首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The St-Robert (Québec, Canada) meteorite shower occurred on 1994 June 15 at 0h02m UT accompanied by detonations audible for >200 km from the fireball endpoint. The fireball was recorded by visual observers in Vermont, New York State, New Hampshire, Québec and Ontario as well as by optical and infrared sensors in Earth-orbit. Penetration to an altitude of 36 km occurred ~60 km to the northeast of Montreal, where the bolide experienced several episodes of fragmentation. A total of 20 fragments of this H5 chondrite, comprising a total mass of 25.4 kg, were recovered in an ellipse measuring 8 × 3.5 km. One fragment of the shower partially penetrated the aluminum roof of a shed. Interpretation of the visual and satellite data suggests that the fireball traveled from south-southwest to north-northeast, with a slope from the horizontal of 55°–61°. A statistical evaluation of the likely heliocentric orbits for the body prior to collision with the Earth, coupled with theoretical modeling of the entry, suggests an entry velocity in the range of 12.7–13.3 km/s; the meteoroid had moved in a low-inclination orbit, with orbital perihelion located extremely close to the Earth's orbit. From satellite optical data, it is found that the photometric mass consumed during the largest detonation is ~1200 kg. Estimation of the amplitude of the acoustic signal detected by the most distant observer yields a source energy near 0.5 kt TNT equivalent energy, which corresponds to a mass of order 10 metric tonnes. This measure is uncertain to approximately one order of magnitude. Theoretical modeling of the entry of the object suggests a mass near 1600 kg. Cosmogenic radionuclide activities constrain the lower initial mass to be ~700 kg with an upper limit near 4000 kg. Seismic data possibly associated with the fireball suggest extremely poor coupling between the airwave and the ground. The total mass estimated to have reached the ground is ~100 kg (in material comprising >55 g fragments), while the preatmospheric mass is found to be most probably in the range of 1200–2000 kg.  相似文献   

2.
3.
We report a comprehensive analysis of the instrumentally observed meteorite fall ??ár nad Sázavou, which occurred in the Czech Republic on December 9, 2014, at 16:16:45–54 UT. The original meteoroid with an estimated initial mass of 150 kg entered the atmosphere with a speed of 21.89 km s?1 and began a luminous trajectory at an altitude of 98.06 km. At the maximum, it reached ?15.26 absolute magnitude and terminated after a 9.16 s and 170.5 km long flight at an altitude of 24.71 km with a speed of 4.8 km/s. The average slope of the atmospheric trajectory to the Earth's surface was only 25.66°. Before its collision with Earth, the initial meteoroid orbited the Sun on a moderately eccentric orbit with perihelion near Venus orbit, aphelion in the outer main belt, and low inclination. During the atmospheric entry, the meteoroid severely fragmented at a very low dynamic pressure 0.016 MPa and further multiple fragmentations occurred at 1.4–2.5 MPa. Based on our analysis, so far three small meteorites classified as L3.9 ordinary chondrites totaling 87 g have been found almost exactly in the locations predicted for a given mass. Because of very high quality of photographic and radiometric records, taken by the dedicated instruments of the Czech part of the European Fireball Network, ??ár nad Sázavou belongs to the most reliably, accurately, and thoroughly described meteorite falls in history.  相似文献   

4.
Abstract— On the night of March 26, 2003, a large meteorite broke up and fell upon the south suburbs of Chicago. The name Park Forest, for the village that is at the center of the strewnfield, has been approved by the nomenclature committee of the Meteoritical Society. Satellite data indicate that the bolide traveled from the southwest toward the northeast. The strewnfield has a southeast‐northwest trend; however, this is probably due to the effects of strong westerly winds at high altitudes. Its very low 56Co and very high 60Co activities indicate that Park Forest had a preatmospheric mass that was at least ~900 kg and could have been as large as ~7 times 103 kg, of which only ~30 kg have been recovered. The average compositions of olivine and low‐Ca pyroxene, Fa24.7 ± 1.1 and Fs20.8 ± 0.7, respectively, and its bulk oxygen isotopic composition, δ18O = +4.68%o, δ17O = +3.44%o, show that Park Forest is an L chondrite. The ferromagnesian minerals are well equilibrated, chondrules are easily recognized, and maskelynite is mostly ≤50 μm across. Based on these observations, we classify Park Forest as type 5. The meteorite has been strongly shocked, and based on the presence of maskelynite, mosaicism and planar deformation features in olivine, undulatory extinction in pyroxene, and glassy veins, the shock stage is S5. The meteorite is a monomict breccia, consisting of light‐colored, angular to rounded clasts in a very dark host. The light and dark lithologies have essentially identical mineral and oxygen isotopic compositions. Their striking difference in appearance is due to the presence of a fine, pervasive network of sulfide veins in the dark lithology, resulting in very short optical path lengths. The dark lithology probably formed from the light lithology in an impact that formed a sulfide‐rich melt and injected it into cracks.  相似文献   

5.
Two meteorites impacted in 1925 around the town of Serooskerke on the isle of Schouwen, the Netherlands. The largest mass is widely known as the “Ellemeet” diogenite, while a second mass, heavily weathered due to environmental exposure, also survived until the present day. This work aims to reconstruct the history of the 1925 fall and for the first time documents the second mass, known as the “Serooskerke,” by integrating a historical and experimental approach. The study of historical news archives and cadastral records redefined the 1925 impact site at N 51°42.086′ E 3°49.789′. Environmental exposure experiments reproducing the effects of rainfall and frost weathering identified the latter as the main cause for the second mass' reported disintegration in the field sometime during the 1925–1926 winter. The bulk mineralogy of the second mass was established using XRD powder diffraction for a 2θ range of 3–70° and was found to be identical to an Ellemeet reference sample. UV/VIS/nIR spectroscopy (300–2500 nm) was subsequently used to broadly compare the second mass to HED clan meteorites Bouvante, EET87503, Johnstown and asteroid 4 Vesta in order to corroborate its vestan origin. The historical and geographic relationship of the two masses and the comparable bulk mineralogy supported the pairing of these two meteorites. This makes the Serooskerke a valuable legacy of the 1925 fall, especially as the location of ~50% of the remaining Ellemeet mass is presently unknown.  相似文献   

6.
Abstract— Detailed analysis of the fragmentation of the Morávka meteoroid during the atmospheric entry is presented. The analysis is based on the measurement of trajectories and decelerations of fragments seen in a video and at the locations of energetic fragmentation events from seismic data obtained at several stations in the vicinity of the fireball trajectory. About 100 individual fragments are seen on video frames. Significant deceleration of the fireball at heights of ?45 km revealed that the meteoroid had already fragmented into ?10 pieces with masses of 100–200 kg, though the fireball still appeared as a single object. At heights of 37–29 km, all primary fragments broke‐up again under dynamic pressures up to 5 MPa. The cascade fragmentation then continued, even though smaller pieces breaking off from the larger masses were increasingly decelerated and the dynamic pressure acting upon them decreased. At each fragmentation, a significant part of the mass was lost in the form of dust or tiny particles. This was the dominant process of mass loss. The continuous ablation due to melting and evaporation of the meteoroid surface was less efficient with a corresponding ablation coefficient of only 0.003 s2 km‐2. During fragmentation, some pieces achieved lateral velocities up to 300 m/s, about an order of magnitude more than can be explained by aerodynamic loading. The fragmentation continued even after ablation ceased, as demonstrated by the incomplete fusion crust covering all recovered fragments. We estimate that several hundreds of meteorites of a total mass of ?100 kg landed, mostly in a mountainous area not suitable for systematic meteorite searches. Six meteorites with a total mass of 1.4 kg were recovered up to the end of May 2003. Their positions are consistent with the calculated strewn field.  相似文献   

7.
Abstract— The Tagish Lake C2 (ungrouped) carbonaceous chondrite fall of January 18, 2000, delivered ?10 kg of one of the most primitive and physically weak meteorites yet studied. In this paper, we report the detailed circumstances of the fall and the recovery of all documented Tagish Lake fragments from a strewnfield at least 16 km long and 3 to 4 km wide. Nearly 1 kg of “pristine” meteorites were collected one week after the fall before new snow covered the strewnfield; the majority of the recovered mass was collected during the spring melt. Ground eyewitnesses and a variety of instrument‐recorded observations of the Tagish Lake fireball provide a refined estimate of the fireball trajectory. From its calculated orbit and its similarity to the remotely sensed properties of the D‐ and P‐class asteroids, the Tagish Lake carbonaceous chondrite apparently represents these outer belt asteroids. The cosmogenic nuclide results and modeled production indicate a prefall radius of 2.1–2.4 m (corresponding to 60–90 tons) consistent with the observed fireball energy release. The bulk oxygen‐isotope compositions plot just below the terrestrial fractionation line (TFL), following a trend similar to the CM meteorite mixing line. The bulk density of the Tagish Lake material (1.64 ± 0.02 g/cm3) is the same, within uncertainty, as the total bulk densities of several C‐class and especially D‐ and P‐class asteroids. The high microporosity of Tagish Lake samples (?40%) provides an obvious candidate material for the composition of low bulk density primitive asteroids.  相似文献   

8.
It has been proposed that all L chondrites resulted from an ongoing collisional cascade of fragments that originated from the formation of the ~500 Ma old asteroid family Gefion, located near the 5:2 mean‐motion resonance with Jupiter in the middle Main Belt. If so, L chondrite pre‐atmospheric orbits should be distributed as expected for that source region. Here, we present contradictory results from the orbit and collisional history of the October 24, 2015, L6 ordinary chondrite fall at Creston, CA (here reclassified to L5/6). Creston's short 1.30 ± 0.02 AU semimajor axis orbit would imply a long dynamical evolution if it originated from the middle Main Belt. Indeed, Creston has a high cosmic ray exposure age of 40–50 Ma. However, Creston's small meteoroid size and low 4.23 ± 0.07° inclination indicate a short dynamical lifetime against collisions. This suggests, instead, that Creston originated most likely in the inner asteroid belt and was delivered via the ν6 resonance. The U‐Pb systematics of Creston apatite reveals a Pb‐Pb age of 4,497.1 ± 3.7 Ma, and an upper intercept U‐Pb age of 4,496.7 ± 5.8 Ma (2σ), circa 70 Ma after formation of CAI, as found for other L chondrites. The K‐Ar (age ~4.3 Ga) and U,Th‐He (age ~1 Ga) chronometers were not reset at ~500 Ma, while the lower intercept U‐Pb age is poorly defined as 770 ± 320 Ma. So far, the three known L chondrites that impacted on orbits with semimajor axes a <2.0 AU all have high (>3 Ga) K‐Ar ages. This argues for a source of some of our L chondrites in the inner Main Belt. Not all L chondrites originate in a continuous population of Gefion family debris stretching across the 3:1 mean‐motion resonance.  相似文献   

9.
The Ko?ice meteorite fall occurred in eastern Slovakia on February 28, 2010, 22:25 UT. The very bright bolide was imaged by three security video cameras from Hungary. Detailed bolide light curves were obtained through clouds by radiometers on seven cameras of the European Fireball Network. Records of sonic waves were found on six seismic and four infrasonic stations. An atmospheric dust cloud was observed the next morning before sunrise. After careful calibration, the video records were used to compute the bolide trajectory and velocity. The meteoroid, of estimated mass of 3500 kg, entered the atmosphere with a velocity of 15 km s?1 on a trajectory with a slope of 60° to the horizontal. The largest fragment ceased to be visible at a height of 17 km, where it was decelerated to 4.5 km s?1. A maximum brightness of absolute stellar magnitude about ?18 was reached at a height of 36 km. We developed a detailed model of meteoroid atmospheric fragmentation to fit the observed light curve and deceleration. We found that Ko?ice was a weak meteoroid, which started to fragment under the dynamic pressure of only 0.1 MPa and fragmented heavily under 1 MPa. In total, 78 meteorites were recovered in the predicted fall area during official searches. Other meteorites were found by private collectors. Known meteorite masses ranged from 0.56 g to 2.37 kg. The meteorites were classified as ordinary chondrites of type H5 and shock stage S3. The heliocentric orbit had a relatively large semimajor axis of 2.7 AU and aphelion distance of 4.5 ± 0.5 AU. Backward numerical integration of the preimpact orbit indicates possible large variations of the orbital elements in the past due to resonances with Jupiter.  相似文献   

10.
Abstract— A large meteorite fall in southern Germany on April 6, 2002 was captured by camera stations of the European Fireball Network (EN) which routinely monitors the night sky over central Europe. From analysis of the images, a prediction on the geographic location of the meteorite strewn field could be made. Following systematic ground searches in difficult high‐mountain terrain, three fragments of a rare EL6 enstatite chondrite were recovered during search campaigns in the summers of 2002 and 2003. “Neuschwanstein” is the fourth meteorite fall in history that has been photographed by fireball networks and the fragments of which have been found subsequently. It is the first time since the beginning of the EN operation in the early sixties that the photographic observations have made a meteorite recovery possible.  相似文献   

11.
The Hamburg (H4) meteorite fell on 17 January 2018 at 01:08 UT approximately 10 km north of Ann Arbor, Michigan. More than two dozen fragments totaling under 1 kg were recovered, primarily from frozen lake surfaces. The fireball initial velocity was 15.83 ± 0.05 km s?1, based on four independent records showing the fireball above 50 km altitude. The radiant had a zenith angle of 66.14 ± 0.29° and an azimuth of 121.56 ± 1.2°. The resulting low inclination (<1°) Apollo‐type orbit has a large aphelion distance and Tisserand value relative to Jupiter (Tj) of ~3. Two major flares dominate the energy deposition profile, centered at 24.1 and 21.7 km altitude, respectively, under dynamic pressures of 5–7 MPa. The Geostationary Lightning Mapper on the Geostationary Operational Environmental Satellite‐16 also detected the two main flares and their relative timing and peak flux agree with the video‐derived brightness profile. Our preferred total energy for the Hamburg fireball is 2–7 T TNT (8.4–28 × 109 J), which corresponds to a likely initial mass in the range of 60–225 kg or diameter between 0.3 and 0.5 m. Based on the model of Granvik et al. (2018), the meteorite originated in an escape route from the mid to outer asteroid belt. Hamburg is the 14th known H chondrite with an instrumentally derived preatmospheric orbit, half of which have small (<5°) inclinations making connection with (6) Hebe problematic. A definitive parent body consistent with all 14 known H chondrite orbits remains elusive.  相似文献   

12.
Abstract— An impressive daylight fireball was observed from Spain, Portugal, and the south of France at 16h46m45s UTC on January 4, 2004. The meteoroid penetrated into the atmosphere, generating shock waves that reached the ground and produced audible booms. The associated airwave was recorded at a seismic station located 90 km north of the fireball trajectory in Spain, and at an infrasound station in France located 750 km north‐east of the fireball. The absolute magnitude of the bolide has been determined to be ?18 ± 1 from a casual video record. The energy released in the atmosphere determined from photometric, seismic, and infrasound data was about 0.02 kilotons (kt). A massive fragmentation occurred at a height of 28 ± 0.2 km, resulting in a meteorite strewn field of 20 × 6 km. The first meteorite specimen was found on January 11, 2004, near the village of Villalbeto de la Peña, in northern Palencia (Spain). To date, about 4.6 kg of meteorite mass have been recovered during several recovery campaigns. The meteorite is a moderately shocked (S4) L6 ordinary chondrite with a cosmic‐ray‐exposure age of 48 ± 5 Ma. Radioisotope analysis shows that the original body had a mass of 760 ± 150 kg, which is in agreement with the estimated mass obtained from photometric and seismic measurements.  相似文献   

13.
Abstract— Precise radiometric age determination of the Kaalijärv meteorite craters on the island of Saaremaa in Estonia have so far proved inconclusive. Here we present trace element analyses of peat cores taken several kilometers away from the Kaalijärv craters that reveal a distinct Ir‐enriched layer produced by the meteorite impact. By radiocarbon dating the peat cores, we have determined for the first time the precise age of the impact that generated the Kaalijärv craters. The calibrated date of the impact is 400–370 B.C. at ± 1σ.  相似文献   

14.
Abstract— The properties and history of the parent meteoroid of the Morávka H5–6 ordinary chondrites have been studied by a combination of various methods. The pre‐atmospheric mass of the meteoroid was computed from fireball radiation, infrasound, seismic signal, and the content of noble gases in the meteorites. All methods gave consistent results. The best estimate of the pre‐atmospheric mass is 1500 ± 500 kg. The fireball integral bolometric luminous efficiency was 9%, and the acoustic efficiency was 0.14%. The meteoroid cosmic ray exposure age was determined to be (6.7 ± 1.0) × 106 yr. The meteorite shows a clear deficit of helium, both 3He and 4He. This deficit can be explained by solar heating. Numerical backward integration of the meteoroid orbit (determined in a previous paper from video records of the fireball) shows that the perihelion distance was probably lower than 0.5 AU and possibly as low as 0.1 AU 5 Ma ago. The collision which excavated Morávka probably occurred while the parent body was on a near‐Earth orbit, as opposed to being confined entirely to the main asteroid belt. An overview of meteorite macroscopic properties, petrology, mineralogy, and chemical composition is given. The meteorites show all mineralogical features of H chondrites. The shock level is S2. Minor deviations from other H chondrites in abundances of trace elements La, Ce, Cs, and Rb were found. The ablation crust is enriched with siderophile elements.  相似文献   

15.
A general overview of the events surrounding the fall of the Peekskill meteorite is presented.  相似文献   

16.
Abstract— The sound production from the Morávka fireball has been examined in detail making use of infrasound and seismic data. A detailed analysis of the production and propagation of sonic waves during the atmospheric entry of the Morávka meteoroid demonstrates that the acoustic energy was produced both by the hypersonic flight of the meteoroid (producing a cylindrical blast wave) and by individual fragmentation events of the meteoroid, which acted as small explosions (producing quasispherical shock waves). The deviation of the ray normals for the fragmentation events was found to be as much as 30° beyond that expected from a purely cylindrical line source blast. The main fragmentation of the bolide was confined to heights above 30 km with a possible maximum in acoustic energy production near 38 km. Seismic stations recorded both the direct arrival of the airwaves (the strongest signal) as well as air‐coupled P‐waves and Rayleigh waves (earlier signals). In addition, deep underground stations detected the seismic signature of the fireball. The seismic data alone permit reconstruction of the fireball trajectory to a precision on the order of a few degrees. The velocity of the meteoroid is much less well‐determined by these seismic data. The more distant infrasonic station detected 3 distinct signals from the fireball, identified as a thermospheric return, a stratospheric return, and an unusual mode propagating through the stratosphere horizontally and then leaking to the receiver.  相似文献   

17.
Abstract– We report an analysis of instrumental observations of a very bright fireball which terminated with a meteorite fall near the town of Jesenice in Slovenia on April 9, 2009, at 0h59m46s UT. The fireball designated EN090409 was recorded photographically and photoelectrically by two southern stations of the Czech part of the European Fireball Network (EN). Simultaneously, a part of the luminous trajectory was also captured by two all‐sky CCD systems and one video camera of the Slovenian meteor network. In addition to these optical recordings, the sonic booms produced by the Jesenice fireball were detected at 16 seismic stations located within 150 km of the trajectory. From all these records, we reconstructed the fireball’s atmospheric trajectory, basic geophysical data, the possible impact area, and the original heliocentric orbit of the meteoroid. Using a detailed fireball light curve, we modeled the atmospheric fragmentation of the meteoroid. Both the atmospheric behavior and the heliocentric orbit proved to be quite normal in comparison with other observed meteorite falls. The Jesenice orbit is markedly different from the P?íbram and Neuschwanstein orbital meteorite pair, which fell on similar dates (April 7, 1959, and April 6, 2002, respectively). Three meteorites with a total weight of 3.6 kg (until April 2010) were found in a high mountain area near the town of Jesenice. They are classified as L6 ordinary chondrites ( Bischoff et al. 2010 ).  相似文献   

18.
We studied the interior and the fusion crust of the recently recovered Ozerki L6 meteorite using optical microscopy, scanning electron microscopy (SEM) with energy dispersive spectroscopy, X‐ray diffraction (XRD), magnetization measurements, and Mössbauer spectroscopy. The phase composition of the interior and of the fusion crust was determined by means of SEM, XRD, and Mössbauer spectroscopy. The unit cell parameters for silicate crystals were evaluated from the X‐ray diffractograms and were found the same for the interior and the fusion crust. Magnetization measurements revealed a decrease of the saturation magnetic moment in the fusion crust due to a decrease of Fe‐Ni‐Co alloy content. Both XRD and Mössbauer spectroscopy show the presence of magnesioferrite in the fusion crust. The temperatures of cation equilibrium distribution between the M1 and M2 sites in silicates calculated using the data obtained from XRD and Mössbauer spectroscopy appeared to be in a good consistency: 553 and 479 K for olivine and 1213 and 1202 K for orthopyroxene.  相似文献   

19.
We report and describe an L6 ordinary chondrite fall that occurred in Ardón, León province, Spain (longitude 5.5605°W, latitude 42.4364°N) on July 9th, 1931. The 5.5 g single stone was kept hidden for 83 yr by Rosa González Pérez, at the time an 11 yr old who had observed the fall and had recovered the meteorite. According to various newspaper reports, the event was widely observed in Northern Spain. Ardón is a very well‐preserved, fresh, strongly metamorphosed (petrologic type 6), and weakly shocked (S3) ordinary chondrite with well‐equilibrated and recrystallized minerals. The mineral compositions (olivine Fa23.7±0.3, low‐Ca pyroxene Fs20.4±0.2Wo1.5±0.2, plagioclase An10.3±0.5Ab84.3±1.2), magnetic susceptibility (log χ = 4.95 ± 0.05 × 10?9 mkg?1), bulk density (3.49 ± 0.05 g   cm?3), grain density (3.58 ± 0.05 g   cm?3), and porosity (2.5 vol%) are typical for L6 chondrites. Short‐lived radionuclides confirm that the meteorite constitutes a recent fall. The 21Ne and 38Ar cosmic ray exposure ages are both about 20–30 Ma, similar to values for many other L chondrites. The cosmogenic 22Ne/21Ne ratio indicates that preatmospheric Ardón was a relatively large body. The fact that the meteorite was hidden in private hands for 83 yr makes one wonder if other meteorite falls may have experienced the same fate, thus possibly explaining the anomalously low number of falls reported in continental Spain in the 20th century.  相似文献   

20.
For the first time, ordinary chondrite material—the most common type among the present-day fall meteorite—has been found in the unique Kaidun breccia. The discovered object is a large unequilibrated olivine-pyroxene porphyritic chondrule, with peripheral and central zones of different structures, suggesting different crystallization regimes. In chemical composition, the chondrule corresponds to unequilibrated ordinary chondrites of petrological type 3; it is enriched in lithophile elements and depleted in siderophiles, indicating formation by melting of the parent material, which preceded or was accompanied by metal-silicate fractionating. The chondrule material was subjected to aqueous alteration that formed smectite and calcite in the cavities and veins of its central part. The anomalous oxygen isotopic compositions of the chondrule are evidence of an oxygen reservoir different from known types of meteorites, including the ordinary-chondrite chondrules. Thus, the unique breccia Kaidun contains ordinary chondrite material along with carbonaceous and enstatite chondrite material, products of early nebular processes, and highly differentiated planetary-type material.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 2, 2005, pp. 169–176.Original Russian Text Copyright © 2005 by Ivanova, Kononkova, Ivanov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号