly constant. Glass melt inclusions in olivine phenocrysts in the chondrule cores have high Ca and Al, and low Si, with Na, K, and Mn contents that are below electron microprobe detection limits. Fe, Ni‐metal grains in SIRs are depleted in Ni and Co relative to those in the host chondrules. The presence of sulfide‐free, SIRs around sulfide‐free type I chondrules in CR chondrites may indicate that these chondrules formed at high (>800 K) ambient nebular temperatures and escaped remelting at lower ambient temperatures. We suggest that these rims formed either by gas‐solid condensation of silica‐normative materials onto chondrule surfaces and subsequent incomplete melting, or by direct SiO(gas) condensation into chondrule melts. In either case, the condensation occurred from a fractionated, nebular gas enriched in Si, Na, K, Mn, and Cr relative to Mg. The fractionation of these lithophile elements could be due to isolation (in the chondrules) of the higher temperature condensates from reaction with the nebular gas or to evaporation‐recondensation of these elements during chondrule formation. These mechanisms and the observed increase in pyroxene/olivine ratio toward the peripheries of most type I chondrules in CR, CV, and ordinary chondrites may explain the origin of olivine‐rich and pyroxene‐rich chondrules in general.  相似文献   

2.
Abstract— Chondrule D8n in LL3.0 Semarkona is a porphyritic olivine (PO) chondrule, 1300 times 1900 μm in size, with a complicated thermal history. The oldest recognizable portion of D8n is a moderately high‐FeO, PO chondrule that is modeled as having become enmeshed in a dust ball containing a small, intact, low‐FeO porphyritic chondrule and fine‐grained material consisting of forsterite, kamacite, troilite, and possibly reduced C. The final chondrule melting event may have been a heat pulse that preferentially melted the low‐FeO material and produced a low‐FeO, opaque‐rich, exterior region, 45–140 μm in thickness, around the original chondrule. At one end of the exterior region, a kamacite‐ and troilite‐rich lump 960 μm in length formed. During the final melting event, the coarse, moderately ferroan olivine phenocrysts within the original chondrule appear to have been partly resorbed (These relict phenocrysts have the highest concentrations of FeO, MnO, and Cr2O3—7.5, 0.20, and 0.61 wt%, respectively—in D8n.). Narrow olivine overgrowths crystallized around the phenocrysts following final chondrule melting; their compositions seem to reflect mixing between melt derived from the exterior region and the resorbed margins of the phenocrysts. During the melting event, FeO in the relict phenocrysts was reduced, producing numerous small blebs of Ni‐poor metallic Fe along preexisting curvilinear fractures. The reduced olivine flanking the trails of metal blebs has lower FeO than the phenocrysts but virtually identical MnO and Cr2O3 contents. Subsequent parent‐body aqueous alteration in the exterior region of the chondrule formed pentlandite and abundant magnetite.  相似文献   

3.
Carbonaceous chondrites are classified into several groups. However, some are ungrouped. We studied one such ungrouped chondrite, Y‐82094, previously classified as a CO. In this chondrite, chondrules occupy 78 vol%, and the matrix is distinctly poor in abundance (11 vol%), compared with CO and other C chondrites. The average chondrule size is 0.33 mm, different from that in C chondrites. Although these features are similar to those in ordinary chondrites, Y‐82094 contains 3 vol% Ca‐Al‐rich inclusions and 5% amoeboid olivine aggregates (AOAs). Also, the bulk composition resembles that of CO chondrites, except for the volatile elements, which are highly depleted. The oxygen isotopic composition of Y‐82094 is within the range of CO and CV chondrites. Therefore, Y‐82094 is an ungrouped C chondrite, not similar to any other C chondrite previously reported. Thin FeO‐rich rims on AOA olivine and the mode of occurrence of Ni‐rich metal in the chondrules indicate that Y‐82094 is petrologic type 3.2. The extremely low abundance of type II chondrules and high abundance of Fe‐Ni metal in the chondrules suggest reducing condition during chondrule formation. The depletion of volatile elements indicates that the components formed under high‐temperature conditions, and accreted to the parent body of Y‐82094. Our study suggests a wider range of formation conditions than currently recorded by the major C chondrite groups. Additionally, Y‐82094 may represent a new, previously unsampled, asteroidal body.  相似文献   

4.
Abstract— The CV (Vigarano‐type) chondrites are a petrologically diverse group of meteorites that are divided into the reduced and the Bali‐like and Allende‐like oxidized subgroups largely based on secondary mineralogy (Weisberg et al., 1997; Krot et al., 1998b). Some chondrules and calcium‐aluminum‐rich inclusions (CAIs) in the reduced CV chondrite Vigarano show alteration features similar to those in Allende: metal is oxidized to magnetite; low‐Ca pyroxene, forsterite, and magnetite are rimmed and veined by ferrous olivine (Fs40–50); and plagioclase mesostases and melilite are replaced by nepheline and sodalite (Sylvester et al., 1993; Kimura and Ikeda, 1996, 1997, 1998). Our petrographic observations indicate that Vigarano also contains individual chondrules, chondrule fragments, and lithic clasts of the Bali‐like oxidized CV materials. The largest lithic clast (about 1 times 2 cm in size) is composed of opaque matrix, type‐I chondrules (400–2000 μm in apparent diameter) surrounded by coarse‐grained and fine‐grained rims, and rare CAIs. The matrix‐chondrule ratio is about 1.1. Opaque nodules in chondrules in the clast consist of Cr‐poor and Cr‐rich magnetite, Ni‐ and Co‐rich metal, Ni‐poor and Ni‐rich sulfide; low‐Ni metal nodules occur only inside chondrule phenocrysts. Chromium‐poor magnetite is preferentially replaced by fayalite. Chondrule mesostases are replaced by phyllosilicates; low‐Ca pyroxene and olivine phenocrysts appear to be unaltered. Matrix in the clast consists of very fine‐grained (<1 μm) ferrous olivine, anhedral fayalite grains (Fa80–100), rounded objects of porous Ca‐Fe‐rich pyroxenes (Fs10–50Wo50), Ni‐poor sulfide, Ni‐ and Co‐rich metal, and phyllosilicates; magnetite is rare. On the basis of the presence of the Bali‐like lithified chondritic clast—in addition to individual chondrules and CAIs of both Bali‐like and Allende‐like materials—in the reduced CV chondrite Vigarano, we infer that (1) all three types of materials were mixed during regolith gardening on the CV asteroidal body, and (2) the reduced and oxidized CV materials may have originated from a single, heterogeneously altered asteroid.  相似文献   

5.
Abstract— We have measured O‐isotopic ratios in a variety of olivine grains in the CO3 chondrite Allan Hills (ALH) A77307 using secondary ion mass spectrometry in order to study the chondrule formation process and the origin of isolated olivine grains in unequilibrated chondrites. Oxygen‐isotopic ratios of olivines in this chondrite are variable from δ17O = ?15.5 to +4.5% and δ18O = ?11.5 to +3.9%, with Δ17O varying from ?10.4 to +3.5%. Forsteritic olivines, Fa<1, are enriched in 16O relative to the bulk chondrite, whereas more FeO‐rich olivines are more depleted in 16O. Most ratios lie close to the carbonaceous chondrite anhydrous minerals (CCAM) line with negative values of Δ17O, although one grain of composition Fa4 has a mean Δ17O of +1.6%. Marked O‐isotopic heterogeneity within one FeO‐rich chondrule is the result of incorporation of relic, 16O‐rich, Mg‐rich grains into a more 16O‐depleted host. Isolated olivine grains, including isolated forsterites, have similar O‐isotopic ratios to olivine in chondrules of corresponding chemical composition. This is consistent with derivation of isolated olivine from chondrules, as well as the possibility that isolated grains are chondrule precursors. The high 16O in forsteritic olivine is similar to that observed in forsterite in CV and CI chondrites and the ordinary chondrite Julesburg and suggests nebula‐wide processes for the origin of forsterite that appears to be a primitive nebular component.  相似文献   

6.
Abstract— Several recent studies have shown that materials such as magnetite that formed in asteroids tend to have higher Δ17O (=δ17O ? 0.52 × δ18O) values than those recorded in unaltered chondrules. Other recent studies have shown that, in sets of chondrules from carbonaceous chondrites, Δ17O tends to increase as the FeO contents of the silicates increase. We report a comparison of the O isotopic composition of olivine phenocrysts in low‐FeO (≤Fa1) type I and high‐FeO (≥Fa15) type II porphyritic chondrules in the highly primitive CO3.0 chondrite Yamato‐81020. In agreement with a similar study of chondrules in CO3.0 ALH A77307 by Jones et al. (2000), Δ17O tends to increase with increasing FeO. We find that Δ17O values are resolved (but only marginally) between the two sets of olivine phenocrysts. In two of the high‐FeO chondrules, the difference between Δ17O of the late‐formed, high‐FeO phenocryst olivine and those in the low‐FeO cores of relict grains is well‐resolved (although one of the relicts is interpreted to be a partly melted amoeboid olivine inclusion by Yurimoto and Wasson [2002]). It appears that, during much of the chondrule‐forming period, there was a small upward drift in the Δ17O of nebular solids and that relict cores preserve the record of a different (and earlier) nebular environment.  相似文献   

7.
Abstract– Chondrule compositions suggest either ferroan precursors and evaporation, or magnesian precursors and condensation. Type I chondrule precursors include granoblastic olivine aggregates (planetary or nebular) and fine‐grained (dustball) precursors. In carbonaceous chondrites, type I chondrule precursors were S‐free, while type II chondrules have higher Fe/Mn than in ordinary chondrites. Many type II chondrules contain diverse forsteritic relicts, consistent with polymict dustball precursors. The relationship between finer and coarser grained type I chondrules in ordinary chondrites suggests more evaporation from more highly melted chondrules. Fe metal in type I, and Na and S in type II chondrules indicate high partial pressures in ambient gas, as they are rapidly evaporated at canonical conditions. The occurrence of metal, sulfide, or low‐Ca pyroxene on chondrule rims suggests (re)condensation. In Semarkona type II chondrules, Na‐rich olivine cores, Na‐poor melt inclusions, and Na‐rich mesostases suggest evaporation followed by recondensation. Type II chondrules have correlated FeO and MnO, consistent with condensation onto forsteritic precursors, but with different ratios in carbonaceous chondrites and ordinary chondrites, indicating different redox history. The high partial pressures of lithophile elements require large dense clouds, either clumps in the protoplanetary disk, impact plumes, or bow shocks around protoplanets. In ordinary chondrites, clusters of type I and type II chondrules indicate high number densities and their similar oxygen isotopic compositions suggest recycling together. In carbonaceous chondrites, the much less abundant type II chondrules were probably added late to batches of type I chondrules from different O isotopic reservoirs.  相似文献   

8.
High‐precision secondary ion mass spectrometry (SIMS) was employed to investigate oxygen three isotopes of phenocrysts in 35 chondrules from the Yamato (Y) 82094 ungrouped 3.2 carbonaceous chondrite. Twenty‐one of 21 chondrules have multiple homogeneous pyroxene data (?17O 3SD analytical uncertainty: 0.7‰); 17 of 17 chondrules have multiple homogeneous pyroxene and plagioclase data. Twenty‐one of 25 chondrules have one or more olivine data matching coexisting pyroxene data. Such homogeneous phenocrysts (1) are interpreted to have crystallized from the final chondrule melt, defining host O‐isotope ratios; and (2) suggest efficient O‐isotope exchange between ambient gas and chondrule melt during formation. Host values plot within 0.7‰ of the primitive chondrule mineral (PCM) line. Seventeen chondrules have relict olivine and/or spinel, with some δ17O and δ18O values approaching ?40‰, similar to CAI or AOA‐like precursors. Regarding host chondrule data, 22 of 34 have Mg#s of 98.8–99.5 and ?17O of ?3.9‰ to ?6.1‰, consistent with most Acfer 094, CO, CR, and CV chondrite chondrules, and suggesting a common reduced O‐isotope reservoir devoid of 16O‐poor H2O. Six Y‐82094 chondrules have ?17O near ?2.5‰, with Mg#s of 64–97, consistent with lower Mg# chondrules from Acfer 094, CO, CR, and CV chondrites; their signatures suggest precursors consisting of those forming Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules plus 16O‐poor H2O, at high dust enrichments. Three type II chondrules plot slightly above the PCM line, near the terrestrial fractionation line (?17O: ~+0.1‰). Their O‐isotopes and olivine chemistry are like LL3 type II chondrules, suggesting they sampled ordinary chondrite‐like chondrule precursors. Finally, three Mg# >99 chondrules have ?17O of ?6.7‰ to ?8.1‰, potentially due to 16O‐rich refractory precursor components. The predominance of Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules and a high chondrule‐to‐matrix ratio suggests bulk Y‐82094 characteristics are closely related to anhydrous dust sampled by most carbonaceous chondrite chondrules.  相似文献   

9.
Abstract– We investigate the hypothesis that many chondrules are frozen droplets of spray from impact plumes launched when thin‐shelled, largely molten planetesimals collided at low speed during accretion. This scenario, here dubbed “splashing,” stems from evidence that such planetesimals, intensely heated by 26Al, were abundant in the protoplanetary disk when chondrules were being formed approximately 2 Myr after calcium‐aluminum‐rich inclusions (CAIs), and that chondrites, far from sampling the earliest planetesimals, are made from material that accreted later, when 26Al could no longer induce melting. We show how “splashing” is reconcilable with many features of chondrules, including their ages, chemistry, peak temperatures, abundances, sizes, cooling rates, indented shapes, “relict” grains, igneous rims, and metal blebs, and is also reconcilable with features that challenge the conventional view that chondrules are flash‐melted dust‐clumps, particularly the high concentrations of Na and FeO in chondrules, but also including chondrule diversity, large phenocrysts, macrochondrules, scarcity of dust‐clumps, and heating. We speculate that type I (FeO‐poor) chondrules come from planetesimals that accreted early in the reduced, partially condensed, hot inner nebula, and that type II (FeO‐rich) chondrules come from planetesimals that accreted in a later, or more distal, cool nebular setting where incorporation of water‐ice with high Δ17O aided oxidation during heating. We propose that multiple collisions and repeated re‐accretion of chondrules and other debris within restricted annular zones gave each chondrite group its distinctive properties, and led to so‐called “complementarity” and metal depletion in chondrites. We suggest that differentiated meteorites are numerically rare compared with chondrites because their initially plentiful molten parent bodies were mostly destroyed during chondrule formation.  相似文献   

10.
We have studied the petrologic characteristics of sulfide‐metal lodes, polymineralic Fe‐Ni nodules, and opaque assemblages in the CR2 chondrite Graves Nunataks (GRA) 06100, one of the most altered CR chondrites. Unlike low petrologic type CR chondrites, alteration of metal appears to have played a central role in the formation of secondary minerals in GRA 06100. Differences in the mineralogy and chemical compositions of materials in GRA 06100 suggest that it experienced higher temperatures than other CR2 chondrites. Mineralogic features indicative of high temperature include: (1) exsolution of Ni‐poor and Ni‐rich metal from nebular kamacite; (2) formation of sulfides, oxides, and phosphates; (3) changes in the Co/Ni ratios; and (4) carbidization of Fe‐Ni metal. The conspicuous absence of pentlandite may indicate that peak temperatures exceeded 600 °C. Opaques appear to have been affected by the action of aqueous fluids that resulted in the formation of abundant oxides, Fe‐rich carbonates, including endmember ankerite, and the sulfide‐silicate‐phosphate scorzalite. We suggest that these materials formed via impact‐driven metamorphism. Mineralogic features indicative of impact metamorphism include (1) the presence of sulfide‐metal lodes; (2) the abundance of polymineralic opaque assemblages with mosaic‐like textures; and (3) the presence of suessite. Initial shock metamorphism probably resulted in replacement of nebular Fe‐Ni metal in chondrules and in matrix by Ni‐rich, Co‐rich Fe metal, Al‐Ti‐Cr‐rich alloys, and Fe sulfides, while subsequent hydrothermal alteration produced accessory oxides, phosphates, and Fe carbonates. An extensive network of sulfide‐metal veins permitted effective exchange of siderophile elements from pre‐existing metal nodules with adjacent chondrules and matrix, resulting in unusually high Fe contents in these objects.  相似文献   

11.
Abstract Experimentally produced analogues of porphyritic olivine (PO) chondrules in ordinary chondrites provide an important insight into chondrule formation processes. We have studied experimental samples with PO textures grown at three different cooling rates (2, 5 and 100 *C/h), and samples that have been annealed at high temperatures (1000–1200 °C) subsequent to cooling. These are compared with natural chondrules of similar composition and texture from the ordinary chondrites Semarkona (LL3.0) and ALH 81251 (LL3.3). Zoning properties of olivine grains indicate that the Semarkona chondrules cooled at comparable rates to the experiments. Zoning in olivine from chondrules in ALH 81251 is not consistent with cooling alone but indicates that the chondrules underwent an annealing process. Chromium loss from olivine is very rapid during annealing and calculated diffusion coefficients for Cr in olivine are very similar to those of Fe-Mg interdiffusion coefficients under the same conditions. Annealed experimental samples contain an aluminous, low-Ca pyroxene which forms by reaction of olivine and liquid. No similar reaction texture is observed in ALH 81251 chondrules, and this may be evidence that annealing of the natural samples took place at considerably lower temperatures than the experimental analogues. The study supports the model of chondrule formation in a cool nebula and metamorphism of partly equilibrated chondrites during reheating episodes on the chondrite parent bodies.  相似文献   

12.
Abstract— Anorthite‐rich chondrules in CR and CH carbonaceous chondrites consist of magnesian low‐Ca pyroxene and forsterite phenocrysts, FeNi‐metal nodules, interstitial anorthite, Al‐Ti‐Cr‐rich low‐Ca and high‐Ca pyroxenes, and crystalline mesostasis composed of silica, anorthite and high‐Ca pyroxene. Three anorthite‐rich chondrules contain relic calcium‐aluminum‐rich inclusions (CAIs) composed of anorthite, spinel, ±Al‐diopside, and ± forsterite. A few chondrules contain regions which are texturally and mineralogically similar to magnesian (type I) chondrules and consist of forsterite, low‐Ca pyroxene and abundant FeNi‐metal nodules. Anorthite‐rich chondrules in CR and CH chondrites are mineralogically similar to those in CV and CO carbonaceous chondrites, but contain no secondary nepheline, sodalite or ferrosilite. Relatively high abundances of moderately‐volatile elements such as Cr, Mn and Si in the anorthite‐rich chondrules suggest that these chondrules could not have been produced by volatilization of the ferromagnesian chondrule precursors or by melting of the refractory materials only. We infer instead that anorthite‐rich chondrules in carbonaceous chondrites formed by melting of the reduced chondrule precursors (olivine, pyroxenes, FeNi‐metal) mixed with the refractory materials, including relic CAIs, composed of anorthite, spinel, high‐Ca pyroxene and forsterite. The observed mineralogical and textural similarities of the anorthite‐rich chondrules in several carbonaceous chondrite groups (CV, CO, CH, CR) may indicate that these chondrules formed in the region(s) intermediate between the regions where CAIs and ferromagnesian chondrules originated. This may explain the relative enrichment of anorthite‐rich chondrules in 16O compared to typical ferromagnesian chondrules (Russell et al., 2000).  相似文献   

13.
We report on a suite of microchondrules from three unequilibrated ordinary chondrites (UOCs). Microchondrules, a subset of chondrules that are ubiquitous components of UOCs, commonly occur in fine‐grained chondrule rims, although may also occur within matrix. Microchondrules have a variety of textures: cryptocrystalline, microporphyritic, radial, glassy. In some cases, their textures, and in many cases, their compositions, are similar to their larger host chondrules. Bulk compositions for both chondrule populations frequently overlap. The primary material that composes many of the microchondrules has compositions that are pyroxene‐normative and is similar to low‐Ca‐pyroxene phenocrysts from host chondrules; primary material rarely resembles olivine or plagioclase. Some microchondrules are composed of FeO‐rich material that has compositions similar to the bulk submicron fine‐grained rim material. These microchondrules, however, are not a common compositional type and probably represent secondary FeO‐enrichment. Microchondrules may also be porous, suggestive of degasing to form vesicles. Our work shows that the occurrence of microchondrules in chondrule rims is an important constraint that needs to be considered when evaluating chondrule‐forming mechanisms. We propose that microchondrules represent melted portions of the chondrule surfaces and/or the melt products of coagulated dust in the immediate vicinity of the larger chondrules. We suggest that, through recycling events, the outer surfaces of chondrules were heated enough to allow microchondrules to bud off as protuberances and become entrained in the surrounding dusty environment as chondrules were accreting fine‐grained rims. Microchondrules are thus byproducts of cyclic processing of chondrules in localized environments. Their occurrence in fine‐grained rims represents a snapshot of the chondrule‐forming environment. We evaluate mechanisms for microchondrule formation and hypothesize a potential link between the emergence of type II chondrules in the early solar system and the microchondrule‐bearing fine‐grained rims surrounding type I chondrules.  相似文献   

14.
We performed a petrologic, geochemical, and oxygen isotopic study of the lowest FeO ordinary chondrite (OC), Yamato (Y) 982717. Y 982717 shows a chondritic texture composed of chondrules and chondrule fragments, and mineral fragments set in a finer grained, clastic matrix, similar to H4 chondrites. The composition of olivine (Fa11.17 ± 0.48 (1σ)) and low‐Ca pyroxene (Fs11.07 ± 0.98 (1σ)Wo0.90 ± 0.71(1σ)) is significantly more magnesian than those of typical H chondrites (Fa16.0‐20, Fs14.5‐18.0), as well as other known low‐FeO OCs (Fa12.8‐16.7; Fs13‐16). However, the bulk chemical composition of Y 982717, in particular lithophile and moderately volatile elements, is within the range of OCs. The bulk siderophile element composition (Ni, Co) is within the range of H chondrites and distinguishable from L chondrites. The O‐isotopic composition is also within the range of H chondrites. The lack of reduction textures indicates that the low olivine Fa content and low‐Ca pyroxene Fs content are characteristics of the precursor materials, rather than the result of reduction during thermal metamorphism. We suggest that the H chondrites are more compositionally diverse than has been previously recognized.  相似文献   

15.
Abstract— We measured the sizes and textural types of 719 intact chondrules and 1322 chondrule fragments in thin sections of Semarkona (LL3.0), Bishunpur (LL3.1), Krymka (LL3.1), Piancaldoli (LL3.4) and Lewis Cliff 88175 (LL3.8). The mean apparent diameter of chondrules in these LL3 chondrites is 0.80 φ units or 570 μm, much smaller than the previous rough estimate of ~900 μm. Chondrule fragments in the five LL3 chondrites have a mean apparent cross‐section of 1.60 φ units or 330 μm. The smallest fragments are isolated olivine and pyroxene grains; these are probably phenocrysts liberated from disrupted porphyritic chondrules. All five LL3 chondrites have fragment/ chondrule number ratios exceeding unity, suggesting that substantial numbers of the chondrules in these rocks were shattered. Most fragmentation probably occurred on the parent asteroid. Porphyritic chondrules (porphyritic olivine + porphyritic pyroxene + porphyritic olivine‐pyroxene) are more readily broken than droplet chondrules (barred olivine + radial pyroxene + cryptocrystalline). The porphyritic fragment/chondrule number ratio (2.0) appreciably exceeds that of droplet‐textured objects (0.9). Intact droplet chondrules have a larger mean size than intact porphyritic chondrules, implying that large porphyritic chondrules are fragmented preferentially. This is consistent with the relatively low percentage of porphyritic chondrules within the set of the largest chondrules (57%) compared to that within the set of the smallest chondrules (81%). Differences in mean size among chondrule textural types may be due mainly to parent‐body chondrule‐fragmentation events and not to chondrule‐formation processes in the solar nebula.  相似文献   

16.
Abstract— Isheyevo is a metal‐rich carbonaceous chondrite that contains several lithologies with different abundances of Fe,Ni metal (7–90 vol%). The metal‐rich lithologies with 50–60 vol% of Fe,Ni metal are dominant. The metal‐rich and metal‐poor lithologies are most similar to the CBb and CH carbonaceous chondrites, respectively, providing a potential link between these chondrite groups. All lithologies experienced shock metamorphism of shock stage S4. All consist of similar components—Fe,Ni metal, chondrules, refractory inclusions (Ca, Al‐rich inclusions [CAIs] and amoeboid olivine aggregates [AOAs]), and heavily hydrated lithic clasts—but show differences in their modal abundances, chondrule sizes, and proportions of porphyritic versus non‐porphyritic chondrules. Bulk chemical and oxygen isotopic compositions are in the range of CH and CB chondrites. Bulk nitrogen isotopic composition is highly enriched in 15N (δ15N = 1122‰). The magnetic fraction is very similar to the bulk sample in terms of both nitrogen release pattern and isotopic profile; the non‐magnetic fraction contains significantly less heavy N. Carbon released at high temperatures shows a relatively heavy isotope signature. Similarly to CBb chondrites, ~20% of Fe,Ni‐metal grains in Isheyevo are chemically zoned. Similarly to CH chondrites, some metal grains are Ni‐rich (>20 wt% Ni). In contrast to CBb and CH chondrites, most metal grains are thermally decomposed into Ni‐rich and Ni‐poor phases. Similar to CH chondrites, chondrules have porphyritic and non‐porphyritic textures and ferromagnesian (type I and II), silica‐rich, and aluminum‐rich bulk compositions. Some of the layered ferromagnesian chondrules are surrounded by ferrous olivine or phyllosilicate rims. Phyllosilicates in chondrule rims are compositionally distinct from those in the hydrated lithic clasts. Similarly to CH chondrites, CAIs are dominated by the hibonite‐, grossite‐, and melilite‐rich types; AOAs are very rare. We infer that Isheyevo is a complex mixture of materials formed by different processes and under different physico‐chemical conditions. Chondrules and refractory inclusions of two populations, metal grains, and heavily hydrated clasts accreted together into the Isheyevo parent asteroid in a region of the protoplanetary disk depleted in fine‐grained dust. Such a scenario is consistent with the presence of solar wind—implanted noble gases in Isheyevo and with its comparatively old K‐Ar age. We cannot exclude that the K‐Ar system was affected by a later collisional event. The cosmic‐ray exposure (CRE) age of Isheyevo determined by cosmogenic 38Ar is ~34 Ma, similar to that of the Bencubbin (CBa) meteorite.  相似文献   

17.
We have carried out a systematic study involving SEM, EPMA, and TEM analyses to determine the textures and compositions of sulfides and sulfide–metal assemblages in a suite of minimally to weakly altered CM and CR carbonaceous chondrites. We have attempted to constrain the distribution and origin of primary sulfides that formed in the solar nebula, rather than by secondary asteroidal alteration processes. Our study focused primarily on sulfide assemblages associated with chondrules, but also examined some occurrences of sulfides within the matrices of these meteorites. Although sulfides are a minor phase in carbonaceous chondrites, we have determined that primary sulfide grains are actually a major proportion of the sulfide grains in weakly altered CM chondrites and have survived aqueous alteration relatively unscathed. In minimally altered CR chondrites, we have determined that essentially all of the sulfides are of primary origin, confirming the observations of Schrader et al. ( 2015 ). The pyrrhotite–pentlandite intergrowth (PPI) grains formed from crystallization of monosulfide solid solution (mss) melts, while sulfide-rimmed metal (SRM) grains formed from sulfidization of Fe,Ni metal. Micron-sized metal inclusions in some PPI grains may have formed by co-crystallization of metal and sulfide from a sulfide melt that experienced S volatilization during the chondrule formation event, or alternatively, may be a remnant of sulfidization of Fe,Ni metal that also occurred during chondrule formation. Sulfur fugacity for SRM grains ranged from −18 to −10 (log units) largely in agreement with predicted solar nebular values. Our observations show that understanding the formation mechanisms of primary sulfide grains provides clues to solar nebular conditions, such as the sulfur fugacity during chondrule formation.  相似文献   

18.
Abstract— Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X‐ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO‐rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr‐rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr‐rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re‐enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to subdivide types 3.0 and 3.1 into types 3.00 through 3.15. On this basis, the most primitive ordinary chondrite known is Semarkona, although even this meteorite has experienced a small amount of metamorphism. Allan Hills (ALH) A77307 is the least metamorphosed CO chondrite and shares many properties with the ungrouped carbonaceous chondrite Acfer 094. Analytical problems are significant for glasses in type II chondrules, as Na is easily lost during microprobe analysis. As a result, existing schemes for chondrule classification that are based on the alkali content of glasses need to be revised.  相似文献   

19.
In Allende, a very complex compound chondrule (Allende compound chondrule; ACC) was found consisting of at least 16 subchondrules (14 siblings and 2 independents). Its overall texture can roughly be described as a barred olivine object (BO). The BO texture is similar in all siblings, but does not exist in the two independents, which appear as relatively compact olivine‐rich units. Because of secondary alteration of pristine Allende components and the ACC in particular, only limited predictions can be made concerning the original compositions of the colliding melt droplets. Based on textural and mineralogical characteristics, the siblings must have been formed on a very short time scale in a dense, local environment. This is also supported by oxygen isotope systematics showing similar compositions for all 16 subchondrules. Furthermore, the ACC subchondrules are isotopically distinct from typical Allende chondrules, indicating formation in or reaction with a more 16O‐poor reservoir. We modeled constraints on the particle density required at the ACC formation location, using textural, mineral‐chemical, and isotopic observations on this multicompound chondrule to define melt droplet collision conditions. In this context, we discuss the possible relationship between the formation of complex chondrules and the formation of macrochondrules and cluster chondrites. While macrochondrules may have formed under similar or related conditions as complex chondrules, cluster chondrites certainly require different formation conditions. Cluster chondrites represent a mixture of viscously deformed, seemingly young chondrules of different chemical and textural types and a population of older chondrules. Concerning the formation of ACC calculations suggest the existence of very local, kilometer‐sized, and super‐dense chondrule‐forming regions with extremely high solid‐to‐gas mass ratios of 1000 or more.  相似文献   

20.
Abstract— Cooling rates of chondrules provide important constraints on the formation process of chondrite components at high temperatures. Although many dynamic crystallization experiments have been performed to obtain the cooling rate of chondrules, these only provide a possible range of cooling rates, rather than providing actual measured values from natural chondrules. We have developed a new model to calculate chondrule cooling rates by using the Fe‐Mg chemical zoning profile of olivine, considering diffusional modification of zoning profiles as crystals grow by fractional crystallization from a chondrule melt. The model was successfully verified by reproducing the Fe‐Mg zoning profiles obtained in dynamic crystallization experiments on analogs for type II chondrules in Semarkona. We applied the model to calculating cooling rates for olivine grains of type II porphyritic olivine chondrules in the Semarkona (LL3.00) ordinary chondrite. Calculated cooling rates show a wide range from 0.7 °C/h to 2400 °C/h and are broadly consistent with those obtained by dynamic crystallization experiments (10–1000 °C/h). Variations in cooling rates in individual chondrules can be attributed to the fact that we modeled grains with different core Fa compositions that are more Fe‐rich either because of sectioning effects or because of delayed nucleation. Variations in cooling rates among chondrules suggest that each chondrule formed in different conditions, for example in regions with varying gas density, and assembled in the Semarkona parent body after chondrule formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号