首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— An H5 chondrite was found near the village of Rumanová, Slovakia. dominant minerals of the meteorite are enstatite, olivine, kamacite, taenite and troilite. The minor minerals are oligoclase, augite, pigeonite, accessory chromite, whitlockite and chlorapatite. The composition of olivine (Fa19.0) and low-Ca orthopyroxene (Fs17.0), and the density and chemical composition of the meteorite correspond to those of an H chondrite. Normal zoning of Ni in metal grains and parallel planar fractures in olivine suggest weak shock metamorphism of stage S3. Due to moderate oxidation of metal, iron hydroxides were formed corresponding to weathering stage W2.  相似文献   

2.
The meteorite which fell near Messina, Italy, on 16 July 1955 is a typical olivine-hypersthene (L-group) chondrite. Its mineralogical composition is: olivine (Fa24), orthopyroxene (Fs20) with some polysynthetically twinned clynopyroxene, plagioclase (An10) and merrillite. Opaque phases present are: copper, kamacite, taenite, plessite, chalcopyrrhotite, mackinawite, troilite and chromite. The stone contains abundant chondrules. The matrix consists chiefly of broken chondrules with tiny fragments of crystals and rare amorphous material. Chondrules form more than 42% of the meteorite by volume. Some unusual features of the fabric of this meteorite include silicate grains showing deformation; silicates with fusion spots of dark glass containing blebs of metallic iron; iron and troilite with marginal fusion yielding globules and droplets sometimes showing flow structures. The classification of this chondrite is confirmed by bulk chemical analysis.  相似文献   

3.
The Gao‐Guenie H5 chondrite that fell on Burkina Faso (March 1960) has portions that were impact‐melted on an H chondrite asteroid at ~300 Ma and, through later impact events in space, sent into an Earth‐crossing orbit. This article presents a petrographic and electron microprobe analysis of a representative sample of the Gao‐Guenie impact melt breccia consisting of a chondritic clast domain, quenched melt in contact with chondritic clasts, and an igneous‐textured impact melt domain. Olivine is predominantly Fo80–82. The clast domain contains low‐Ca pyroxene. Impact melt‐grown pyroxene is commonly zoned from low‐Ca pyroxene in cores to pigeonite and augite in rims. Metal–troilite orbs in the impact melt domain measure up to ~2 mm across. The cores of metal orbs in the impact melt domain contain ~7.9 wt% of Ni and are typically surrounded by taenite and Ni‐rich troilite. The metallography of metal–troilite droplets suggest a stage I cooling rate of order 10 °C s?1 for the superheated impact melt. The subsolidus stage II cooling rate for the impact melt breccia could not be determined directly, but was presumably fast. An analogy between the Ni rim gradients in metal of the Gao‐Guenie impact melt breccia and the impact‐melted H6 chondrite Orvinio suggests similar cooling rates, probably on the order of ~5000–40,000 °C yr?1. A simple model of conductive heat transfer shows that the Gao‐Guenie impact melt breccia may have formed in a melt injection dike ~0.5–5 m in width, generated during a sizeable impact event on the H chondrite parent asteroid.  相似文献   

4.
Abstract— MÖssbauer spectroscopy, x-ray diffraction (XRD) measurements, and electron microprobe analysis (EMPA) have been carried out for the investigation of a newly fallen Sudanese meteorite named New Haifa. The room temperature MÖssbauer spectrum is fitted with three sextets and two doublets. The sextets are assigned to Fe in troilite, kamacite, and taenite, and the two doublets are assigned to Fe2+in olivine and pyroxene (no Fe3+was found). The microprobe trace of Ni concentration across a kamacite-taenite-kamacite area shows a high-Ni concentration at the interfaces between kamacite and taenite. From the microprobe analysis, olivine appears to have a constant composition, whereas pyroxene has a varying composition. The mole fractions of the Fe end members of olivine (fayalite) and pyroxene (ferrosilite) are found to be 23.5% and 23.2%, respectively. Accordingly, the New Haifa meteorite is classified as an ordinary L-type chondrite.  相似文献   

5.
We provide the circumstances and details of the fireball observation, search expeditions, recovery, strewn field, and physical characteristics of the Ko?ice meteorite that fell in Slovakia on February 28, 2010. The meteorite was only the 15th case of an observed bolide with a recovered mass and subsequent orbit determination. Despite multiple eyewitness reports of the bolide, only three videos from security cameras in Hungary were used for the strewn field determination and orbit computation. Multiple expeditions of professionals and individual searchers found 218 fragments with total weight of 11.3 kg. The strewn field with the size of 5 × 3 km is characterized with respect to the space distribution of the fragments, their mass and size‐frequency distribution. This work describes a catalog of 78 fragments, mass, size, volume, fusion crust, names of discoverers, geographic location, and time of discovery, which represents the most complex study of a fresh meteorite fall. From the analytical results, we classified the Ko?ice meteorite as an ordinary H5 chondrite.  相似文献   

6.
The Timmersoi meteorite, a new type L5 hypersthene chondrite from the Niger Republic is described and microprobe analyses of its olivine, orthopyroxene, clinopyroxene, plagioclase, kamacite, taenite, troilite, chromite, whitlockite, chlorapatite and limonite presented. Veins and patches of black “glassy” material are regarded as products of shock melting. In places this material contains immiscible droplets of troilite each with one or more well-formed crystals of taenite. Calculations indicate equilibrium between olivine and orthopyroxene with a temperature of equilibration of about 850 °C.  相似文献   

7.
The Loop meteorite was found in 1962 in Gaines County, Texas, at a location very close to that where the Ashmore chondrite was found in 1969. The two specimens were assumed to be fragments of the same meteorite. The Loop meteorite is a type L6 chondrite composed of olivine (Fo75.4Fa24.6), orthopyroxene (En77.6Wo1.5Fs20.9), clinopyroxene (En47.5Wo45.1Fs7.4), plagioclase (Ab84.3Or5.5An10.2), Fe-Ni metal, troilite, and chromite. Fe-Ni metal is represented by kamacite (5.8-6.4 wt % Ni, 0.88-1.00 wt % Co), taenite (30.0–52.9 wt % Ni, 0.16-0.34 wt % Co), and plessite (16.8–28.5 wt % Ni, 0.38-0.54 wt % Co). Native copper occurs as rare inclusions in Fe-Ni metal. Both chondrules and matrix have similar mineral compositions. The mineral chemistry of the Loop meteorite is quite different from that of the Ashmore, which was classified as an H5 chondrite by Bryan and Kullerud (1975). Therefore, the Ashmore and Loop meteorites are two different chondrites, even though they were recovered from the same geographic location.  相似文献   

8.
Results of nondestructive gamma‐ray analyses of cosmogenic radionuclides (7Be, 22Na, 26Al, 46Sc, 48V, 54Mn, 56Co, 57Co, 58Co, and 60Co) in 19 fragments of the Ko?ice meteorite are presented and discussed. The activities varied mainly with position of fragments in the meteoroid body, and with fluxes of cosmic‐ray particles in the space affecting radionuclides with different half‐lives. Monte Carlo simulations of the production rates of 60Co and 26Al compared with experimental data indicate that the pre‐atmospheric radius of the meteoroid was 50 ± 5 cm. In two Ko?ice fragments, He, Ne, and Ar concentrations and isotopic compositions were also analyzed. The noble‐gas cosmic‐ray exposure age of the Ko?ice meteorite is 5–7 Myr, consistent with the conspicuous peak (or doublet peak) in the exposure age histogram of H chondrites. One sample likely contains traces of implanted solar wind Ne, suggesting that Ko?ice is a regolith breccia. The agreement between the simulated and observed 26Al activities indicate that the meteoroid was mostly irradiated by a long‐term average flux of galactic cosmic rays of 4.8 particles cm?2 s?1, whereas the short‐lived radionuclide activities are more consistent with a flux of 7.0 protons cm?2 s?1 as a result of the low solar modulation of the galactic cosmic rays during the last few years before the meteorite fall.  相似文献   

9.
The Ella Island, Greenland, meteorite was found in August of 1971. Electron microprobe study of the meteorite revealed it to contain olivine, low-calcium pyroxene, high-calcium pyroxene, plagioclase, kamacite, taenite, chromian-hercynite and troilite. On the basis of fayalite and ferrosilite content, poorly-defined chondrules, absence of glass in chondrules, presence of well-developed feldspar in the matrix and chondrules, and degree of recrystallization of the matrix, the Ella Island meteorite is classified as an L-6 chondrite.  相似文献   

10.
Abstract— The Leedey, Oklahoma, meteorite shower fell on 1943 November 25, following a fireball which was visible across much of southwestern Oklahoma and northcentral Texas. The shower produced 24 stones with a total mass of ~51.5 kg. The stones formed a strewnfield ~18 km in length in the same direction as the observed path of the meteor (N50°W). Leedey is classified as an L6(S3) ordinary chondrite. We report bulk major element chemical analyses from four separate laboratories. Leedey contains an unusual 6 by 8 mm composite Fe,Ni-FeS grain, which is composed of a 3 mm kamacite grain adjacent to a 5 mm troilite grain. A 50–100 μm rim of high-Ni (45–55 wt%) taenite (tetrataenite) occurs at the boundary between kamacite and troilite. A single, zoned pyrophanite grain is observed at the boundary between the inclusion troilite and host silicates. An origin as a foreign particle incorporated after metamorphism or during impact melting appears unlikely. This particle likely formed by a complex set of processes, including melting in the nebula, parent body metamorphism and reheating by later shock, mirroring the history of the host chondrite.  相似文献   

11.
Abstract Melnikovo is a relatively unweathered 545.6-g LL6 chondrite that was found in 1983. Only a few poorly defined chondrules are discernable in the examined sections; two of these are enriched in chromite. The meteorite contains olivine (Fa27,8), low-Ca pyroxene (Fs24,4), plagioclase, rare clinopyroxene, chlorapatite, merrillite and opaque minerals, which have a modal abundance (in wt%) of troilite (3.9%), kamacite (0.4%), taenite plus tetrataenite (0.7%), chromite (0.8%), and trace amounts of ilmenite and Mn-ilmenite. The meteorite appears unbrecciated on a centimeter scale.  相似文献   

12.
Abstract— On July 21, 2002, a meteorite fall occurred over the Thuathe plateau of western Lesotho. The well‐defined strewn field covers an area of 1.9 times 7.4 km. Many of the recovered specimens display a brecciated texture with leucocratic, angular to subrounded clasts in a somewhat darker groundmass. Mineralogical and chemical data, as well as oxygen isotopic analysis, indicate that Thuathe is an H4/5, S2/3 meteorite, with local H3 or H6 character. A number of anomalous features include somewhat high Co contents of kamacite and taenite relative to normal H‐group chondrites. Oxygen isotopic data plot at the edge of the normal H chondrite data field. Variable contents of metallic mineral phases and troilite result in a heterogeneous bulk composition (e.g., with regard to Si, Fe, and Mg), resulting in a spread of major element ratios that is not consistent with previously accepted H‐group composition. Trace element abundances are generally consistent with H chondritic composition, and Kr and Xe isotopic data agree with an H4 classification for this meteorite. Noble gas analysis gave U, Th‐4He gas retention and K‐Ar ages typical for H chondrites; no major thermal event affected this material since ~3.7 Ga. The exposure age for Thuathe is 5 Ma, somewhat lower than for other H chondrites. Cosmogenic nuclide analysis indicates a pre‐atmospheric radius of this meteorite between 35 and 40 cm. In the absence of evidence for solar gases, we classify Thuathe as a fragmental breccia. Numerous narrow, black veins cut across samples of Thuathe and are the result of a brittle deformation event that also caused local melting, especially in portions rich in sulfide. The formation of these veinlets is not the result of locally enhanced shock pressures (i.e., of shock melting) but rather of shearing under brittle conditions with local, friction‐related temperature excursions causing melting mostly of Fe‐sulfide and FeNi‐metal but also, locally, of silicate minerals. Frictional temperature excursions must have attained values in excess of 1500 °C to permit complete melting of forsteritic olivine.  相似文献   

13.
The Bloomington meteorite, a 67.8 gram veined, brecciated chondrite, fell during the summer of 1938 in Bloomington, Illinois. Its olivine, orthopyroxene and metal compositions (fo69, en74 and Fe52 Ni48 respectively) and its texture identify it as a brecciated LL6 chondrite of shock facies d. Shock melt glasses occur in Bloomington as sparse melt pockets and veins in clasts and as isolated masses in the black, clast-rich matrix. The vein glasses chemically resemble bulk LL-group chondrites and thus appear to reflect total melting of the host meteorite. The melt pocket and matrix glasses, like those described previously in L-group chondrites, have more varied compositions and are typically enriched in normative plagioclase. All glasses that we analyzed in Bloomington have FeO/MgO and Na/Al ratios similar to those of LL-group chondrites, indicating that melting of this meteorite involved neither a significant change in the oxidation state of iron nor loss of sodium to a vapor phase. Bloomington is a monomict breccia whose components formed in place as a result of a single episode of shock and attendant melting.  相似文献   

14.
Abstract— We report concentrations of cosmogenic 10Be, 26Al, 36Cl, and 41Ca in the metal phase of 26 ordinary chondrites from Frontier Mountain (FRO), Antarctica, as well as cosmogenic 14C in eight and noble gases in four bulk samples. Thirteen out of 14 selected H chondrites belong to two previously identified pairing groups, FRO 90001 and FRO 90174, with terrestrial ages of ?40 and ?100 kyr, respectively. The FRO 90174 shower is a heterogeneous H3–6 chondrite breccia that probably includes more than 300 individual fragments, explaining the high H/L chondrite ratio (3.8) at Frontier Mountain. The geographic distribution of 19 fragments of this shower constrains ice fluctuations over the past 50–100 kyr to less than ?40 m, supporting the stability of the meteorite trap over the last glacial cycle. The second H‐chondrite pairing group, FRO 90001, is much smaller and its geographic distribution is mainly controlled by wind‐transport. Most L‐chondrites are younger than 50 kyr, except for the FRO 93009/01172 pair, which has a terrestrial age of ?500 kyr. These two old L chondrites represent the only surviving members of a large shower with a similar preatmospheric radius (?80 cm) as the FRO 90174 shower. The find locations of these two paired L‐chondrite fragments on opposite sides of Frontier Mountain confirm the general glaciological model in which the two ice flows passing both ends of the mountain are derived from the same source area on the plateau. The 50 FRO meteorites analyzed so far represent 21 different falls. The terrestrial ages range from 6 kyr to 500 kyr, supporting the earlier proposed concentration mechanism.  相似文献   

15.
In this study, we conduct a detailed analysis of the Ko?ice meteorite fall (February 28, 2010), to derive a reliable law describing the mass distribution among the recovered fragments. In total, 218 fragments of the Ko?ice meteorite, with a total mass of 11.285 kg, were analyzed. Bimodal Weibull, bimodal Grady, and bimodal lognormal distributions are found to be the most appropriate for describing the Ko?ice fragmentation process. Based on the assumption of bimodal lognormal, bimodal Grady, bimodal sequential, and bimodal Weibull fragmentation distributions, we suggest that, prior to further extensive fragmentation in the lower atmosphere, the Ko?ice meteoroid was initially represented by two independent pieces with cumulative residual masses of approximately 2 and 9 kg, respectively. The smaller piece produced about 2 kg of multiple lightweight meteorite fragments with the mean around 12 g. The larger one resulted in 9 kg of meteorite fragments, recovered on the ground, including the two heaviest pieces of 2.374 kg and 2.167 kg with the mean around 140 g. Based on our investigations, we conclude that two to three larger fragments of 500–1000 g each should exist, but were either not recovered or not reported by illegal meteorite hunters.  相似文献   

16.
Abstract— A stony meteorite fell near the Fuc Bin village, Vietnam, in July, 1971. Based on optical microscopy, scanning electron microscopy and electron probe microanalysis, the meteorite is classified as an L5 chondrite that contains olivine (Fa23.6), low-Ca pyroxene (Fs20.3 Wo1.3), high-Ca pyroxene (Fs7.5 Wo44.2), plagioclase (Ab83.8 Or5), chlorapatite, merrillite and opaque minerals: chromite, troilite, kamacite, taenite, tetrataenite and native copper.  相似文献   

17.
Abstract— NWA 2526 is a coarse‐grained, achondritic rock dominated by equigranular grains of polysynthetically twinned enstatite (?85 vol%) with frequent 120° triple junctions and ?10–15 vol% of kamacite + terrestrial weathering products. All other phases including troilite, daubreelite, schreibersite, and silica‐normative melt areas make up 相似文献   

18.
Ruhobobo is a new meteorite which fell in Rwanda, Africa, in 1976. We found and analyzed olivine (Fa 23.4), opx (Fs 19.7, Wo 1.4), cpx (Fs 7.5, Wo 44.0), plagioclase (An 11.7, Or 5.6), chromite, “whitlockite”, kamacite, taenite and troilite. Based on these analyses and on microscopic observation, Ruhobobo is an unshocked L6 chondrite.  相似文献   

19.
The Homewood meteorite is a slightly weathered find of 325 grams discovered in 1970 about 64 km southwest of Winnipeg, Manitoba. It consists of olivine (Fa25.4; 43.8 normative wt. percent), orthopyroxene (Fs23.3; 28.5 percent), kamacite and taenite (7.5 percent), troilite (5.6 percent), maskelynite (8.3 percent), chromite (1.0 percent), whitlockite (0.7 percent) and minor patchy Ca pyroxene. Bulk chemical analysis yielded Fetotal 21.60 wt. percent, Fe/SiO20.55, SiO2/MgO 1.53 and FeO/Fetotal 0.29. Barred olivine, radiating pyroxene and porphyritic chondrules, all with ill-defined outlines, occur in the meteorite. Most chemical and mineralogical features characterize the Homewood meteorite as an L6 (hypersthene) chondrite. The presence of maskelynite, the undulatory extinction, extensive fracturing and pervasive mosaicism of olivine, and the poor definition of chondrule outlines suggest that the Homewood meteorite has been shocked in the range of 300–350 kbar.  相似文献   

20.
Abstract– Northwest Africa 4859 (NWA 4859) is a meteorite of LL chondrite parentage that shows unusual igneous features and contains widely distributed pentlandite. The most obvious unusual feature is a high proportion of large (≤3 cm diameter) igneous‐textured enclaves (LITEs), interpreted as shock melts that were intruded into an LL chondrite host. One such LITE appears to have been produced by whole rock melting of LL chondrite, initial rapid partial crystallization, and subsequent slow cooling of the residual melt in the host to produce a differentiated object. Other unusual features include mm‐sized “overgrowth objects,” fine‐grained plagioclase‐rich bands, and coarse troilite (≤7 mm across) grains. All these features are interpreted as having crystallized from melts produced by a single transient shock event, followed by slow cooling. A subsequent shock event of moderate (S3) intensity produced veining and transformed some of the pyroxene into the clinoenstatite polytype. Pentlandite (together with associated troilite) in NWA 4859 probably formed by the breakdown of a monosulfide precursor phase at low temperature (≤230 °C) following the second shock event. NWA 4859 is interpreted to be an unusual impact‐melt breccia that contains shock melt which crystallized in different forms at depth within the parent body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号