首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Fine‐grained, spinel‐rich inclusions in the reduced CV chondrites Efremovka and Leoville consist of spinel, melilite, anorthite, Al‐diopside, and minor hibonite and perovskite; forsterite is very rare. Several CAIs are surrounded by forsterite‐rich accretionary rims. In contrast to heavily altered fine‐grained CAIs in the oxidized CV chondrite Allende, those in the reduced CVs experienced very little alteration (secondary nepheline and sodalite are rare). The Efremovka and Leoville fine‐grained CAIs are 16O‐enriched and, like their Allende counterparts, generally have volatility fractionated group II rare earth element patterns. Three out of 13 fine‐grained CAIs we studied are structurally uniform and consist of small concentrically zoned nodules having spinel ± hibonite ± perovskite cores surrounded by layers of melilite and Al‐diopside. Other fine‐grained CAIs show an overall structural zonation defined by modal mineralogy differences between the inclusion cores and mantles. The cores are melilite‐free and consist of tiny spinel ± hibonite ± perovskite grains surrounded by layers of anorthite and Al‐diopside. The mantles are calcium‐enriched, magnesium‐depleted and coarsergrained relative to the cores; they generally contain abundant melilite but have less spinel and anorthite than the cores. The bulk compositions of fine‐grained CAIs generally show significant fractionation of Al from Ca and Ti, with Ca and Ti being depleted relative to Al; they are similar to those of coarsegrained, type C igneous CAIs, and thus are reasonable candidate precursors for the latter. The finegrained CAIs originally formed as aggregates of spinel‐perovskite‐melilite ± hibonite gas‐solid condensates from a reservoir that was 16O‐enriched but depleted in the most refractory REEs. These aggregates later experienced low‐temperature gas‐solid nebular reactions with gaseous SiO and Mg to form Al‐diopside and ±anorthite. The zoned structures of many of the fine‐grained inclusions may be the result of subsequent reheating that resulted in the evaporative loss of SiO and Mg and the formation of melilite. The inferred multi‐stage formation history of fine‐grained inclusions in Efremovka and Leoville is consistent with a complex formation history of coarse‐grained CAIs in CV chondrites.  相似文献   

2.
Abstract– Acfer 094 is an unshocked, nearly unaltered carbonaceous chondrite with an unusual suite of refractory inclusions. The refractory inclusions in a newly prepared thin section and a small aliquot of disaggregated material were studied to compare the population with previous work, and to report new or unusual inclusion types. A total of 289 Ca‐, Al‐rich inclusions in the thin section and 67 among the disaggregated material, having a total of 31 different mineral assemblages, were found. Inclusions are largely free of secondary alteration products, and are typically ≤200 μm across. The most common are gehlenitic melilite+spinel±perovskite, spinel+perovskite, and spinel with a thin, silicate rim, typically melilite±diopside. Such rims and (thicker) mantles are very common among Acfer 094 inclusions, and they exhibit a variety of zoning patterns with respect to åkermanite and FeO contents. In the thin section, about 13% of the inclusions contain hibonite and approximately 5% are grossite‐bearing; in the disaggregated material, the percentages are 14 and 9, respectively, comparable to previous work. Among the unusual inclusions are a fine‐grained, porous, Ti‐rich hibonite+spinel+perovskite+melilite inclusion with a compact, coarse, Ti‐poor hibonite+spinel+melilite clast; two inclusions in which hibonite has reacted to form grossite; two inclusions with FeO‐rich spinel; and a small object consisting of fassaite enclosing euhedral spinel, the first fragment of a Type B inclusion reported from Acfer 094. Inclusions similar to those found in CM or CV chondrites are rare; Acfer 094 contains a distinctive population of inclusions. The population, dominated by small, melilite‐bearing inclusions, is most similar to that of CO chondrites. A distinguishing feature is that in Acfer 094, almost every phase in almost every refractory inclusion contains 0.5–1.5 wt% FeO. A lack of diffusion gradients and the pristinity of the matrix imply that the inclusions experienced prolonged exposure to FeO‐bearing fluid prior to accretion into the Acfer 094 parent body. There are no known nebular conditions under which the refractory phases found in the present samples could acquire FeO enrichments to the observed levels. The most likely setting is therefore in an earlier, FeO‐rich parent body. The inclusions were ejected from this parent body, mixed with typical CAIs, chondrules, amoeboid olivine aggregates, and amorphous material, and incorporated into the Acfer 094 parent body.  相似文献   

3.
The microstructures and compositions of olivine and refractory components in six amoeboid olivine aggregates (AOAs) in the Allan Hills A77307 CO3.0 chondrite have been characterized in detail using the focused ion beam sample preparation technique with transmission electron microscopy. In the AOAs, refractory components (perovskite, melilite, spinel, anorthite, and Al‐Ti‐bearing diopside) provide evidence of a high degree of textural and compositional heterogeneity, suggesting that these phases have formed by disequilibrium gas–solid condensation at high temperatures under highly dynamic conditions. We infer different possible reactions of early‐condensed solid minerals (perovskite and spinel) with a nebular gas, forming diopside with wide ranges of Al and Ti contents and/or anorthite. The progressive, incomplete consumption of spinel in these reactions may have resulted in the Cr enrichment in the remaining, unreacted spinel in the AOAs. In contrast to the refractory components, olivines in the AOAs have equilibrated textures with 120° triple junctions, indicating that the AOAs were subjected to high‐temperature annealing after agglomeration of olivine and refractory components. Because the AOAs consist of fine‐grained olivine grains with numerous pores, the annealing is constrained by experimental data to have occurred for a short duration of the order of a few hours to tens of hours depending on the annealing temperature. In comparison, the effects of annealing on the refractory components are minimal, probably due to pinning of grain boundaries in the multiphase assemblages that inhibited grain growth.  相似文献   

4.
Abstract— The metal‐rich chondrites Hammadah al Hamra (HH) 237 and Queen Alexandra Range (QUE) 94411, paired with QUE 94627, contain relatively rare (<1 vol%) calcium‐aluminum‐rich inclusions (CAIs) and Al‐diopside‐rich chondrules. Forty CAIs and CAI fragments and seven Al‐diopside‐rich chondrules were identified in HH 237 and QUE 94411/94627. The CAIs, ~50–400 μm in apparent diameter, include (a) 22 (56%) pyroxene‐spinel ± melilite (+forsterite rim), (b) 11 (28%) forsterite‐bearing, pyroxene‐spinel ± melilite ± anorthite (+forsterite rim) (c) 2 (5%) grossite‐rich (+spinel‐melilite‐pyroxene rim), (d) 2 (5%) hibonite‐melilite (+spinel‐pyroxene ± forsterite rim), (e) 1 (2%) hibonite‐bearing, spinel‐perovskite (+melilite‐pyroxene rim), (f) 1 (2%) spinel‐melilite‐pyroxene‐anorthite, and (g) 1 (2%) amoeboid olivine aggregate. Each type of CAI is known to exist in other chondrite groups, but the high abundance of pyroxene‐spinel ± melilite CAIs with igneous textures and surrounded by a forsterite rim are unique features of HH 237 and QUE 94411/94627. Additionally, oxygen isotopes consistently show relatively heavy compositions with Δ17O ranging from ?6%0 to ?10%0 (1σ = 1.3%0) for all analyzed CAI minerals (grossite, hibonite, melilite, pyroxene, spinel). This suggests that the CAIs formed in a reservoir isotopically distinct from the reservoir(s) where “normal”, 16O‐rich (Δ17O < ?20%0) CAIs in most other chondritic meteorites formed. The Al‐diopside‐rich chondrules, which have previously been observed in CH chondrites and the unique carbonaceous chondrite Adelaide, contain Al‐diopside grains enclosing oriented inclusions of forsterite, and interstitial anorthitic mesostasis and Al‐rich, Ca‐poor pyroxene, occasionally enclosing spinel and forsterite. These chondrules are mineralogically similar to the Al‐rich barred‐olivine chondrules in HH 237 and QUE 94411/94627, but have lower Cr concentrations than the latter, indicating that they may have formed during the same chondrule‐forming event, but at slightly different ambient nebular temperatures. Aluminum‐diopside grains from two Al‐diopside‐rich chondrules have O‐isotopic compositions (Δ17O ? ?7 ± 1.1 %0) similar to CAI minerals, suggesting that they formed from an isotopically similar reservoir. The oxygen‐isotopic composition of one Ca, Al‐poor cryptocrystalline chondrule in QUE 94411/94627 was analyzed and found to have Δ17O ? ?3 ± 1.4%0. The characteristics of the CAIs in HH 237 and QUE 94411/94627 are inconsistent with an impact origin of these metal‐rich meteorites. Instead they suggest that the components in CB chondrites are pristine products of large‐scale, high‐temperature processes in the solar nebula and should be considered bona fide chondrites.  相似文献   

5.
Abstract— Phase fields in which hibonite and silicate melt coexist with spinel, CaAl4O7, gehlenitic melilite, anorthite or corundum at 1 bar in the system CaO-MgO-Al2O3-SiO2-TiO2 were determined. The hibonites contain up to 1.7 wt% SiO2. For TiO2, the experimentally determined partition coefficients between hibonite and coexisting melt, DHib/Li, vary from 0.8 to 2.1 and generally decrease with increasing TiO2 in the liquid. Based on Ti partitioning between hibonite and melt, bulk inclusion compositions and hibonite-saturated liquidus phase diagrams, the hibonite in hibonite-poor fluffy Type A inclusions from Allende and at least some hibonite from hibonite-rich inclusions is relict, although much of the hibonite from hibonite-glass spherules probably crystallized metastably from a melt Bulk compositions for all of these CAIs are consistent with an origin as melilite + hibonite + spinel + perovskite phase assemblages that were partially altered and in some cases partially or completely melted The duration of the melting event was sufficient to remove any Na introduced by the alteration process but frequently insufficient to dissolve all of the original hibonite. Simple thermochemical models developed for meteoritic melilite and hibonite solid solutions were used to obtain equilibration temperatures of hibonite-bearing phase assemblages with vapor. Referenced to 10?3 atm, hibonite + corundum + vapor equilibrated at ~1260 °C and hibonite + spinel ± melilite + vapor at 1215 ± 10 °C. If these temperatures reflect condensation in a cooling gas of solar composition, then hibonite ± corundum condensed first, followed by spinel and then melilite. The position of perovskite within this sequence is uncertain, but it probably began to condense before spinel. This sequence of phase appearances and relative temperatures is generally consistent with observed textures but differs from expectations based on classical condensation calculations in that equilibration temperatures are generally lower than predicted and melilite initially condenses with or even after spinel. Simple thermochemical models for the substitution of trace elements into the Ca site of meteoritic hibonites suggest that virtually all Eu is divalent in early condensate hibonites but that Eu2+/Eu3+ decreases by a factor of 20 or more during the course of condensation primarily because the ratio is proportional to the partial pressure of Al, which decreases dramatically as aluminous phases condense. The relative sizes of Eu and Yb anomalies in meteoritic hibonites and inclusions may be partly due to this effect  相似文献   

6.
The Antarctic carbonaceous chondrites DOM 08004 and DOM 08006 have been paired and classified as CO3.0s. There is some uncertainty as to whether they should be paired and whether they are best classified as CO chondrites, but they provide an opportunity for the study of refractory inclusions that have not been modified by parent body processes. In this work, refractory inclusions in thin sections of DOM 08004 and 08006 are studied and compared with inclusions in ALHA77307 (CO3.0) and Acfer 094 (C3.0, ungrouped). Results show that the DOM samples have refractory inclusion populations that are similar to each other but not typical of CO3 chondrites; main differences are that the DOM samples are slightly richer in inclusions in general and, more specifically, in the proportions of grossite‐bearing inclusions. In DOM 08004 and DOM 08006, 12.4% and 6.6%, respectively, of the inclusions are grossite‐bearing. This is higher than the proportion found in Acfer 094 (5.2%), whereas none were found in ALHA77307. Like those in Acfer 094, DOM inclusions are small (mostly <100 μm across) and fine‐grained, and thin rims of aluminous diopside±melilite are very common. Also like Acfer 094, most phases in the DOM inclusions have FeO contents higher than expected for primary refractory phases. In addition to typical inclusions, some unusual ones were found in DOM 08004, including a perovskite‐rich one with a rare, recently reported Sc‐, Al‐oxide and davisite; a very grossite‐rich inclusion with a small, hibonite‐rich core enclosed in a grossite mantle; and a relict, grossite‐rich inclusion enclosed in an Al‐rich chondrule. The CAI populations in the DOM samples are similar to each other and, based on grossite abundances, FeO enrichments and occurrences of rims are more Acfer 094‐like than CO3‐like. An earlier history on an FeO‐rich parent was previously favored over nebular equilibria or in situ reactions to account for FeO enrichments in CAIs in the otherwise pristine chondrite Acfer 094, and a similar history is indicated for the DOM CAIs. Acfer 094, DOM 08004 and 08006 might best be classified as a new subgroup of CO3 chondrites.  相似文献   

7.
Abstract— We studied three fluffy Type A refractory inclusions from Allende that contain orange hibonite. The melilite in the present samples is very Al‐rich, averaging Åk6, Åk14, and Åk12 in the three samples studied. Hibonite in two inclusions, unlike that in Murchison, has low rare earth element abundances of <10 × CI; in the other inclusion, the hibonite, melilite and perovskite have Group II‐like patterns. The hibonite and melilite in all three inclusions studied have excess 26Mg consistent with (26Al/27Al)I = 5 × 10?5. Much of the hibonite and some of the spinel in these inclusions is corroded. These phases are found enclosed in melilite, but based on bulk compositions and phase equilibria, hibonite should not be an early‐crystallizing phase in these inclusions. We conclude that the hibonite and probably some of the spinel is relic. Reversely zoned melilite, rounded spinel and isotopically heavy Mg in the inclusions probably reflect reheating events that involved melting and evaporation. Alteration of the gehlenitic melilite gave rise to some rare phases, including corundum and nearly pure CaTs pyroxene. Studies have shown that blue hibonite contains Ti3+ while orange hibonite does not (Ihinger and Stolper, 1986; Beckett et al., 1988). Orange hibonite formed either under oxidizing conditions (such as at oxygen fugacities at least seven orders of magnitude greater than that of a solar gas at 1700 K), or under conditions reducing enough (e.g., solar) that it contained Ti3+, which was later oxidized in situ. Although V and Ce oxides are volatile at the temperature and range of oxygen fugacities at which orange hibonite is known to be stable, we find that (a) the hibonite is V‐rich (~1 wt% V2O3) and (b) there are no negative Ce anomalies in Allende hibonite. This indicates that the hibonite did not form by condensation under oxidizing conditions. In addition, there are slight excesses of Ti + Si cations relative to Mg + Fe cations (up to 0.1 of 0.8 cations per 19 oxygen anions), probably reflecting the original presence of Ti3+. The results of this study strongly support the suggestion (Ihinger and Stolper, 1986) that Allende hibonite originally formed under reducing conditions and was later oxidized. Oxygen fugacities within ~2–3 orders of magnitude of that of a solar gas are implied; otherwise, strong Ce and V depletions would be observed.  相似文献   

8.
Abstract Ca-Al-rich inclusions (CAIs) in the Yamato-791717 CO carbonaceous chondrite contain 5 to 80 vol% of nepheline, along with minor sodalite, and thus are among the most nepheline-rich CAIs known. The primary phases in inclusions are mainly spinel, fassaite, aluminous diopside, perovskite, and hibonite. In contrast to many CO chondrites, melilite is rare. Spinel contains variable amounts of Fe (0 to 57 mol% FeAl2O4) and is commonly zoned. Texture suggests that nepheline is a secondary alteration product formed by replacing mainly melilite, fassaite, and spinel; melilite is the most susceptible to alteration of the primary phases, so most of it was probably already consumed to form nepheline. The majority of inclusions are single concentric objects or aggregates of concentric objects. Lightly altered inclusions have cores of spinel surrounded by bands of nepheline (replacing fassaite), fassaite, and diopside. In moderately altered inclusions, spinel cores are replaced by nepheline. In heavily altered inclusions, the major part of internal areas (50 to 80% in volume) are replaced by nepheline. In some moderately and heavily altered inclusions, only diopside rims remain unaltered. Textural relationships indicate that the resistance of primary phases to alteration increases in the order melilite, fassaite, spinel, diopside. The alteration probably proceeded with reaction of the primary phases with the low-temperature (≤ 1000 K) nebular gas rich in Na, Fe and CI. The degree of alteration in Y791717 CAIs appears to be much higher than those in CAIs in other reported meteorites.  相似文献   

9.
Abstract— Four different types of calcium- and aluminium-rich inclusions (CAIs) have been identified in the CM2 chondrite Murray, three of which contain alteration products. Two types of altered CAIs, spinel inclusions and spinel-pyroxene inclusions, contain primary spinel (± perovskite ± hibonite ± diopside) and secondary Fe-rich serpentine phyllosilicates (± tochilinite ± calcite). Original melilite in these CAIs is inferred to have been altered during aqueous activity in the parent body and Fe-rich serpentines, tochilinite and calcite were formed in its place. The other type of altered CAI is represented by one inclusion, here called MCA-1. This CAI contains primary spinel, perovskite, fassaite and diopside with secondary calcite, paragonite, Mg-Al-Fe phyllosilicates and a Mg-Al-Fe sulphate. Importantly, MCA-1 is similar in both primary and secondary mineralogy to a small number of altered CAIs described from other CM2 meteorites including Essebi, Murchison and a CM2 clast from Plainview. Features that these CAIs have in common include an unusually large size, a CV3-like primary mineralogy and the presence of secondary aluminosilicates and calcite. The Al-rich alteration products in MCA-1 are also reminiscent of secondary minerals in refractory inclusions from CV3 meteorites, which have previously been interpreted to form by interaction of the inclusions with solar nebula gases. In common with the other types of altered CAIs in Murray, MCA-1 is inferred to have experienced its main phase of alteration in a parent body environment. The Mg-Al-Fe phyllosilicates, calcite and the Mg-Al-Fe sulphate formed following aqueous alteration of an Al-rich precursor, possibly Ca dialuminate. This episode of parent body alteration may have overprinted an earlier phase of alteration in a solar nebula environment from which only paragonite remains.  相似文献   

10.
Abstract— MacAlpine Hills (MAC) 87300 and 88107 are two unusual carbonaceous chondrites that are intermediate in chemical composition between the CO3 and CM2 meteorite groups. Calcium‐aluminum‐rich inclusions (CAIs) from these two meteorites are mostly spinel‐pyroxene and melilite‐rich (Type A) varieties. Spinel‐pyroxene inclusions have either a banded or nodular texture, with aluminous diopside rimming Fe‐poor spinel. Melilite‐rich inclusions (Åk4–42) are irregular in shape and contain minor spinel (FeO <1 wt%), perovskite and, more rarely, hibonite. The CAIs in MAC 88107 and 87300 are similar in primary mineralogy to CAIs from low petrologic grade CO3 meteorites but differ in that they commonly contain phyllosilicates. The two meteorites also differ somewhat from each other: melilite is more abundant and slightly more Al‐rich in inclusions from MAC 88107 than in those from MAC 87300, and phyllosilicate is more abundant and Mg‐poor in MAC 87300 CAIs relative to that in MAC 88107. These differences suggest that the two meteorites are not paired. The CAI sizes and the abundance of melilite‐rich CAIs in MAC 88107 and 87300 suggests a genetic relationship to CO3 meteorites, but the CAIs in both have suffered a greater degree of aqueous alteration than is observed in CO meteorites. Aluminum‐rich melilite in CAIs from both meteorites generally contains excess 26Mg, presumably from the in situ decay of 26Al. Although well‐defined isochrons are not observed, the 26Mg excesses are consistent with initial 26Al/27Al ratios of approximately 3–5 times 10?5. An unusual hibonite‐bearing inclusion is isotopically heterogeneous, with two large and abutting hibonite crystals showing significant differences in their degrees of mass‐dependent fractionation of 25Mg/24Mg. The two crystals also show differences in their inferred initial 26Al/27Al ratios, 1 × 10?5 vs. ≤3 × 10?6.  相似文献   

11.
Abstract— Queen Alexandra Range (QUE) 97990 (CM2.6) is among the least‐altered CM chondrites known. It contains 1.8 vol% refractory inclusions; 40 were studied from a single thin section. Inclusion varieties include simple, banded and nodular structures as well as simple and complex distended objects. The inclusions range in mean size from 30 to 530 μm and average 130 ± 90 μm. Many inclusions contain 25 ± 15 vol% phyllosilicate (predominantly Mg‐Fe serpentine); several contain small grains of perovskite. In addition to phyllosilicate, the most abundant inclusions in QUE 97990 consist mainly of spinel‐pyroxene (35%), followed by spinel (20%), spinel‐pyroxene‐olivine (18%), pyroxene (12%), pyroxene‐olivine (8%) and hibonite ± spinel (8%). Four pyroxene phases occur: diopside, Al‐rich diopside (with ≥ 8.0 wt% Al2O3), Al‐Ti diopside (i.e., fassaite), and (in two inclusions) enstatite. No inclusions contain melilite. Aqueous alteration of refractory inclusions transforms some phases (particularly melilite) into phyllosilicate; some inclusions broke apart during alteration. Melilite‐free, phyllosilicate‐bearing, spinel inclusions probably formed from pristine, phyllosilicate‐free inclusions containing both melilite and spinel. Sixty‐five percent of the refractory inclusions in QUE 97990 appear to be largely intact; the major exception is the group of spinel inclusions, all of which are fragments. Whereas QUE 97990 contains about 50 largely intact refractory inclusions/cm2, estimates from literature data imply that more‐altered CM chondrites have lower modal abundances (and lower number densities) of refractory inclusions: Mighei (CM ? 2.3) contains roughly 0.3–0.6 vol% inclusions (?10 largely intact inclusions/cm2); Cold Bokkeveld (CM2.2) contains ?0.01 vol% inclusions (on the order of 6 largely intact inclusions/cm2).  相似文献   

12.
Abstract— Fassaite is a major component of Ca‐Al‐rich inclusions (CAIs) of Types B and C that crystallized from liquids. In contrast, this mineral is rarely reported in Type A inclusions and has been much less studied. In this paper, we report highly Ti‐, Al‐enriched fassaite that occurs as rims on perovskite in two compact Type A inclusions from the Ningqiang meteorite. In addition, one of the inclusions contains an euhedral grain of Sc‐fassaite (16.4 wt% Sc2O3) isolated in melilite. The occurrence and mineral chemistry of the fassaite rims can be explained by a reaction of pre‐existing perovskite with CAI melts. Hence, such rims may serve as an indicator for partial melting of Type A inclusions. The Sc‐fassaite is probably a relict grain. A third spherical CAI contains several euhedral grains of V‐fassaite (4.8–5.4 wt% V2O3) enclosed in a melilite fragment. The high V content of fassaite cannot be related to any Fremdlinge, magnetite, or metallic Fe‐Ni, because these phases are absent in the inclusion. In the same CAI, other fassaites intergrow with spinel and minor perovskite, filling voids inside of the melilite and space adjacent to the Wark‐Lovering rim. The fassaite intergrown with spinel is almost V‐free. The coexistence of two types of fassaite suggests that this CAI has not been completely melted.  相似文献   

13.
Paris is the least aqueously altered CM chondrite identified to date, classified as subtype 2.7; however, literature data indicate that some regions of this apparently brecciated meteorite may be subtype 2.9. The suite of CAIs in Paris includes 19% spinel–pyroxene inclusions, 19% spinel inclusions, 8% spinel–pyroxene–olivine inclusions, 43% pyroxene inclusions, 8% pyroxene–olivine inclusions, and 3% hibonite‐bearing inclusions. Both simple and complex inclusions are present; some have nodular, banded, or distended structures. No melilite was identified in any of the inclusions in the present suite, but other recent studies have found a few rare occurrences of melilite in Paris CAIs. Because melilite is highly susceptible to aqueous alteration, it is likely that it was mostly destroyed during early‐stage parent‐body alteration. Two of the CAIs in this study are part of compound CAI–chondrule objects. Their presence suggests that there were transient heating events (probably associated with chondrule formation) in the nebula after chondrules and CAIs were admixed. Also present in Paris are a few amoeboid olivine inclusions (AOI) consisting of relatively coarse forsterite rims surrounding fine‐grained, porous zones containing diopside and anorthite. The interior regions of the AOIs may represent fine‐grained rimless CAIs that were incorporated into highly porous forsterite‐rich dustballs. These assemblages were heated by an energy pulse that collapsed and coarsened their rims, but failed to melt their interiors.  相似文献   

14.
Abstract— Calcium, aluminum-rich inclusions (CAIs) are characteristic components in carbonaceous chondrites. Their mineralogy is dominated by refractory oxides and silicates like corundum, perovskite, spinel, hibonite, melilite, and Ca-pyroxene, which are predicted to be the first phases to have condensed from the cooling solar nebula. Allowing insights into processes occurring in the early solar system, CAIs in carbonaceous and ordinary chondrites were studied in great detail, whereas only a few refractory inclusions were found and studied in stratospheric interplanetary dust particles (IDPs) and micrometeorites. This study gives a summary of all previous studies on refractory inclusions in stratospheric IDPs and micrometeorites and will present new data on two Antarctic micrometeorites. The main results are summarized as follows: (a) Eight stratospheric IDPs and six micrometeorites contain Ca, Al-rich inclusions or refractory minerals. The constituent minerals include spinel, perovskite, fassaite, hibonite, melilite, corundum, diopside and anorthite. (b) Four of the seven obtained rare-earth-element (REE) patterns from refractory objects in stratospheric IDPs and micrometeorites are related to Group III patterns known from refractory inclusions from carbonaceous chondrites. A Group II related pattern was found for spinel and perovskite in two micrometeorites. The seventh REE pattern for an orthopyroxene is unique and can be explained by fractionation of Gd, Lu, and Tb at highly reducing conditions. (c) The O-isotopic compositions of most refractory objects in stratospheric IDPs and micrometeorites are similar to those of constituents from carbonaceous chondrites and fall on the carbonaceous chondrites anhydrous minerals mixing line. In fact, in most cases, in terms of mineralogy, REE pattern and O-isotopic composition of refractory inclusions in stratospheric IDPs and micrometeorites are in good agreement with a suggested genetic relation of dust particles and carbonaceous chondrites. Only in the case of one Antarctic micrometeorite does the REE pattern obtained for an orthopyroxene point to a link of this particle to enstatite chondrites.  相似文献   

15.
Abstract— Through freeze‐thaw disaggregation of the Murchison (CM) carbonaceous chondrite, we have recovered a ?90 times 75 μm refractory inclusion that consists of corundum and hibonite with minor perovskite. Corundum occurs as small (?10 μm), rounded grains enclosed in hibonite laths (?10 μm wide and 30–40 μm long) throughout the inclusion. Perovskite predominantly occurs near the edge of the inclusion. The crystallization sequence inferred petrographically‐corundum followed by hibonite followed by perovskite‐is that predicted for the first phases to form by equilibrium condensation from a solar gas for Ptot ≤5 times 10?3 atm. In addition, the texture of the inclusion, with angular voids between subhedral hibonite laths and plates, is also consistent with formation of the inclusion by condensation. Hibonite has heavy rare earth element (REE) abundances of ?40 × CI chondrites, light REE abundances ?20 × CI chondrites, and negative Eu anomalies. The chondrite‐normalized abundance patterns, especially one for a hibonite‐perovskite spot, are quite similar to the patterns of calculated solid/gas partition coefficients for hibonite and perovskite at 10?3 atm and are not consistent with formation of the inclusion by closed‐system fractional crystallization. In contrast with the features that are consistent with a condensation origin, there are problems with any model for the formation of this inclusion that includes a molten stage, relic grains, or volatilization. If thermodynamic models of equilibrium condensation are correct, then this inclusion formed at pressures <5 times 10?3 atm, possibly with enrichments (<1000x) in CI dust relative to gas at low pressures (below 10?4 atm). Both hibonite and corundum have δ17O ? δ18O ? ?50%, indicating formation from an 16O‐rich source. The inclusion does not contain radiogenic 26Mg and apparently did not contain live 26Al when it formed. If the short‐lived radionuclides were formed in a supernova and injected into the early solar nebula, models of this process suggest that 26Al‐free refractory inclusions such as this one formed within the first ?6 times 105 years of nebular collapse.  相似文献   

16.
The petrologic and oxygen isotopic characteristics of calcium‐aluminum‐rich inclusions (CAIs) in CO chondrites were further constrained by studying CAIs from six primitive CO3.0‐3.1 chondrites, including two Antarctic meteorites (DOM 08006 and MIL 090010), three hot desert meteorites (NWA 10493, NWA 10498, and NWA 7892), and the Colony meteorite. The CAIs can be divided into hibonite‐bearing inclusions (spinel‐hibonite spherules, monomineralic grains, hibonite‐pyroxene microspherules, and irregular/nodular objects), grossite‐bearing inclusions (monomineralic grains, grossite‐melilite microspherules, and irregular/nodular objects), melilite‐rich inclusions (fluffy Type A, compact type A, monomineralic grains, and igneous fragments), spinel‐pyroxene inclusions (fluffy objects resembling fine‐grained spinel‐rich inclusions in CV chondrites and nodular/banded objects resembling those in CM chondrites), and pyroxene‐anorthite inclusions. They are typically small (98.4 ± 54.4 µm, 1SD) and comprise 1.54 ± 0.43 (1SD) area% of the host chondrites. Melilite in the hot desert and Colony meteorites was extensively replaced by a hydrated Ca‐Al‐silicate during terrestrial weathering and converted melilite‐rich inclusions into spinel‐pyroxene inclusions. The CAI populations of the weathered COs are very similar to those in CM chondrites, suggesting that complete replacement of melilite by terrestrial weathering, and possibly parent body aqueous alteration, would make the CO CAIs CM‐like, supporting the hypothesis that CO and CM chondrites derive from similar nebular materials. Within the CO3.0‐3.1 chondrites, asteroidal alteration significantly resets oxygen isotopic compositions of CAIs in CO3.1 chondrites (?17O: ?25 to ?2‰) but left those in CO3.0‐3.05 chondrites mostly unchanged (?17O: ?25 to ?20‰), further supporting the model whereby thermal metamorphism became evident in CO chondrites of petrologic type ≥3.1. The resistance of CAI minerals to oxygen isotope exchange during thermal metamorphism follows in the order: melilite + grossite < hibonite + anorthite < spinel + diopside + forsterite. Meanwhile, terrestrial weathering destroys melilite without changing the chemical and isotopic compositions of melilite and other CAI minerals.  相似文献   

17.
Abstract— Here we report the petrography, mineralogy, and bulk compositions of Ca,Al‐rich inclusions (CAIs), amoeboid olivine aggregate (AOA), and Al‐rich chondrules (ARCs) in Sayh al Uhaymir (SaU) 290 CH chondrite. Eighty‐two CAIs (0.1% of the section surface area) were found. They are hibonite‐rich (9%), grossite‐rich (18%), melilite ± spinel‐rich (48%), fassaite ± spinel‐rich (15%), and fassaite‐anorthite‐rich (10%) refractory inclusions. Most CAIs are rounded in shape and small in size (average = 40 μm). They are more refractory than those of other groups of chondrites. CAIs in SaU 290 might have experienced higher peak heating temperatures, which could be due to the formation region closer to the center of protoplanetary disk or have formed earlier than those of other groups of chondrites. In SaU 290, refractory inclusions with a layered texture could have formed by gas‐solid condensation from the solar nebula and those with an igneous texture could have crystallized from melt droplets or experienced subsequent melting of pre‐existing condensates from the solar nebula. One refractory inclusion represents an evaporation product of pre‐existing refractory solid on the basis of its layered texture and melting temperature of constituting minerals. Only one AOA is observed (75 μm across). It consists of olivine, Al‐diopside, anorthite, and minor spinel with a layered texture. CAIs and AOA show no significant low‐temperature aqueous alteration. ARCs in SaU 290 consist of diopside, forsterite, anorthite, Al‐enstatite, spinel, and mesostasis or glass. They can be divided into diopside‐rich, Al‐enstatite‐rich, glass‐rich, and anorthite‐rich chondrules. Bulk compositions of most ARCs are consistent with a mixture origin of CAIs and ferromagnesian chondrules. Anorthite and Al‐enstatite do not coexist in a given ARC, implying a kinetic effect on their formation.  相似文献   

18.
Abstract— It was suggested that multilayered accretionary rims composed of ferrous olivine, andradite, wollastonite, salite‐hedenbergitic pyroxenes, nepheline, and Ni‐rich sulfides around Allende calcium‐aluminum‐rich inclusions (CAIs) are aggregates of gas‐solid condensates which reflect significant fluctuations in physico‐chemical conditions in the slowly cooling solar nebula and grain/gas separation processes. In order to test this model, we studied the mineralogy of accretionary rims around one type A CAI (E104) and one type B CAI (E48) from the reduced CV3 chondrite Efremovka, which is less altered than Allende. In contrast to the Allende accretionary rims, those in Efremovka consist of coarse‐grained (20–40 μm), anhedral forsterite (Fa1–8), Fe, Ni‐metal nodules, amoeboid olivine aggregates (AOAs) and fine‐grained CAIs composed of Al‐diopside, anorthite, and spinel, ± forsterite. Although the fine‐grained CAIs, AOAs and host CAIs are virtually unaltered, a hibonite‐spinel‐perovskite CAI in the E48 accretionary rim experienced extensive alteration, which resulted in the formation of Fe‐rich, Zn‐bearing spinel, and a Ca, Al, Si‐hydrous mineral. Forsterites in the accretionary rims typically show an aggregational nature and consist of small olivine grains with numerous pores and tiny inclusions of Al‐rich minerals. No evidence for the replacement of forsterite by enstatite was found; no chondrule fragments were identified in the accretionary rims. We infer that accretionary rims in Efremovka are more primitive than those in Allende and formed by aggregation of high‐temperature condensates around host CAIs in the CAI‐forming regions. The rimmed CAIs were removed from these regions prior to condensation of enstatite and alkalies. The absence of andradite, wollastonite, and hedenbergite from the Efremovka rims may indicate that these rims sampled different nebular regions than the Allende rims. Alternatively, the Ca, Fe‐rich silicates rimming Allende CAIs may have resulted from late‐stage metasomatic alteration, under oxidizing conditions, of original Efremovka‐like accretionary rims. The observed differences in O‐isotope composition between forsterite and Ca, Fe‐rich minerals in the Allende accretionary rims (Hiyagon, 1998) suggest that the oxidizing fluid had an 16O‐poor oxygen isotopic composition.  相似文献   

19.
Abstract— Rumuruti chondrites (R chondrites) constitute a well‐characterized chondrite group different from carbonaceous, ordinary, and enstatite chondrites. Many of these meteorites are breccias containing primitive type 3 fragments as well as fragments of higher petrologic type. Ca,Al‐rich inclusions (CAIs) occur within all lithologies. Here, we present the results of our search for and analysis of Al‐rich objects in Rumuruti chondrites. We studied 20 R chondrites and found 126 Ca,Al‐rich objects (101 CAIs, 19 Al‐rich chondrules, and 6 spinel‐rich fragments). Based on mineralogical characterization and analysis by SEM and electron microprobe, the inclusions can be grouped into six different types: (1) simple concentric spinel‐rich inclusions (42), (2) fassaite‐rich spherules, (3) complex spinel‐rich CAIs (53), (4) complex diopside‐rich inclusions, (5) Al‐rich chondrules, and (6) Al‐rich (spinel‐rich) fragments. The simple concentric and complex spinel‐rich CAIs have abundant spinel and, based on the presence or absence of different major phases (fassaite, hibonite, Na,Al‐(Cl)‐rich alteration products), can be subdivided into several subgroups. Although there are some similarities between CAIs from R chondrites and inclusions from other chondrite groups with respect to their mineral assemblages, abundance, and size, the overall assemblage of CAIs is distinct to the R‐chondrite group. Some Ca,Al‐rich inclusions appear to be primitive (e.g., low FeO‐contents in spinel, low abundances of Na,Al‐(Cl)‐rich alteration products; abundant perovskite), whereas others were highly altered by nebular and/or parent body processes (e.g., high concentrations of FeO and ZnO in spinel, ilmenite instead of perovskite, abundant Na,Al‐(Cl)‐rich alteration products). There is complete absence of grossite and melilite, which are common in CAIs from most other groups. CAIs from equilibrated R‐chondrite lithologies have abundant secondary Ab‐rich plagioclase (oligoclase) and differ from those in unequilibrated type 3 lithologies which have nepheline and sodalite instead.  相似文献   

20.
Abstract— Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na‐(±Cl)‐rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark—Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (<100μm), low abundance (<1% by mode in thin section), occurrence of only spinel or hibonite‐rich types, and presence of primary Ti‐(±V)‐oxides, and secondary geikelite and Ti, Fe‐sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups. The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high‐temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite‐chondrite‐forming regions or (2) O fugacities fluctuated within the enstatite‐chondrite‐forming region. In contrast, secondary geikelite and Ti‐Fe‐sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent‐body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号