首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS‐REx) mission is to return to Earth a pristine sample of carbonaceous material from the primitive asteroid (101955) Bennu. To support compositional mapping of Bennu as part of sample site selection and characterization, we tested 95 spectral indices on visible to near infrared laboratory reflectance data from minerals and carbonaceous meteorites. Our aim was to determine which indices reliably identify spectral features of interest. Most spectral indices had high positive detection rates when applied to spectra of pure, single‐component materials. The meteorite spectra have fewer and weaker absorption features and, as a result, fewer detections with the spectral indices. Indices targeting absorptions at 0.7 and 2.7–3 μm, which are attributable to hydrated minerals, were most successful for the meteorites. Based on these results, we identified a set of 17 indices that are most likely to be useful at Bennu. These indices detect olivines, pyroxenes, carbonates, water/OH‐bearing minerals, serpentines, ferric minerals, and organics. Particle size and albedo are known to affect band depth but had a negligible impact on interpretive success with spectral indices. Preliminary analysis of the disk‐integrated Bennu spectrum with these indices is consistent with expectations given the observed absorption near 3 μm. Our study prioritizes spectral indices to be used for OSIRIS‐REx spectral analysis and mapping and informs the reliability of all index‐derived data products, including a science value map for sample site selection.  相似文献   

2.
The backscattered reflectivity of Jupiter's ring has been previously measured over distinct visible and near infrared wavelength bands by a number of ground-based and spaceborne instruments. We present spectra of Jupiter's main ring from 2.21-2.46 μm taken with the NIRSPEC spectrometer at the W.M. Keck observatory. At these wavelengths, scattered light from Jupiter is minimal due to the strong absorption of methane in the planet's atmosphere. We find an overall flat spectral slope over this wavelength interval, except for a possible red slope shortward of 2.25 μm. We extended the spectral coverage of the ring to shorter wavelengths by adding a narrow-band image at 1.64 μm, and show results from 2.27-μm images over phase angles of 1.2°-11.0°. Our images at 1.64 and 2.27 μm reveal that the halo contribution is stronger at the shorter wavelength, possibly due to the redder spectrum of the ring parent bodies as compared with the halo dust component. We find no variation in main ring reflectivity over the 1.2°-11.0° phase angle range at 2.27 μm. We use adaptive optics imaging at the longer wavelength L′ band (3.4-4.1 μm) to determine a 2-σ upper limit of 22 m of vertically-integrated I/F. Our observing campaign also produced an L′ image of Callisto, showing a darker leading hemisphere, and a spectrum of Amalthea over the 2.2-2.5 and 2.85-3.03 μm ranges, showing deep 3-μm absorption.  相似文献   

3.
Abstract— We have determined initial 129I/127I ratios for mineral concentrates of four enstatite meteorites and a eucrite. In the case of the enstatite meteorites the inferred ages are associated with the pyroxene‐rich separates giving pyroxene closure ages relative to the Shallowater standard of Indarch (EH4, 0.04 ± 0.67 Ma), Khairpur (EL6, ?4.22 ± 0.67 Ma), Khor Temiki (aubrite, ?0.06 Ma), and Itqiy (enstatite achondrite, ?2.6 ± 2.6 Ma), negative ages indicate closure after Shallowater. No separate from the cumulate eucrite Asuka (A?) 881394 yielded a consistent ratio, though excess 129Xe was observed in a feldspar separate, suggesting disturbance by thermal metamorphism within 25 Ma of closure in Shallowater. Iodine‐129 ages are mapped to the absolute Pb‐Pb time scale using the calibration proposed by Gilmour et al. (2006) who place the closure age of Shallowater at 4563.3 ± 0.4 Ma. Comparison of the combined 129I‐Pb data with associated 53Mn ages, for objects that have been dated by both systems, indicates that all three chronometers evolved concordantly in the early solar system. The enstatite chondrites are offset from the linear array described by asteroid‐belt objects when 53Mn ages are plotted against combined 129I‐Pb data, supporting the suggestion that 53Mn was radially heterogeneous in the early solar system.  相似文献   

4.
Comparative planetary geochemistry provides insight into the origin and evolutionary paths of planetary bodies in the inner solar system. The eucrite and angrite achondrite groups are particularly interesting because they show evidence of early planetary differentiation. We present 147Sm‐143Nd and 176Lu‐176Hf analyses of eight noncumulate (basaltic) eucrites, two cumulate eucrites, and three angrites, which together place new constraints on the evolution and differentiation histories of the crusts of the eucrite and angrite parent bodies and their mantle mineralogies. The chemical compositions of both eucrites and angrites indicate similar evolutionary paths and petrogenetic models with formation and isolation of differentiated crustal reservoirs associated with segregation of ilmenite. We report a 147Sm‐143Nd mineral isochron age for the Moama cumulate eucrite of 4519 ± 34 Ma (MSWD = 1.3). This age indicates protracted magmatism within deep crustal layers of the eucrite parent body lasting up to about 50 Ma after the formation of the solar system. We further demonstrate that the isotopic compositions of constituent minerals are compromised by secondary processes hindering precise determination of mineral isochron ages of basaltic eucrites and angrites. We interpret the changes in geochemistry and, consequently, the erroneous 147Sm‐143Nd and 176Lu‐176Hf internal mineral isochron ages of basaltic eucrites and angrites as the result of metamorphic events such as impacts (effects from pressure, temperature, and peak shock duration) on the surfaces of the eucrite and angrite parent bodies.  相似文献   

5.
Abstract— Two meteorites belonging to the howardite‐eucrite‐diogenite (HED) group fell recently in Rajasthan, India. One of these, Piplia Kalan, was classified as a eucrite and the other, Lohawat, as a howardite. In this study, we present the results of Mössbauer spectroscopic investigations of these two meteorites. We also compare the results with the Mössbauer experiments reported for the Kapoeta howardite and look for systematics in the Mössbauer spectra of HED meteorites.  相似文献   

6.
Abstract— Spectra of asteroid 4 Vesta and 21 small (estimated diameters less than 10 km) asteroids with Vesta‐like spectral properties (Vestoids) were measured at visible and near‐infrared wavelengths (~0.44 to ~1.65 μm). All of the measured small asteroids (except for 2579 Spartacus) have reflectance spectra consistent with surface compositions similar to eucrites and howardites and consistent with all being derived from Vesta. None of the observed asteroids have spectra similar to diogenites. We find no spectral distinction between the 15 objects tabulated as members of the Vesta dynamical family and 6 of the 7 sampled “non‐family” members that reside just outside the semi‐major axis (a), eccentricity (e), and inclination (i) region of the family. The spectral consistency and close orbital (a‐e‐i) match of these “non‐family” objects to Vesta and the Vesta family imply that the true bounds of the family extend beyond the subjective cut‐off for membership. Asteroid 2579 Spartacus has a spectrum consistent with a mixture of eucritic material and olivine. Spartacus could contain olivine‐rich material from Vesta's mantle or may be unrelated to Vesta altogether. Laboratory measurements of the spectra of eucrites show that samples having nearly identical compositions can display a wide range of spectral slopes. Finer particle sizes lead to an increase in the slope, which is usually referred to as reddening. This range of spectral variation for the best‐known meteoritic analogs to the Vestoids, regardless of whether they are actually related to each other, suggests that the extremely red spectral slopes for some Vestoids can be explained by very fine‐grained eucritic material on their surfaces.  相似文献   

7.
Abstract— We determined the cosmic-ray exposure age of 20 diogenites from measured cosmogenic noble gas isotopes and calculated production rates of 3He, 21Ne and 38Ar. The production rates were calculated on the basis of the measured chemical composition and the cosmogenic 22Ne/21Ne ratio of each sample. The shielding conditions of each sample were also checked on the basis of the measured 10Be and 26AI concentrations. The exposure ages range from 6 to 50 Ma but do not form a continuous distribution: ten ages cluster at 21–25 Ma and four at 35–42 Ma. The two diogenite clusters coincide with the 22 Ma and 38 Ma peaks in the exposure age distribution of eucrites and howardites. After the selection from literature data of 32 eucrites and 11 howardites with reliable ages, we find a total of 23 howardite, eucrite and diogenite (HED) group meteorites at 20–25 Ma and 10 at 35–42 Ma. The shape of the two peaks is consistent with single impact events, and random number statistics show that they are statistically significant at the 99% level. Altogether, this provides strong evidence for two major impact events 22 Ma and 39 Ma ago. Although these two events can explain more than half of all HED exposure ages, it takes at least five impact events to explain all ages <50 Ma. An impact frequency of one per 10 Ma corresponds to projectiles of at least 2–4 km in diameter for Vesta and of 60–300 m for the 100× smaller Vesta-derived “vestoids.” Based on the HED exposure-age distribution, the size distribution of the main-belt asteroids and the difference in size between Vesta and the kilometer size vestoids, we favor Vesta as the major source of HED meteorites, although some of the meteorites may have been ejected from the vestoids rather than directly from Vesta.  相似文献   

8.
A suite of sulfate minerals were characterized spectrally, compositionally, and structurally in order to develop spectral reflectance-compositional-structural relations for this group of minerals. Sulfates exhibit diverse spectral properties, and absorption-band assignments have been developed for the 0.3-26 μm range. Sulfate absorption features can be related to the presence of transition elements, OH, H2O, and SO4 groups. The number, wavelength position, and intensity of these bands are a function of both composition and structure. Cation substitutions can affect the wavelength positions of all major absorption bands. Hydroxo-bridged Fe3+ results in absorption bands in the 0.43, 0.5, and 0.9 μm regions, while the presence of Fe2+ results in absorption features in the 0.9-1.2 μm interval. Fundamental SO bending and stretching vibration absorption bands occur in the 8-10, 13-18, and 19-24 μm regions (1000-1250, 550-770, and 420-530 cm−1). The most intense combinations and overtones of these fundamentals are found in the 4-5 μm (2000-2500 cm−1) region. Absorption features seen in the 1.7-1.85 μm interval are attributable to HOH/OH bending and translation/rotation combinations, while bands in the 2.1-2.7 μm regions can be attributed to H2O- and OH-combinations as well as overtones of SO bending fundamentals. OH- and H2O-bearing sulfate spectra are fundamentally different from each other at wavelengths below ∼6 μm. Changes in H2O/OH content can shift SO band positions due to change in bond lengths and structural rearrangement. Differences in absorption band wavelength positions enable discrimination of all the sulfate minerals used in this study in a number of wavelength intervals. Of the major absorption band regions, the 4-5 μm region seems best for identifying and discriminating sulfates in the presence of other major rock-forming minerals.  相似文献   

9.
Abstract— Infrared spectra of mineral grains from primitive meteorites could be useful for comparison with astronomical infrared spectra since some of their grains might be similar to those formed in the planet‐forming disks around young stars or in the envelopes surrounding late‐type stars. To assess the usefulness of meteorite spectra, olivine grains separated from primitive meteorites have been analyzed using FTIR microscope techniques in the 2–16 μm wavelength range. The sub‐micron sizes of the grains made a complex preparation process necessary. Five characteristic bands were measured near 11.9, 11.2, 10.4, 10.1, and 10.0 μm. The results of 59 analyses allow the calculation of band positions for meteoritic olivines as a function of their iron and magnesium contents. Comparison of the meteoritic results with astronomical data for comets and dust around young and old stars, which exhibit bands similar to the strongest infrared bands observed in the grains (at 11.2 μm), show that the spectral resolution of the astronomical observations is too low to ascertain the exact iron and magnesium (Mg: Fe) ratio of the dust in the 8–13 μm wavelength range.  相似文献   

10.
Abstract– We have carried out a sample‐correlated spectroscopic and mineralogical investigation of samples from seven different collection sites of the Tagish Lake C2 chondrite. Rietveld refinement of high‐resolution powder X‐ray diffraction (XRD) data was used to determine quantitative major mineral abundances. Thermal infrared (400–4500 cm−1, 2.2–25.0 μm) spectra of the same samples were obtained using diffuse (biconical) reflectance infrared Fourier transform spectroscopy (DRIFTS). Our results are in good agreement with previous studies of the mineralogy of the Tagish Lake meteorite; we find however that Tagish Lake is more varied in major mineralogy than has previously been reported. In particular, we observed two new distinct lithologies, an inclusion‐poor magnetite‐ and sulfide‐rich lithology, and a carbonate‐rich, siderite‐dominated lithology in addition to the previously documented carbonate‐rich and carbonate‐poor lithologies. Grain density for each Tagish Lake sample was calculated from the measured mineral modal abundances and known mineral densities. For powders from three originally intact inclusion‐rich samples, the calculated grain density is 2.77 ± 0.05 g cm−3, in excellent agreement with those reported in the literature for other intact inclusion‐rich Tagish Lake samples. Tagish Lake disaggregated samples have a significantly higher calculated grain density due to their lower saponite‐serpentine content, likely a result of mineral separation in the meltwater holes from which they were collected; the disaggregated samples may not therefore adequately represent bulk samples of the Tagish Lake meteorite. The predominance of very fine‐grained material in the Tagish Lake samples investigated in this study is expected to produce infrared spectra representative of asteroidal regolith. Gypsum and talc have been found by XRD in powders from the inclusion‐rich, intact Tagish Lake samples in this study, and may have been present in the parent body; if present, these hydrous sulfates would complicate the interpretation of possible hydrated mineral features in asteroid infrared spectra.  相似文献   

11.
Abstract— If Vesta is the parent body of the howardite, eucrite, and diogenite (HED) meteorites, then geo-chemical and petrologic constraints for the meteorites may be used in conjunction with astronomical constraints for the size and mass of Vesta to (1) determine the size of a possible metal core in Vesta and (2) model the igneous differentiation and internal structure of Vesta. The density of Vesta and petrologic models for HED meteorites together suggest that the amount of metal in the parent body is <25 mass%, with a best estimate of ~5%, assuming no porosity. For a porosity of up to 5% in the silicate fraction of the asteroid, the permissible metal content is <30%. These results suggest that any metal core in the HED parent body and Vesta is not unusually large. A variety of geochemical and other data for HED meteorites are consistent with the idea that they originated in a magma ocean. It appears that diogenites formed by crystal accumulation in a magma ocean cumulate pile and that most noncumulate eucrites (excepting such eucrites as Bouvante and Statinem) formed by subsequent crystallization of the residual melts. Modelling results suggest that the HED parent body is enriched in rare earth elements by a factor of ~2.5–3.5 relative to CI-chondrites and that it has approximately chondritic Mg/Si and Al/Sc ratios. Stokes settling calculations for a Vesta-wide, nonturbulent magma ocean suggest that early-crystallizing magnesian olivine, orthopyroxene, and pigeonite would have settled relatively quickly, permitting fractional crystallization to occur, but that later-crystallizing phases would have settled (or floated) an order of magnitude more slowly, allowing, instead, a closer approach to equilibrium crystallization for the more evolved (eucritic) melts. This would have inhibited the formation of a plagioclase-flotation crust on Vesta. Plausible models for the interior of Vesta, which are consistent with the data for HED meteorites and Vesta, include a metal core (<130 km radius), an olivine-rich mantle (~65–220 km thick), a lower crustal unit (~12–43 km thick) composed of pyroxenite, from which diogenites were derived, and an upper crustal unit (~23–42 km thick), from which eucrites originated. The present shape of Vesta (with ~60 km difference in the maximum and minimum radius) suggests that all of the crustal materials, and possibly some of the underlying olivine from the mantle, could have been locally excavated or exposed by impact cratering.  相似文献   

12.
Abstract— We present a method that combines Mössbauer spectroscopy and X‐ray diffraction to quantify the modal mineralogy of unequilibrated ordinary chondrites (UOCs). Despite being a fundamental tool in the interpretation of geological systems, there are no modal mineralogical data available for these meteorites. This is due to their fine‐grained nature, highly heterogeneous silicate mineralogy, and the presence of poorly characterized phases. Consequently, it has not been possible to obtain accurate modal mineralogy by conventional techniques such as point counting. Here we use Mössbauer spectroscopy as a preliminary identification technique and X‐ray diffraction provides the quantification for a suite of recent UOC falls. We find the most primitive UOCs to contain a significant amount of phyllosilicate material that was converted during metamorphism to form ferromagnesian silicates. A complete suite of Antarctic samples is analyzed by each method to observe mineralogical trends and these are compared with trends shown by recent falls. The fact that mineralogical relationships shown by finds and falls are in agreement allows us to be confident that we are observing the products of pre‐terrestrial alteration. Mössbauer spectroscopy reveals evidence of steadily increasing reduction with metamorphism in the UOCs. Because this technique allows comparisons to be made between UOCs and EOCs, our reduction sequence can be combined with other evidence showing progressive oxidation in the EOCs. This yields an integrated model of changing redox conditions on equilibrating ordinary chondrite parent bodies.  相似文献   

13.
We combined high‐resolution and space‐resolved elemental distribution with investigations of magnetic minerals across Fe,Ni‐alloy and troilite interfaces for two nonmagmatic (Morasko and Mundrabilla) IAB group iron meteorites and an octahedrite found in 1993 in Coahuila/Mexico (Coahuila II) preliminarily classified on Ir and Au content as IIAB group. The aim of this study was to elucidate the crystallization and thermal history using gradients of the siderophile elements Ni, Co, Ge, and Ga and the chalcophile elements Cr, Cu, and Se with a focus on magnetic minerals. The Morasko and Coahuila II meteorite show a several mm‐thick carbon‐ and phosphorous‐rich transition zone between Fe,Ni‐alloy and troilite, which is characterized by magnetic cohenite and nonmagnetic or magnetic schreibersite. At Morasko, these phases have a characteristic trace element composition with Mo enriched in cohenite. In both Morasko and Coahuila II, Ni is enriched in schreibersite. The minerals have crystallized from immiscible melts, either by fractional crystallization and C‐ and P‐enrichment in the melt, or by partial melting at temperatures slightly above the eutectic point. During crystallization of Mundrabilla, the field of immiscibility was not reached. Independent of meteorite group and cooling history, the magnetic mineralogy (daubreelite, cohenite and/or schreibersite, magnetite) is very similar to the troilite (and transition zone) for all three investigated iron meteorites. If these minerals can be separated from the metal, they might provide important information about the early solar system magnetic field. Magnetite is interpreted as a partial melting or a terrestrial weathering product of the Fe,Ni‐alloy under oxidizing conditions.  相似文献   

14.
Abstract— We demonstrate that the use of an established spectral deconvolution algorithm with mid‐infrared spectral libraries of mineral separates of varying grain sizes is capable of identifying the known mineral compositions and abundances of a selection of howardite, eucrite, and diogenite (HED) meteorite samples. In addition, we apply the same technique to mid‐infrared spectral emissivity measurements of Vesta that have been obtained from Cornell's Mid‐Infrared Asteroid Spectroscopy (MIDAS) Survey and the Infrared Space Observatory (ISO). Each Vesta measurement was made over a different range of longitudes. Our spectral deconvolution results to the Vesta spectra corroborate that Vesta's surface is howardite or eucrite‐like in composition and heterogeneous across its surface. The spectral fits produced by the linear deconvolution algorithm yields good results for the HED samples of known composition, thus giving us a high degree of confidence that our results for Vesta are valid.  相似文献   

15.
16.
Abstract— Zagami and Nakhla are achondrites and belong to the Shergotty-Nakhla-Chassigny (SNC) meteorite group. It is generally accepted that Mars is their parent body. Mineralogical and chemical analyses have revealed that the major mineral phases of these two meteorites are pyroxene, olivine, maskelynite, and plagioclase. In this work, near-infrared biconical reflectance measurements were performed on sawed surfaces of chips from Zagami and Nakhla. Spectra obtained with an analytical spot diameter on the order of the mineral grain size reflect the heterogeneous distribution of different mineral phases. The characteristic absorption bands of the pyroxenes are numerically evaluated in terms of the modified Gaussian model. Spectra with overlapping absorption features are resolved into the basic absorption bands. From these results, it can be estimated what kind of clinopyroxenes belong to the investigated mineral assemblages. As a result, the major clinopyroxene phase in Nakhla is Ca-rich augite, whereas in Zagami both Ca-rich and Ca-poor pyroxenes are present. By means of such a procedure, laboratory spectra of minerals become more informative and may help in discussing Martian remote sensing data in the near-infrared region.  相似文献   

17.
18.
Abstract— –In March 2001, asteroid (25143) Itokawa, the target of the Japanese Hayabusa spacecraft mission, was in a favorable viewing geometry for ground‐based telescopic study. Visible/near‐infrared (VNIR) spectra (~~0.48 to 0.9 μm) obtained on March 24, 26, and 27 UT, and near‐infrared (NIR) spectra (~~0.75 to 2.5 μm) obtained on March 10, 11, 12, 23, and 24 UT collectively show absorption features centered near 1.0 and 2.0 μm, which are indicative of olivine and pyroxene. Analyses of these absorption features indicate an abundance ratio of olivine to pyroxene of approximately 75:25 ± 5, respectively, with no significant variation in the relative abundance of these minerals across its surface on a regional scale. The band center positions indicate that the mean pyroxene chemistry is ~~Wo14 ± 5Fs43 ± 5. There appear to be at least two pyroxene components: primarily a low‐Ca orthopyroxene accompanied by a spectrally significant (~~15–20%) high Fe‐rich pigeonite phase. The mean pyroxene composition is significantly more Fe‐rich than the Fs14–26 range found in ordinary chondrites. These pyroxene compositions are suggestive of phases crystallized from partial melts. This would indicate that the parent body of (25143) Itokawa reached temperatures sufficient to initiate partial melting (~~1050 to 1250 °C), but that it did not attain the degree of melting required for significant melt mobilization and efficient segregation of the basaltic melt component from the unmelted residual olivine portion. Itokawa's spectral band parameters place it near the S(III)/S(IV) boundary, but within the S(III) taxonomic field. In meteoritic nomenclature, Itokawa would be most analogous to an olivine‐rich primitive achondrite. Alternatively, if the high Fs value is not related to partial melting, then Itokawa could also represent a rare atypical LL chondrite, or a previously unsampled oxidized Fe‐rich chondritic‐like assemblage.  相似文献   

19.
Abstract— Carbonaceous chondrites are among the most analyzed geological materials on Earth. However, despite this attention, and unlike most terrestrial rocks, little is known on the abundance of individual phases within them. Here, we show how a combination of several novel X‐ray diffraction (XRD) techniques (including a high‐brightness X‐ray MicroSource®), and Mössbauer spectroscopy, allows a complete modal mineralogy to be ascertained from even the most highly unequilibrated, fine‐grained chondrites for all minerals of abundance >1 wt%. Knowledge of the modal mineralogy of a sample also allows us to calculate grain density. We analyzed Allende, Murchison, Tagish Lake, and Orgueil. Based on our modal data, the grain density estimates for Allende, Murchison, and Orgueil are close to literature values. In the case of Tagish Lake, there is no published grain density, although a bulk density measurement does exist. Taking our estimate of grain density, and the measured bulk density, we calculate an exceptionally high porosity of 41% for this meteorite, similar to some chondritic IDPs and in line with a porosity calculated from an entry model for the Tagish Lake fireball. Although it is an oxidized CV, magnetite is present in Allende at a level of <0.5 wt% or <0.3 vol%, a result that is substantiated by several other instrumental studies. This may be an oxidized meteorite, but that oxidation is not manifested in abundant magnetite. In addition, we note appreciable fayalitic olivine in Orgueil, detected by both XRD and Mössbauer. We employed MicroSource® XRD to look at heterogeneity in mineral abundance in Orgueil and found substantial variation, with phyllosilicates varying inversely with olivine. The data suggest that Orgueil was initially composed primarily of anhydrous materials, which have been partially, but not completely, altered. Although the data are preliminary, comparison between our XRD modal assessment, bulk chemistry, grain density, and Mössbauer data, suggests that our estimates of mineral abundance are robust. The advent of MicroSource® XRD allows similar modal data to be acquired from samples as small as a few hundred micrograms.  相似文献   

20.
Fourier transform infrared (FTIR) spectroscopy and cathodoluminescence (CL) imaging techniques, combined with electron microprobe analyses, have been used to determine the physical state of feldspathic phases that have been subject to varying levels of shock in the grouped lunar meteorites Miller Range 090034, 090070, and 090075. Six feldspathic phases have been identified based on spectral, textural, and chemical properties. A specific infrared wavelength band ratio (1064/932 cm?1 equivalent to 9.40/10.73 μm), chosen because it can distinguish between some of the feldspathic phases, can be used to estimate the pressure regimes experienced by these phases. In addition, FTIR spatial mapping capabilities allow for visual comparison of variably shocked phases within the samples. By comparing spectral and compositional data, the origin and shock history of this lunar meteorite group has been determined, with each of the shocked feldspathic phases being related to events in its geological evolution. As such, we highlight that FTIR spectroscopy can be easily employed to identify shocked feldspathic phases in lunar samples; estimate peak shock pressures; and when compared with chemical data, can be used to investigate their shock histories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号