首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract– The <1,100 yr old Whitecourt meteorite impact crater, located south of Whitecourt, Alberta, Canada, is a well‐preserved bowl‐shaped structure having a depth and diameter of approximately 6 and 36 m, respectively. There are fewer than a dozen known terrestrial sites of similar size and age. Unlike most of these sites, however, the Whitecourt crater contains nearly all of the features associated with small impact craters including meteorites, ejecta blanket, observable transient crater boundary, raised rim, and associated shock indicators. This study indicates that the crater formed from the impact of an approximately 1 m diameter type IIIAB iron meteoroid traveling east‐northeast at less than approximately 10 km s?1, striking the surface at an angle between 40° and 55° to horizontal. It appears that the main mass survived atmospheric transit relatively intact, with fragmentation and partial melting during impact. Most meteoritic material has a jagged, shrapnel‐like morphology and is distributed downrange of the crater.  相似文献   

2.
Abstract— Five basaltic meteorites from the LaPaz ice field are paired on the basis of their mineralogy and texture, and represent a unique basalt type distinct from those in the Apollo or Luna sample collections. LaPaz Icefield (LAP) 02205, LAP 02224, LAP 02226, LAP 02436 and LAP 03632 all contain plagioclase, pyroxene, ilmenite, spinel, olivine, and minor troilite, metal, phosphate, baddeleyite and silica (cristobalite). Brown glassy melt veins are ubiquitous and cross the primary igneous texture. Plagioclase, the major mineral and occurring as laths in a subophitic texture, is of narrow compositional range, from An85–89. Pyroxene, also a major mineral, is strongly zoned, from augite and pigeonite cores to very iron‐rich rims. Ilmenite laths comprise approximately 3–5% of the basalts. Spinels show a large compositional range, comparable to that documented in Apollo 15 basalts, indicating an early chromite‐rich stage followed by an intermediate to late stage with Cr‐rich ulvöspinel. Relatively large, subhedral to skeletal olivine crystals (Fo46–62) are sparse, and are too Forich to be in equilibrium with the bulk rock, indicating that these are xenocrysts rather than phenocrysts. The presence of melt veins with a similar composition to the bulk rock, maskelynitized plagioclase feldspar, and metastable cristobalite indicate that these rocks underwent significant shock, between 30 and 50 GPa. Calculated oxygen fugacity, using spinel‐ilmenite‐iron metal equilibria, is within the range defined by previous studies of lunar materials. The bulk composition (low MgO) and low calculated temperatures, together with modelling calculations, indicate an origin by fractional crystallization of a more primitive low TiO2 parent liquid similar to Apollo 12 olivine basalt.  相似文献   

3.
4.
Abstract— We report on a new angrite, Northwest Africa (NWA) 1296, a fine‐grained rock with a magmatic texture of rapid cooling. Dendritic olivine (?Fo50) crystallized first in association with anorthite microcrysts (An98–100) forming composite chains separated from one another by intergrown Al‐Fe diopside‐hedenbergite pyroxenes. In addition, some olivines with lower Mg# and increased CaO (up to 12%) are found between the chains as equant microphenocrysts. Pyroxenes and olivines are both normally zoned from Mg# = 0.52 to less than 0.01 in the rims. Ca‐rich olivines are surrounded by, intergrown with, or replaced by subcalcic kirschsteinite. They appear after plagioclase crystallization stopped, at the end of the crystallization sequence. Minor phases are pyrrhotite, F‐apatite, and titanomagnetite. Pyroxene is the last silicate phase to grow, interstitial to idiomorphic olivine‐kirschsteinite. Numerous small vesicles and some channels are filled with microcristalline carbonate. The mode (vol%) is about 28% olivine, 3% kirschsteinite, 32% anorthite, 34% pyroxene, and 3% of the minor phases—close to that reported previously for D'Orbigny and Sahara (SAH) 99555. The bulk chemical composition of NWA 1296 is similar to D'Orbigny and SAH 99555; NWA 1296 differs by its texture and mineralogy, which are interpreted as resulting from rapid crystallization—an evidence of impact melting. Angrites cannot be produced by partial melting of a CV source because segregation of a “planetary” core is necessary to explain the low FeO/MgO ratio of magnesian olivines. Neither the odd Ca/Al ratio nor the very low SiO2 content can be explained by conventional partial melting scenarios. We suggest that carbonate is the key to angrite genesis. This is supported by the striking similarities with terrestrial melilitites (low SiO2, superchondritic Ca/Al ratio, presence of carbonate). The lack of alkalies could be the result of either loss after impact melting or absence of alkalies in the source.  相似文献   

5.
Abstract The pattern of radial and concentric offset dikes at Sudbury strongly resembles fracture patterns in certain volcanically modified craters on the Moon. Since the Sudbury dikes apparently formed shortly after the impact event, this resemblance suggests that early endogenic modification at Sudbury was comparable to deformation in lunar floor-fractured craters. Although regional deformation has obscured many details of the Sudbury Structure, such a comparison of Sudbury with lunar floor-fractured craters provides two alternative models for the original size and surface structures of the Sudbury basin. First, the Sudbury date pattern can be correlated with fractures in the central peak crater Haldane (36 km in diameter). This comparison indicates an initial Sudbury diameter of between 100 and 140 km but requires loss of a central peak complex for which there is little evidence. Alternatively, comparison of the Sudbury dikes with fractures in the two-ring basin Schrödinger indicates an initial Sudbury diameter of at least ~ 180 km, which is in agreement with other recent estimates for the size of the Sudbury Structure. In addition to constraining the size and structure of the original Sudbury crater, these comparisons also suggest that crater modification may reflect different deformation mechanisms at different sizes. Most lunar floor-fractured craters are attributed to deformation over a shallow, crater-centered intrusion; however, there is no evidence for such an intrusion at Sudbury. Instead, melts from the evolving impact melt sheet probably entered fractures formed by isostatically-induced flexure of the crater floor. Since most of the lunar floor-fractured craters are too small (<100-km diameter) to induce significant isostatic adjustment, crater modification by isostatic uplift apparently is limited to only the largest of craters, whereas deformation over igneous intrusions dominates the modification of smaller craters.  相似文献   

6.
Abstract— The late Eocene Popigai impact structure of Siberia comprises an approximately 0.5–1.5 km thick, ˜100 km diameter sequence of clast-rich and clast-poor andesitic to rhyolitic impact melt rocks and impact breccias, underlain by Archean to Proterozoic crystalline basement and Proterozoic to Phanerozoic sedimentary rocks. The fine-grained to cryptocrystalline texture of the more melt-rich rocks, despite their occurrence in bodies locally in excess of 800 m thick and 28 km long, suggests that the melt crystallized in response to (1) cooling by the clast load, and/or; (2) rapid nucleation on finely brecciated clasts, which have since been assimilated and/or; (3) crystallization enhanced by the relatively low water contents of the melts. Rapid crystallisation of the melt is indicated by the lack of zoning in minerals, the presence of glass, the lack of strain recovery features in clasts and the lack of evidence for fractionation in the major and trace elements, including the rare earth elements. Optical and analytical electron microscopy reveal that the previously reported division of the melt rocks into high- and low-temperature variants based on hand sample appearance, or glass content, is not warranted. Clasts within the melt-rich rocks exhibit a wide range of shock metamorphic features, though they are not distributed in the impact melts in a systematic manner. This indicates that the melt-rich rocks were well mixed during their formation, thus juxtaposing unshocked with shocked material. Injection of mesostasis melt into partially melted checkerboard plagioclase and orthopyroxene clasts also occurred during this mixing stage.  相似文献   

7.
We investigate the region of crater Haulani on Ceres with an emphasis on mineralogy as inferred from data obtained by Dawn's Visible InfraRed mapping spectrometer (VIR), combined with multispectral image products from the Dawn Framing Camera (FC) so as to enable a clear correlation with specific geologic features. Haulani, which is one of the youngest craters on Ceres, exhibits a peculiar “blue” visible to near‐infrared spectral slope, and has distinct color properties as seen in multispectral composite images. In this paper, we investigate a number of spectral indices: reflectance; spectral slopes; abundance of Mg‐bearing and NH4‐bearing phyllosilicates; nature and abundance of carbonates, which are diagnostic of the overall crater mineralogy; plus a temperature map that highlights the major thermal anomaly found on Ceres. In addition, for the first time we quantify the abundances of several spectral endmembers by using VIR data obtained at the highest pixel resolution (~0.1 km). The overall picture we get from all these evidences, in particular the abundance of Na‐ and hydrous Na‐carbonates at specific locations, confirms the young age of Haulani from a mineralogical viewpoint, and suggests that the dehydration of Na‐carbonates in the anhydrous form Na2CO3 may be still ongoing.  相似文献   

8.
Three masses of the Chelyabinsk meteorite have been studied with a wide range of analytical techniques to understand the mineralogical variation and thermal history of the Chelyabinsk parent body. The samples exhibit little to no postentry oxidation via Mössbauer and Raman spectroscopy indicating their fresh character, but despite the rapid collection and care of handling some low levels of terrestrial contamination did nonetheless result. Detailed studies show three distinct lithologies, indicative of a genomict breccia. A light‐colored lithology is LL5 material that has experienced thermal metamorphism and subsequent shock at levels near S4. The second lithology is a shock‐darkened LL5 material in which the darkening is caused by melt and metal‐troilite veins along grain boundaries. The third lithology is an impact melt breccia that formed at high temperatures (~1600 °C), and it experienced rapid cooling and degassing of S2 gas. Portions of light and dark lithologies from Chel‐101, and the impact melt breccias (Chel‐102 and Chel‐103) were prepared and analyzed for Rb‐Sr, Sm‐Nd, and Ar‐Ar dating. When combined with results from other studies and chronometers, at least eight impact events (e.g., ~4.53 Ga, ~4.45 Ga, ~3.73 Ga, ~2.81 Ga, ~1.46 Ga, ~852 Ma, ~312 Ma, and ~27 Ma) are clearly identified for Chelyabinsk, indicating a complex history of impacts and heating events. Finally, noble gases yield young cosmic ray exposure ages, near 1 Ma. These young ages, together with the absence of measurable cosmogenic derived Sm and Cr, indicate that Chelyabinsk may have been derived from a recent breakup event on an NEO of LL chondrite composition.  相似文献   

9.
Abstract— The 45-km diameter Montagnais impact structure, Nova Scotia, Canada, is characterized by a positive, circular 8 mGal gravity anomaly associated with its central uplift. The negative gravity anomaly, which is expected for a complex crater of this size, is not observed within the structure, and magnetic data lack any well-defined, crater-related signature. The absence of a negative gravity anomaly implies that no low-density zone generally related to fracturing and brecciation exists. Since Montagnais appears well preserved, this zone has not been removed by erosion. Its formation may have been impeded due to the lack of competency in the target rocks. The crater was formed in a shallow marine environment where the lack of strength in the unconsolidated sediments may have prevented the preservation of voids and fractures that cause a negative gravity anomaly as observed over other impact craters. Additionally, the efficient absorption of impact energy by unconsolidated target material may have inhibited fracture/void development. Although the gravity signature of impact craters formed on land is well known, structures occurring in unconsolidated target material, such as continental shelf environments, constitute another signature that should also be recognized.  相似文献   

10.
Crystallization from the molten state has been an important process for the formation of rocks on the Moon; the phenomenon of fractional crystallization is therefore discussed. The principal chemical and mineralogical features of the Apollo 11, 12 and 14 basaltic crystalline rocks are described, and an account is given of other rock types and minerals which are represented among the coarser particles in the lunar soils. A comparison is made between the chemical compositions (major, minor and trace element concentrations) of rocks and soils.Based upon the above data, one possible model for the outer shell of the Moon is presented, which consists of an outer layer of Al-rich rocks underlain by a layer which is more ferromagnesian in character. Partial melting of the latter was probably responsible for the extrusion of lavas at the surface which spread to form the basalts (Apollo 11 and 12) of the non-circular maria. The Apollo 14 (Fra Mauro) basalts are relatively enriched in potassium, rare earth elements, zirconium, phosphorus and certain other elements and may derive from partial melting of the more aluminous upper layer.The separation of the outer Moon into two layers could have occurred through gravity-aided fractional crystallization at an early stage (first few hundred m yr) in lunar history.Paper presented to the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 1971.  相似文献   

11.
Abstract— The Sirente crater field consists of a 120 m wide, rimmed main depression flanked to the northwest by about 30 smaller depressions. It has been dated to the first centuries A.D. An impact origin is suggested, but not confirmed. The small size combined with the properties of the target material (carbonate mud) would neither allow shock features diagnostic of impact, nor projectile vaporization. Consequently, a meteoritic component in the sediments would be very localized. At impacts of this size the projectile most likely is an iron meteorite. Any iron meteorites on the ground surface would, in Iron Age Europe, have been removed shortly after the event. However, if the depressions are of impact origin they should contain meteorites at great depth in analogy with known craters. The magnetic properties of iron meteorites differ distinctly from the very low magnetic sediments and sedimentary rocks of the Sirente area. We have used a proton precession magnetometer/gradiometer to produce magnetic anomaly maps over four of the smaller depressions (~8 m diameter), as well as two crossing profiles over a fifth depression (~22 m diameter). All show distinct magnetic anomalies of about 20 nT, the larger depression up to 100 nT. Magnetic modeling shows a best fit for structures with upturned strata below their rims, excluding a karstic origin but supporting an explosive formation. The 100 nT anomaly can only be explained by highly‐magnetic objects at a few meters depth. All together, the magnetic data provides a strong indication for an impact origin of the crater field.  相似文献   

12.
Abstract— We have performed a detailed petrologic and mineralogic study of two chondritic clasts from the polymict eucrite Lewis Cliff (LEW) 85300, and performed chemical analyses by INAA and RNAA on one of these. Petrologically, the clasts are identical and are composed of dispersed aggregates, chondrules and chondrule fragments supported by matrix. The aggregates and chondrules are composed of olivine (Fo100–45), orthopyroxene (Wo1–2En98–60), plus some diopside. The matrix consists of fine-grained olivine (Fo60–53), and lesser orthopyroxene and augite. Fine-grained saponite is common in the matrix. The bulk major element composition of the matrix is identical in both clasts and similar to that of CM, CO and CV chondrites. The bulk composition of the clast studied by INAA and RNAA shows unusual abundance patterns for lithophile, siderophile and chalcophile elements but is basically chondritic. The INAA/RNAA data preclude assignment of the LEW 85300,15 clast to any commonly accepted group of carbonaceous chondrite. The unusual rare earth element abundance pattern may, in part, be due to terrestrial alteration.  相似文献   

13.
Abstract— The original mass (15915 g) of the Twannberg IIG (low Ni‐, high P) iron was found in 1984. Five additional masses (12 to 2488 g) were recovered between 2000 and 2007 in the area. The different masses show identical mineralogy consisting of kamacite single crystals with inclusions of three types of schreibersite crystals: cm‐sized skeletal (10.5% Ni), lamellar (17.2% Ni), and 1–3 × 10 μm‐sized microprismatic (23.9% Ni). Masses I and II were compared in detail and have virtually identical microstructure, hardness, chemical composition, cosmic‐ray exposure (CRE) ages, and 10Be and 26Al activities. Bulk concentrations of 5.2% Ni and 2.0% P were calculated. The preatmospheric mass is estimated to have been at least 11,000 kg. The average CRE age for the different Twannberg samples is 230 ± 50 Ma. Detrital terrestrial mineral grains in the oxide rinds of the three larger masses indicate that they oxidized while they were incorporated in a glacial till deposited by the Rhône glacier during the last glaciation (Würm). The find location of mass I is located at the limit of glaciation where the meteorite may have deposited after transport by the glacier over considerable distance. All evidence indicates pairing of the six masses, which may be part of a larger shower as is indicated by the large inferred pre‐atmospheric mass.  相似文献   

14.
Abstract— Magnetic spherules have recently been found in Pleistocene sediments in Alberta, Canada. The spherules are composed of magnetite (FeFe2O4) and wüstite (Fe1-xO); some have metallic cores composed of pure α-Fe metal. Other metal cores contain from 0.1% to 0.88% Ni by weight. Comparison of morphology, internal structure and chemical and mineralogical compositions with those of spherules of known origin suggests that the Alberta spherules are of extraterrestrial origin.  相似文献   

15.
The Allan Hills 76005 polymict eucrite pairing group consists of 15 paired masses recovered during six different field seasons in the Transantarctic Mountains. Although this group has been well studied in general, most of the meteorites contain a significant portion of dark clasts that have not been well characterized. The Dawn mission to Vesta discovered dark materials that provide insight into its evolution. The ALH dark clasts are thus of great interest to understanding the evolution of Vesta. Here, 45 different dark clasts from 15 different thin sections from the pairing group are characterized in detail to better understand their nature and origin. Five different textural types of dark clasts are recognized among this group—skeletal, vitrophyric, pilotaxitic, fan spherulitic, and troilite‐silica‐plagioclase‐rich clasts with aphyric or blobby textures. Mineralogy of the clasts is dominated by plagioclase and pyroxene, with minor troilite, silica, ilmenite, chromite, and rare Fe‐Ni metal. All of the textures can be produced by rapid cooling rates on the order of 60–2500°C h?1. Bulk compositions of the clasts are demonstrably eucritic, and not chondritic, howarditic, or diogenitic. The combination of mineralogy, composition, and textures strongly suggests that the dark clasts are eucritic impact melts. Several craters on Vesta have associated orange deposits that have been proposed as impact melt breccias. The ALH pairing group may thus represent material that originated near Oppia or Octavia craters.  相似文献   

16.
We determine the proportions of two mixed crater populations distinguishable by size distributions on the Moon. A "multiple power-law" model is built to formulate crater size distribution N(D) ∝ D-αwhose slope α varies with crater diameter D. This model is then used to fit size distributions of lunar highland craters and Class 1 craters. The former is characterized by α = 1.17 ± 0.04, 1.88 ± 0.07,3.17 ± 0.10 and 1.40 ± 0.15 for D ranges ~ 10- 49, 49- 120, 120- 251 and ~ 251- 2500 km, while the latter has a single slope α = 1.96 ± 0.14 for about 10- 100 km. They are considered as Population 1 and2 crater size distributions, whose sum is then fitted to the global size distribution of lunar craters with D between 10 and 100 km. Estimated crater densities of Population 1 and 2 are 44 × 10-5and 5 × 10-5km-2respectively, leading to the proportion of the latter being 10%. This result underlines the need for more thoroughly investigating Population 1 craters and their related impactors, the primordial main-belt asteroids, which dominated the late heavy bombardment.  相似文献   

17.
Abstract— Two iron meteorites, identified in 1994, have been recovered from the Province of Québec, Canada. Lac Dodon is a coarse octahedrite of 800 g, displaying only minor evidence of terrestrial weathering. A heat-affected zone up to 1 mm thick is fairly well preserved. Penouille is a medium octahedrite of 72.5 g that was recovered from an ocean beach. Traces of a heat-affected zone are preserved. Analyses reveal that both meteorites are members of group IAB, although Penouille is in the Ni-rich IB tail of the group.  相似文献   

18.
Abstract— A small area littered with loose decimeter-sized fragments of glass and melt fragment-bearing suevite has been discovered on the western rim of the Roter Kamm impact crater in southern Namibia. The clast population and results of major and trace element chemical analyses are consistent with this breccia having been formed from granitoid basement lithologies only, without contribution from the metasedimentary Gariep and Cenozoic cover sequences. It is assumed that the limited amount of impact melt observed in the Roter Kamm structure could be the result of melt dissipation due to explosive shock-induced devolatilization of the significant marble component of the Gariep supracrustal cover. Preservation of very limited remnants of impact breccia on the rim of the Roter Kamm crater suggests a relatively deep level of erosion of the crater rim.  相似文献   

19.
《Icarus》1986,68(1):77-86
The size and radial distributions of ejecta blocks around craters (D = 0.8 to 10 km) on Phobos and Deimos have been compared to those around lunar craters (D = 0.2 to 3.5 km). The radial distribution of blocks was found to be similar on Phobos and the Moon, but more dispersed on Deimos. For the best imaged crater on Deimos (D = 800 m), the size distributions of blocks and the fraction of excavated volume present as blocks are similar to those on the Moon. The wider dispersal of blocks on Deimos is consistent with other findings on the spread of finer ejecta over the satellite.  相似文献   

20.
Stony-iron meteorites formed at the core/mantle interfaces of small asteroidal parents. The mesosiderites formed when the thick crust of a largely molten parent body (100–200 km in diameter) foundered and sank through the mantle to the core. Pallasites formed in smaller parent bodies (50–100 km) in which olivine crystals from the partially molten mantle sank to the core/mantle interface and rafted there. Subsequent collisions stripped away the rocky mantles of both kinds of parent bodies, exposing the stony-iron surfaces of their cores to direct impacts, which continue to knock off meteorite fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号