首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
Abstract– The 45 m in diameter Kamil impact crater was formed <5000 yr ago in the eastern Sahara, close to the southern border of modern Egypt. The original features of this structure, including thousands of fragments of the meteorite impactor, are extremely well preserved. With the exception of a single 83 kg regmaglypted individual, all specimens of Gebel Kamil (the iron meteorite that formed the Kamil crater) are explosion fragments weighing from <1 g to 34 kg. Gebel Kamil is an ungrouped Ni‐rich (about 20 wt% Ni) ataxite characterized by high Ge and Ga contents (approximately 120 μg g?1 and approximately 50 μg g?1, respectively) and by a very fine‐grained duplex plessite metal matrix. Accessory mineral phases in Gebel Kamil are schreibersite, troilite, daubréelite, and native copper. Meteorite fragments are cross‐cut by curvilinear shear bands formed during the explosive terrestrial impact. A systematic search around the crater revealed that meteorite fragments have a highly asymmetric distribution, with greater concentrations in the southeast sector and a broad maximum in meteorite concentration in the 125–160° N sector at about 200 m from the crater rim. The total mass of shrapnel specimens >10 g, inferred from the density map compiled in this study is 3400 kg. Field data indicate that the iron bolide approached the Earth’s crust from the northwest (305–340° N), travelling along a moderately oblique trajectory. Upon hypervelocity impact, the projectile was disrupted into thousands of fragments. Shattering was accompanied by some melting of the projectile and of the quartz‐arenite target rocks, which also suffered shock metamorphism.  相似文献   

2.
Abstract– The <1,100 yr old Whitecourt meteorite impact crater, located south of Whitecourt, Alberta, Canada, is a well‐preserved bowl‐shaped structure having a depth and diameter of approximately 6 and 36 m, respectively. There are fewer than a dozen known terrestrial sites of similar size and age. Unlike most of these sites, however, the Whitecourt crater contains nearly all of the features associated with small impact craters including meteorites, ejecta blanket, observable transient crater boundary, raised rim, and associated shock indicators. This study indicates that the crater formed from the impact of an approximately 1 m diameter type IIIAB iron meteoroid traveling east‐northeast at less than approximately 10 km s?1, striking the surface at an angle between 40° and 55° to horizontal. It appears that the main mass survived atmospheric transit relatively intact, with fragmentation and partial melting during impact. Most meteoritic material has a jagged, shrapnel‐like morphology and is distributed downrange of the crater.  相似文献   

3.
Abstract– We detail the Kamil crater (Egypt) structure and refine the impact scenario, based on the geological and geophysical data collected during our first expedition in February 2010. Kamil Crater is a model for terrestrial small‐scale hypervelocity impact craters. It is an exceptionally well‐preserved, simple crater with a diameter of 45 m, depth of 10 m, and rayed pattern of bright ejecta. It occurs in a simple geological context: flat, rocky desert surface, and target rocks comprising subhorizontally layered sandstones. The high depth‐to‐diameter ratio of the transient crater, its concave, yet asymmetric, bottom, and the fact that Kamil Crater is not part of a crater field confirm that it formed by the impact of a single iron mass (or a tight cluster of fragments) that fragmented upon hypervelocity impact with the ground. The circular crater shape and asymmetries in ejecta and shrapnel distributions coherently indicate a direction of incidence from the NW and an impact angle of approximately 30 to 45°. Newly identified asymmetries, including the off‐center bottom of the transient crater floor downrange, maximum overturning of target rocks along the impact direction, and lower crater rim elevation downrange, may be diagnostic of oblique impacts in well‐preserved craters. Geomagnetic data reveal no buried individual impactor masses >100 kg and suggest that the total mass of the buried shrapnel >100 g is approximately 1050–1700 kg. Based on this mass value plus that of shrapnel >10 g identified earlier on the surface during systematic search, the new estimate of the minimum projectile mass is approximately 5 t.  相似文献   

4.
A relic impact structure was recognized within the strewn field of the Agoudal iron meteorite. The heavily eroded structure has preserved shatter cones in a limestone basement, and remnants of autochthonous and allochthonous breccias. Fragments of iron incorporated into the allochthonous breccia have a chemical composition (Ni = 5.16 wt%, Ir = 0.019 ppm) similar to that of the Agoudal meteorite, supporting a syngenetic origin of the strewn field and the impact structure. The total recovered mass of Agoudal meteorite fragments is estimated at approximately 500 kg. The estimated size of the SE–NW‐oriented strewn field is 6 × 2 km. Model calculations with minimal preatmospheric size show that a similar meteorite strewn field plus one small crater with observed shock effects could be formed by fragmentation of a meteoroid approximately 1.4 m in diameter with an impact angle of approximately 60° from the horizontal. However, the most probable is an impact of a larger, 3–4 m diameter meteoroid, resulting a strewn field with approximately 10 craters, 10–30 m in diameter each, plus numerous meteorite fragments. The calculated scattering area of meteorite shrapnel ejected from these impact craters could completely cover the observed strewn field of the Agoudal meteorite.  相似文献   

5.
We report on the microscopic impactor debris around Kamil crater (45 m in diameter, Egypt) collected during our 2010 geophysical expedition. The hypervelocity impact of Gebel Kamil (Ni‐rich ataxite) on a sandstone target produced a downrange ejecta curtain of microscopic impactor debris due SE–SW of the crater (extending ~300,000 m2, up to ~400 m from the crater), in agreement with previous determination of the impactor trajectory. The microscopic impactor debris include vesicular masses, spherules, and coatings of dark impact melt glass which is a mixture of impactor and target materials (Si‐, Fe‐, and Al‐rich glass), plus Fe‐Ni oxide spherules and mini shrapnel, documenting that these products can be found in craters as small as few tens of meters in diameter. The estimated mass of the microscopic impactor debris (<290 kg) derived from Ni concentrations in the soil is a small fraction of the total impactor mass (~10 t) in the form of macroscopic shrapnel. That Kamil crater was generated by a relatively small impactor is consistent with literature estimates of its pre‐atmospheric mass (>20 t, likely 50–60 t).  相似文献   

6.
Abstract– Despite its centennial exploration history, there are still unresolved questions about Meteor Crater, the first recognized impact crater on Earth. This theoretical study addresses some of these questions by comparing model results with field and laboratory studies of Meteor Crater. Our results indicate that Meteor Crater was formed by a high‐velocity impact of a fragmented projectile, ruling out a highly dispersed swarm as well as a very low impact velocity. Projectile fragmentation caused many fragments to fall separately from the main body of the impactor, making up the bulk of the Canyon Diablo meteorites; most of these fragments were engulfed in the expansion plume as they approached the surface without suffering high shock compression, and were redistributed randomly around the crater. Thus, the distribution of Canyon Diablo meteorites is not representative of projectile trajectory, as is usual for impactor fragments in smaller strewn fields. At least 50% of the main impactor was ejected from the crater during crater excavation and was dispersed mostly downrange of the crater as molten particles (spheroids) and highly shocked solid fragments (shrapnel). When compared with the known distribution, model results suggest an impactor from the SW. Overall, every model case produced much higher amounts of pure projectile material than observed. The projectile‐target mixing was not considered in the models; however, this process could be the main sink of projectile melt, as all analyzed melt particles have high concentrations of projectile material. The fate of the solid projectile fragments is still not completely resolved. Model results suggest that the depth of melting in the target can reach the Coconino sandstone formation. However, most of the ejected melt originates from 30–40 m depth and, thus, is limited to Moenkopi and upper Kaibab material. Some melt remains in the target; based on the estimated volume of the breccia lens at Meteor Crater, our models suggest at most a 2% content of melt in the breccia. Finally, a high water table at the time of impact could have aided strong dispersion of target and projectile melt.  相似文献   

7.
The existence of mass‐independent chromium isotope variability of nucleosynthetic origin in meteorites and their components provides a means to investigate potential genetic relationship between meteorites and planetary bodies. Moreover, chromium abundances are depleted in most surficial terrestrial rocks relative to chondrites such that Cr isotopes are a powerful tool to detect the contribution of various types of extra‐terrestrial material in terrestrial impactites. This approach can thus be used to constrain the nature of the bolide resulting in breccia and melt rocks in terrestrial impact structures. Here, we report the Cr isotope composition of impact rocks from the ~0.57 Ma Lonar crater (India), which is the best‐preserved impact structure excavated in basaltic target rocks. Results confirm the presence of a chondritic component in several bulk rock samples of up to 3%. The impactor that created the Lonar crater had a composition that was most likely similar to that of carbonaceous chondrites, possibly a CM‐type chondrite.  相似文献   

8.
Confirmed small impact craters in unconsolidated deposits are rare on Earth, and only a few have been the subjects of detailed investigations. Consequently, our knowledge of indicators permitting unambiguous identification of such structures is limited. In this work, detailed geological mapping was performed in the area of the Morasko craters, of which the largest crater is of about 96 m diameter. These craters were formed in the mid‐Holocene (~5000 yr ago) in unconsolidated sediments of a glacial terminal moraine. Fragments of the impactor—an iron meteorite—have been found in the craters’ vicinity for many decades. Despite numerous studies of the meteorite, no detailed research concerning the geological structure around the craters and of the ejecta deposits has been undertaken. The new data, including evaluation of over 52 sediment cores and 260 shallow drillings, permit the identification of four main sediment types: Neogene clays, diamicton with Neogene clay clasts containing charcoal pieces, diamicton without clasts, and sand with locally preserved paleosoil and charcoal pieces. Based on sedimentological properties, the ejecta deposits are mainly identified as diamicton with Neogene clay clasts, described as lithic impact breccia, covering locally preserved pre‐impact soil. Moreover, crater sections characterized by inverse stratigraphy of sediments are identified as belonging to overturned flaps.  相似文献   

9.
Abstract— Meteor Crater is one of the first impact structures systematically studied on Earth. Its location in arid northern Arizona has been ideal for the preservation of the structure and the surviving meteoric material. The recovery of a large amount of meteoritic material in and around the crater has allowed a rough reconstruction of the impact event: an iron object 50 m in diameter impacted the Earth's surface after breaking up in the atmosphere. The details of the disruption, however, are still debated. The final crater morphology (deep, bowl‐shaped crater) rules out the formation of the crater by an open or dispersed swarm of fragments, in which the ratio of swarm radius to initial projectile radius Cd is larger than 3 (the final crater results from the sum of the craters formed by individual fragments). On the other hand, the lack of significant impact melt in the crater has been used to suggest that the impactor was slowed down to 12 km/s by the atmosphere, implying significant fragmentation and fragments' separation up to 4 initial radii. This paper focuses on the problem of entry and motion through the atmosphere for a possible Canyon Diablo impactor as a first but necessary step for constraining the initial conditions of the impact event which created Meteor Crater. After evaluating typical models used to investigate meteoroid disruption, such as the pancake and separated fragment models, we have carried out a series of hydrodynamic simulations using the 3D code SOVA to model the impactor flight through the atmosphere, both as a continuum object and a disrupted swarm. Our results indicate that the most probable pre‐atmospheric mass of the Meteor Crater projectile was in the range of 4.108to 1.2.109kg (equivalent to a sphere 46–66 m in diameter). During the entry process the projectile lost probably 30% to 70% of its mass, mainly because of mechanical ablation and gross fragmentation. Even in the case of a tight swarm of particles (Cd < 3), small fragments can separate from the crater‐forming swarm and land on the plains (tens of km away from the crater) as individual meteorites. Starting from an impactor pre‐atmospheric velocity of ?18 km/s, which represents an average value for Earth‐crossing asteroids, we find that after disruption, the most probable impact velocity at the Earth's surface for a tight swarm is around 15 km/s or higher. A highly dispersed swarm would result in a much stronger deceleration of the fragments but would produce a final crater much shallower than observed at Meteor Crater.  相似文献   

10.
Fossil iron meteorites are extremely rare in the geological sedimentary record. The paleometeorite described here is the first such finding at the Cretaceous‐Paleogene (K‐Pg) boundary. In the boundary clay from the outcrop at the Lechówka quarry (Poland), fragments of the paleometeorite were found in the bottom part of the host layer. The fragments of meteorite (2–6 mm in size) and meteoritic dust are metallic‐gray in color and have a total weight of 1.8181 g. Geochemical and petrographic analyses of the meteorite from Lechówka reveal the presence of Ni‐rich minerals with a total Ni amount of 2–3 wt%. The identified minerals are taenite, kamacite, schreibersite, Ni‐rich magnetite, and Ni‐rich goethite. No relicts of silicates or chromites were found. The investigated paleometeorite apparently represents an independent fall and does not seem to be derived from the K‐Pg impactor. The high degree of weathering did not permit the chemical classification of the meteorite fragments. However, the recognized mineral inventory, lack of silicates, and their pseudomorphs and texture may indicate that the meteorite remains were an iron meteorite.  相似文献   

11.
The very young Wabar craters formed by impact of an iron meteorite and are known to the scientific community since 1933. We describe field observations made during a visit to the Wabar impact site, provide analytical data on the material collected, and combine these data with poorly known information discovered during the recovery of the largest meteorites. During our visit in March 2008, only two craters (Philby‐B and 11 m) were visible; Philby‐A was completely covered by sand. Mapping of the ejecta field showed that the outcrops are strongly changing over time. Combining information from different visitors with our own and satellite images, we estimate that the large seif dunes over the impact site migrate by approximately 1.0–2.0 m yr?1 southward. Shock lithification took place even at the smallest, 11 m crater, but planar fractures (PFs) and undecorated planar deformation features (PDFs), as well as coesite and stishovite, have only been found in shock‐lithified material from the two larger craters. Shock‐lithified dune sand material shows perfectly preserved sedimentary structures including cross‐bedding and animal burrows as well as postimpact structures such as open fractures perpendicular to the bedding, slickensides, and radiating striation resembling shatter cones. The composition of all impact melt glasses can be explained as mixtures of aeolian sand and iron meteorite. We observed a partial decoupling of Fe and Ni in the black impact glass, probably due to partitioning of Ni into unoxidized metal droplets. The absence of a Ca‐enriched component demonstrates that the craters did not penetrate the bedrock below the sand sheet, which has an estimated thickness of 20–30 m.  相似文献   

12.
Abstract The Campo del Cielo meteorite crater field in Argentina contains at least 20 small meteorite craters, but a recent review of the field data and a remote sensing study suggest that there may be more. The fall occurred ~4000 years ago into a uniform loessy soil, and the craters are well enough preserved so that some of their parameters of impact can be determined after excavation. The craters were formed by multi-ton fragments of a type IA meteoroid with abundant silicate inclusions. Relative to the horizontal, the angle of infall was ~9°. Reflecting the low angle of infall, the crater field is elongated with apparent dimensions of 3 × 18.5 km. The largest craters are near the center of this ellipse. This suggests that when the parent meteoroid broke apart, the resulting fragments diverged from the original trajectory in inverse relation to their masses and did not undergo size sorting due to atmospheric deceleration. The major axis of the crater field as we know it extends along N63°E, but the azimuths of infall determined by excavation of Craters 9 and 10 are N83.5°E and N75.5°E, respectively. This suggests that the major axis of the crater field is not yet well determined. The three or four largest craters appear to have been formed by impacts that disrupted the projectiles, scattering fragments around the outsides of the craters and leaving no large masses within them; these are relatively symmetrical in shape. Other craters are elongated features with multi-ton masses preserved within them and no fragmentation products outside. There are two ways in which field research on the Campo del Cielo crater field is found to be useful. (1) Studies exist that have been used to interpret impact craters on planetary surfaces other than the Earth. This occurrence of a swarm of projectiles impacting at known angles and similar velocities into a uniform target material provides an excellent field site at which to test the applicability of those studies. (2) Individual craters at Campo del Cielo can yield the masses of the projectiles that formed them and their velocities, angles and azimuths of impact. From these data, there is a possibility to estimate parameters for the parent meteoroid at entry and, thus, learn enough about its orbit to judge whether or not it was compatible with an asteroidal origin. Preliminary indications are that it was. Campo del Cielo is a IA iron meteorite and Sikhote-Alin, an observed fall, is a IIB iron meteorite in Wasson's classification. The Sterlitamak iron, also an observed fall, is a medium octahedrite in the Prior-Hey classification. It would be interesting to compare their orbital parameters.  相似文献   

13.
The fate of the impactor is an important aspect of the impact‐cratering process. Defining impactor material as surviving if it remains solid (i.e., does not melt or vaporize) during crater formation, previous numerical modeling and experiments have shown that survivability decreases with increasing impact velocity, impact angle (with respect to the horizontal), and target density. Here, we show that in addition to these, impactor survivability depends on the porosity and shape of the impactor. Increasing impactor porosity decreases impactor survivability, while prolate‐shaped (polar axis > equatorial axis) impactors survive impact more so than spherical and oblate‐shaped (polar axis < equatorial axis) impactors. These results are used to produce a relatively simple equation, which can be used to estimate the impactor fraction shocked to a given pressure as a function of these parameters. By applying our findings to the Morokweng crater‐forming impact, we suggest impact scenarios that explain the high meteoritic content and presence of unmolten fossil meteorites within the Morokweng crater. In addition to previous suggestions of a low‐velocity and/or high‐angled impact, this work suggests that an elongated and/or low porosity impactor may also help explain the anomalously high survivability of the Morokweng impactor.  相似文献   

14.
The Lonar impact crater, India, is one of the few known terrestrial impact craters excavated in continental basaltic target rocks (Deccan Traps, ~65 Ma). The impactites reported from the crater to date mainly include centimeter‐ to decimeter‐sized impact‐melt bombs, and aerodynamically shaped millimeter‐ and submillimeter‐sized impact spherules. They occur in situ within the ejecta around the crater rim and show schlieren structure. In contrast, non–in situ glassy objects, loosely strewn around the crater lake and in the ejecta around the crater rim do not show any schlieren structure. These non–in situ fragments appear to be similar to ancient bricks from the Daityasudan temple in the Lonar village. Synthesis of existing and new major and trace element data on the Lonar impact spherules show that (1) the target Lonar basalts incorporated into the spherules had undergone minimal preimpact alteration. Also, the paleosol layer as preserved between the top‐most target basalt flow and the ejecta blanket, even after the impact, was not a source component for the Lonar impactites, (2) the Archean basement below the Deccan traps were unlikely to have contributed material to the impactite parental melts, and (3) the impactor asteroid components (Cr, Co, Ni) were concentrated only within the submillimeter‐sized spherules. Two component mixing calculations using major oxides and Cr, Co, and Ni suggest that the Lonar impactor was a EH‐type chondrite with the submillimeter‐sized spherules containing ~6 wt% impactor components.  相似文献   

15.
Thermoluminescence (TL) dating has been used to determine the age of the meteorite impact crater at Gebel Kamil (Egyptian Sahara). Previous studies suggested that the 45 m diameter structure was produced by a fall in recent times (less than 5000 years ago) of an iron meteorite impactor into quartz‐arenites and siltstones belonging to the Lower Cretaceous Gilf Kebir Formation. The impact caused the complete fragmentation of the impactor, and the formation of a variety of impactites (e.g., partially vitrified dark and light materials) present as ejecta within the crater and in the surrounding area. After a series of tests to evaluate the TL properties of different materials including shocked intra‐crater target rocks and different types of ejecta, we selected a suite of light‐colored ejecta that showed evidence of strong thermal shock effects (e.g., partial vitrification and the presence of high‐temperature and ‐pressure silica phases). The abundance of quartz in the target rocks, including the vitrified impactites, allowed TL dating to be undertaken. The variability of radioactivity of the intracrateric target rocks and the lack of direct in situ dosimetric evaluations prevented precise dating; it was, however, possible to constrain the impact in the 2000 BC–500 AD range. If, as we believe, the radioactivity measured in the fallback deposits is a reliable estimate of the mean radioactivity of the site, the narrower range 1600–400 BC (at the 2σ confidence level) can be realistically proposed.  相似文献   

16.
Cadmium is a highly volatile element and its abundance in meteorites may help better understand volatility‐controlled processes in the solar nebula and on meteorite parent bodies. The large thermal neutron capture cross section of 113Cd suggests that Cd isotopes might be well suited to quantify neutron fluences in extraterrestrial materials. The aims of this study were (1) to evaluate the range and magnitude of Cd concentrations in magmatic iron meteorites, and (2) to assess the potential of Cd isotopes as a neutron dosimeter for iron meteorites. Our new Cd concentration data determined by isotope dilution demonstrate that Cd concentrations in iron meteorites are significantly lower than in some previous studies. In contrast to large systematic variations in the concentration of moderately volatile elements like Ga and Ge, there is neither systematic variation in Cd concentration amongst troilites, nor amongst metal phases of different iron meteorite groups. Instead, Cd is strongly depleted in all iron meteorite groups, implying that the parent bodies accreted well above the condensation temperature of Cd (i.e., ≈650 K) and thus incorporated only minimal amounts of highly volatile elements. No Cd isotope anomalies were found, whereas Pt and W isotope anomalies for the same iron meteorite samples indicate a significant fluence of epithermal and higher energetic neutrons. This observation demonstrates that owing to the high Fe concentrations in iron meteorites, neutron capture mainly occurs at epithermal and higher energies. The combined Cd‐Pt‐W isotope results from this study thus demonstrate that the relative magnitude of neutron capture‐induced isotope anomalies is strongly affected by the chemical composition of the irradiated material. The resulting low fluence of thermal neutrons in iron meteorites and their very low Cd concentrations make Cd isotopes unsuitable as a neutron dosimeter for iron meteorites.  相似文献   

17.
Abstract– Two new fragments of the Almahata Sitta meteorite and a sample of sand from the related strewn field in the Nubian Desert, Sudan, were analyzed for two to six carbon aliphatic primary amino acids by ultrahigh performance liquid chromatography with UV‐fluorescence detection and time‐of‐flight mass spectrometry (LC‐FT/ToF‐MS). The distribution of amino acids in fragment #25, an H5 ordinary chondrite, and fragment #27, a polymict ureilite, were compared with results from the previously analyzed fragment #4, also a polymict ureilite. All three meteorite fragments contain 180–270 parts‐per‐billion (ppb) of amino acids, roughly 1000‐fold lower than the total amino acid abundance of the Murchison carbonaceous chondrite. All of the Almahata Sitta fragments analyzed have amino acid distributions that differ from the Nubian Desert sand, which primarily contains l ‐α‐amino acids. In addition, the meteorites contain several amino acids that were not detected in the sand, indicating that many of the amino acids are extraterrestrial in origin. Despite their petrological differences, meteorite fragments #25 and #27 contain similar amino acid compositions; however, the distribution of amino acids in fragment #27 was distinct from those in fragment #4, even though both are polymict ureilites from the same parent body. Unlike in CM2 and CR2/3 meteorites, there are low relative abundances of α‐amino acids in the Almahata Sitta meteorite fragments, which suggest that Strecker‐type chemistry was not a significant amino acid formation mechanism. Given the high temperatures that asteroid 2008 TC3 appears to have experienced and lack of evidence for aqueous alteration on the asteroid, it is possible that the extraterrestrial amino acids detected in Almahata Sitta were formed by Fischer‐Tropsch/Haber‐Bosch type gas‐grain reactions at elevated temperatures.  相似文献   

18.
Abstract— The Sirente crater field consists of a 120 m wide, rimmed main depression flanked to the northwest by about 30 smaller depressions. It has been dated to the first centuries A.D. An impact origin is suggested, but not confirmed. The small size combined with the properties of the target material (carbonate mud) would neither allow shock features diagnostic of impact, nor projectile vaporization. Consequently, a meteoritic component in the sediments would be very localized. At impacts of this size the projectile most likely is an iron meteorite. Any iron meteorites on the ground surface would, in Iron Age Europe, have been removed shortly after the event. However, if the depressions are of impact origin they should contain meteorites at great depth in analogy with known craters. The magnetic properties of iron meteorites differ distinctly from the very low magnetic sediments and sedimentary rocks of the Sirente area. We have used a proton precession magnetometer/gradiometer to produce magnetic anomaly maps over four of the smaller depressions (~8 m diameter), as well as two crossing profiles over a fifth depression (~22 m diameter). All show distinct magnetic anomalies of about 20 nT, the larger depression up to 100 nT. Magnetic modeling shows a best fit for structures with upturned strata below their rims, excluding a karstic origin but supporting an explosive formation. The 100 nT anomaly can only be explained by highly‐magnetic objects at a few meters depth. All together, the magnetic data provides a strong indication for an impact origin of the crater field.  相似文献   

19.
Abstract— The Lonar crater, India, is the only well‐preserved simple crater on Earth in continental flood basalts; it is excavated in the Deccan trap basalts of Cretaceous‐Tertiary age. A representative set of target basalts, including the basalt flows excavated by the crater, and a variety of impact breccias and impact glasses, were analyzed for their major and trace element compositions. Impact glasses and breccias were found inside and outside the crater rim in a variety of morphological forms and shapes. Comparable geochemical patterns of immobile elements (e.g., REEs) for glass, melt rock and basalt indicates minimal fractionation between the target rocks and the impactites. We found only little indication of post‐impact hydrothermal alteration in terms of volatile trace element changes. No clear indication of an extraterrestrial component was found in any of our breccias and impact glasses, indicating either a low level of contamination, or a non‐chondritic or otherwise iridium‐poor impactor.  相似文献   

20.
On Christmas Day 1704, at 17 h (UT), a meteorite fell in Terrassa (about 25 km NW of Barcelona). The meteorite fall was seen and heard by many people over an area of several hundred kilometers and it was recorded in several historical sources. In fact, it was interpreted as a divine sign and used for propaganda purposes during the War of the Spanish Succession. Although it was believed that meteorite fragments were never preserved, here we discuss the recent discovery of two fragments (49.8 and 33.7 g) of the Barcelona meteorite in the Salvador Cabinet collection (Botanic Institute of Barcelona). They are very well preserved and partially covered by a fresh fusion crust, which suggests a prompt recovery, shortly after the fall. Analysis of the fragments has revealed that the Barcelona meteorite is an L6 ordinary chondrite. These fragments are among the oldest historical meteorites preserved in the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号