首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have empirically estimated how often fireball shocks produce overpressure (∆P) at the ground sufficient to damage windows. Our study used a numerical entry model to estimate the energy deposition and shock production for a suite of 23 energetic fireballs reported by U.S. Government sensors over the last quarter century. For each of these events, we estimated the peak ∆P on the ground and the ground area above ∆P thresholds of 200 and 500 Pa where light and heavy window damage, respectively, are expected. Our results suggest that at the highest ∆P, it is the rare, large fireballs (such as the Chelyabinsk fireball) which dominate the long-term areal ground footprints for heavy window damage. The height at the fireball peak brightness and the fireball entry angle contribute to the variance in ground ∆P, with lower heights and shallower angles producing larger ground footprints and more potential damage. The effective threshold energy for fireballs to produce heavy window damage is ~5–10 kT; such fireballs occur globally once every 1–2 years. These largest annual bolide events, should they occur over a major urban center with large numbers of windows, can be expected to produce economically significant window damage. However, the mean frequency of heavy window damage (∆P above 500 Pa) from fireball shock waves occurring over urban areas is estimated to be approximately once every 5000 yr. Light window damage (∆P above 200 Pa) is expected every ~600 yr.  相似文献   

2.
On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long‐lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14C, 22Na, 26Al, 54Mn, 57Co, 58Co, and 60Co, which indicate that the pre‐atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26Al half‐life (0.717 Myr), the cosmic‐ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137Cs and primordial 40K in some of the Chelyabinsk fragments.  相似文献   

3.
Here we characterize the magnetic properties of the Chelyabinsk chondrite (LL5, S4, W0) and constrain the composition, concentration, grain size distribution, and mineral fabric of the meteorite's magnetic mineral assemblage. Data were collected from 10 to 1073 K and include measurements of low‐field magnetic susceptibility (χ0), the anisotropy of χ0, hysteresis loops, first‐order reversal curves, Mössbauer spectroscopy, and X‐ray microtomography. The REM and REM′ paleointensity protocols suggest that the only magnetizations recorded by the chondrite are components of the Earth's magnetic field acquired during entry into our planet's atmosphere. The Chelyabinsk chondrite consists of light and dark lithologies. Fragments of the light lithology show logχ0 = 4.57 ± 0.09 (s.d.) (= 135), while the dark lithology shows 4.65 ± 0.09 (= 39) (where χ0 is in 10?9 m3 kg?1). Thus, Chelyabinsk is three times more magnetic than the average LL5 fall, but is similar to a subgroup of metal‐rich LL5 chondrites (Paragould, Aldsworth, Bawku, Richmond) and L/LL5 chondrites (Glanerbrug, Knyahinya). The meteorite's room‐temperature magnetization is dominated by multidomain FeNi alloys taenite and kamacite (no tetrataenite is present). However, below approximately 75 K remanence is dominated by chromite. The metal contents of the light and dark lithologies are 3.7 and 4.1 wt%, respectively, and are based on values of saturation magnetization.  相似文献   

4.
Numerical simulation of atmospheric disturbances during the first hours after the Chelyabinsk and Tunguska space body impacts has been carried out. The results of detailed calculations, including the stages of destruction, evaporation and deceleration of the cosmic body, the generation of atmospheric disturbances and their propagation over distances of thousands of kilometers, have been compared with the results of spherical explosions with energy equal to the kinetic energy of meteoroids. It has been shown that in the case of the Chelyabinsk meteorite, an explosive analogy provides acceptable dimensions of the perturbed region and the perturbation amplitude. With a more powerful Tunguska fall, the resulting atmospheric flow is very different from the explosive one; an atmospheric plume emerges that releases matter from the meteoric trace to an altitude of the order of a thousand kilometers.  相似文献   

5.
We propose that the Taurid meteor shower may contain bodies able to survive and be recovered as meteorites. We review the expected properties of meteorite‐producing fireballs, and suggest that end heights below 35 km and terminal speeds below 10 km s?1 are necessary conditions for fireballs expected to produce meteorites. Applying the meteoroid strength index (PE criteria) of Ceplecha and McCrosky (1976) to a suite of 33 photographically recorded Taurid fireballs, we find a large spread in the apparent meteoroid strengths within the stream, including some very strong meteoroids. We also examine in detail the flight behavior of a Taurid fireball (SOMN 101031) and show that it has the potential to be a (small) meteorite‐producing event. Similarly, photographic observations of a bright, potential Taurid fireball recorded in November of 1995 in Spain show that it also had meteorite‐producing characteristics, despite a very high entry velocity (33 km s?1). Finally, we note that the recent Maribo meteorite fall may have had a very high entry velocity (28 km s?1), further suggesting that survival of meteorites at Taurid‐like velocities is possible. Application of a numerical entry model also shows plausible survival of meteorites at Taurid‐like velocities, provided the initial meteoroids are fairly strong and large, both of which are characteristics found in the Taurid stream.  相似文献   

6.
The Tunguska event on 30 June 1908 has been subjected to much speculation within different fields of research. Publication of the results of the 1961 expedition to the Tunguska area (Florensky, 1963) supports that a cometary impact caused the event. Based on this interpretation, calculations of the impactor energy release and explosion height have been reported by Ben-Menahem (1975), and velocity, mass, and density of the impactor by Petrov and Stulov (1975). Park (1978) and Turco et al., 1981, Turco et al., 1982, used these numbers to calculate a production of ca. 30 × 106 tons of NO during atmospheric transit. This paper presents a high-resolution study of nitrate concentration in the Greenland ice sheet in ca. 10 years covering the Tunguska event. No signs of excess nitrate are found in three ice cores from two different sites in Greenland in the years following the Tunguska event. By comparing these results with results for other aerosols generally found in the ice, the lack of excess NO3? following the Tunguska event can be interpreted as indicating that the impactor nitrate production calculated by Park (1978) and Turco et al., 1981, Turco et al., 1982 are 1–2 orders of magnitude too high. To explain this it is suggested, from other lines of reasoning, that the impactor density determined by Petrov and Stulov (1975) probably is too low.  相似文献   

7.
Fireball networks establish the trajectories of meteoritic material passing through Earth's atmosphere, from which they can derive pre‐entry orbits. Triangulated atmospheric trajectory data require different orbit determination methods to those applied to observational data beyond the Earth's sphere of influence, such as telescopic observations of asteroids. Currently, the vast majority of fireball networks determine and publish orbital data using an analytical approach, with little flexibility to include orbital perturbations. Here, we present a novel numerical technique for determining meteoroid orbits from fireball network data and compare it to previously established methods. The re‐entry of the Hayabusa spacecraft, with its known pre‐Earth orbit, provides a unique opportunity to perform this comparison as it was observed by fireball network cameras. As initial sightings of the Hayabusa spacecraft and capsule were made at different altitudes, we are able to quantify the atmosphere's influence on the determined pre‐Earth orbit. Considering these trajectories independently, we found the orbits determined by the novel numerical approach to align closer to JAXA's telemetry in both cases. Using simulations, we determine the atmospheric perturbation to become significant at ~90 km—higher than the first observations of typical meteorite dropping events. Using further simulations, we find the most substantial differences between techniques to occur at both low entry velocities and Moon passing trajectories. These regions of comparative divergence demonstrate the need for perturbation inclusion within the chosen orbit determination algorithm.  相似文献   

8.
Abstract— The fireball accompanying the Park Forest meteorite fall (L5) was recorded by ground‐based videographers, satellite systems, infrasound, seismic, and acoustic instruments. This meteorite shower produced at least 18 kg of recovered fragments on the ground (Simon et al. 2004). By combining the satellite trajectory solution with precise ground‐based video recording from a single site, we have measured the original entry velocity for the meteoroid to be 19.5 ± 0.3 km/s. The earliest video recording of the fireball was made near the altitude of 82 km. The slope of the trajectory was 29° from the vertical, with a radiant azimuth (astronomical) of 21° and a terminal height measured by infrared satellite systems of 18 km. The meteoroid's orbit has a relatively large semi‐major axis of 2.53 ± 0.19 AU, large aphelion of 4.26 ± 0.38 AU, and low inclination. The fireball reached a peak absolute visual magnitude of ?22, with three major framentation episodes at the altitudes of 37, 29, and 22 km. Acoustic recordings of the fireball airwave suggest that fragmentation was a dominant process in production of sound and that some major fragments from the fireball remained supersonic to heights as low as ?10 km. Seismic and acoustic recordings show evidence of fragmentation at 42, 36, 29, and 17 km. Examination of implied energies/initial masses from all techniques (satellite optical, infrasound, seismic, modeling) leads us to conclude that the most probable initial mass was (11 ± 3) × 103 kg, corresponding to an original energy of ?0.5 kt TNT (2.1 times 1012 J) and a diameter of 1.8 m. These values correspond to an integral bolometric efficiency of 7 ± 2%. Early fragmentation ram pressures of <1 MPa and major fragmentations occurring with ram pressures of 2–5 MPa suggest that meter‐class stony near‐Earth asteroids (NEAs) have tensile strengths more than an order of magnitude lower than have been measured for ordinary chondrites. One implication of this observation is that the rotation period for small, fast‐rotating NEAs is likely to be >30 seconds.  相似文献   

9.
Simultaneous, also called electrophonic sounds were widely reported by eye-witnesses to the Chelyabinsk fireball. The available data indicate that such sounds were heard at ranges to at least ~100 km from the fireball’s atmospheric path. We estimate that the fireball may have generated of order 625 W of energy in the form of very low frequency radiation, and we find some tentative evidence to indicate that the acoustic conversion efficiency at a 100 km range was of order 0.1 %. Numerical simulations of the atmospheric flight path indicate that electrophonic sounds should have commenced some 5 s after the fireball first became luminous and would have lasted for some 7.5 s prior to the moment of catastrophic break-up.  相似文献   

10.
Abstract— We discuss possible evidence for a dilution of 14C caused by the Tunguska impact event, proposed by Rasmussen et al. (1999). The results presented in that paper and other available information do not support this hypothesis.  相似文献   

11.
Abstract— We present instrumental observations of the Tagish Lake fireball and interpret the observed characteristics in the context of two different models of ablation. From these models we estimate the pre‐atmospheric mass of the Tagish Lake meteoroid to be ?56 tonnes and its porosity to be between 37 and 58%, with the lowest part of this range most probable. These models further suggest that some 1300 kg of gram‐sized or larger Tagish Lake material survived ablation to reach the Earth's surface, representing an ablation loss of 97% for the fireball. Satellite recordings of the Tagish Lake fireball indicate that 1.1 times 1012 J of optical energy were emitted by the fireball during the last 4 s of its flight. The fraction of the total kinetic energy converted to light in the satellite pass band is found to be 16%. Infrasonic observations of the airwave associated with the fireball establish a total energy for the event of 1.66 ± 0.70 kT TNT equivalent energy. The fraction of this total energy converted to acoustic signal energy is found to be between 0.10 and 0.23%. Examination of the seismic recordings of the airwave from Tagish Lake have established that the acoustic energy near the sub‐terminal point is converted to seismic body waves in the upper‐most portion of the Earth's crust. The acoustic energy to seismic energy coupling efficiency is found to be near 10?6 for the Tagish Lake fireball. The resulting energy estimate is near 1.7 kT, corresponding to a meteoroid 4 m in diameter. The seismic record indicates extensive, nearly continuous fragmentation of the body over the height intervals from 50 to 32 km. Seismic and infrasound energy estimates are in close agreement with the pre‐atmospheric mass of 56 tonnes established from the modeling. The observed flight characteristics of the Tagish Lake fireball indicate that the bulk compressive strength of the pre‐atmospheric Tagish Lake meteoroid was near 0.25 MPa, while the material compressive strength (most appropriate to the recovered meteorites) was closer to 0.7 MPa. These are much lower than values found for fireballs of ordinary chondritic composition. The behavior of the Tagish Lake fireball suggests that it represents the lowest end of the strength spectrum of carbonaceous chondrites or the high end of cometary meteoroids. The bulk density and porosity results for the Tagish Lake meteoroid suggest that the low bulk densities measured for some small primitive bodies in the solar system may reflect physical structure dominated by microporosity rather than macroporosity and rubble‐pile assemblages.  相似文献   

12.
The results of the atmospheric trajectory, radiant, heliocentric orbit, and preliminary strewn field calculations for an extremely bright slow‐moving fireball are presented. In the evening hours of July 23, 2008, a bright object entered Earth's atmosphere over Tajikistan. The fireball had a ?20.3 maximum absolute magnitude and a spectacularly long persistent dust trail remained visible over a widespread region of Tajikistan for about 28 minutes after sunset. The fireball was also recorded by a visible‐light satellite system at 14 h 45 min 25 s UT, and the dust trail was imaged by video and photocameras. A unique aspect of this event is that it was detected by two infrasound and five seismic stations too. The bolide was first recorded at a height of 38.2 km, reached its maximum brightness at a height of 35.0 km, and finished at a height of 19.6 km. The first breakup occurred under an aerodynamic pressure of approximately 1.6 MPa, similar to the values derived for breakups of the scarcely reported meteorite‐dropping bolides. The fireball's trajectory and dynamic results suggest that meteorite survival is likely. The meteoroid followed an Apollo‐like asteroid orbit comparable to those derived for previously recovered meteorites with accurately known orbits.  相似文献   

13.
Large Near-Earth-Asteroids have played a role in modifying the character of the surface geology of the Earth over long time scales through impacts. Recent modeling of the disruption of large meteoroids during atmospheric flight has emphasized the dramatic effects that smaller objects may also have on the Earth's surface. However, comparison of these models with observations has not been possible until now. Peekskill is only the fourth meteorite to have been recovered for which detailed and precise data exist on the meteoroid atmospheric trajectory and orbit. Consequently, there are few constraints on the position of meteorites in the solar system before impact on Earth. In this paper, the preliminary analysis based on 4 from all 15 video recordings of the fireball of October 9, 1992 which resulted in the fall of a 12.4 kg ordinary chondrite (H6 monomict breccia) in Peekskill, New York, will be given. Preliminary computations revealed that the Peekskill fireball was an Earth-grazing event, the third such case with precise data available. The body with an initial mass of the order of 104 kg was in a pre-collision orbit with a = 1.5 AU, an aphelion of slightly over 2 AU and an inclination of 5. The no-atmosphere geocentric trajectory would have lead to a perigee of 22 km above the Earth's surface, but the body never reached this point due to tremendous fragmentation and other forms of ablation. The dark flight of the recovered meteorite started from a height of 30 km, when the velocity dropped below 3 km/s, and the body continued 50 km more without ablation, until it hit a parked car in Peekskill, New York with a velocity of about 80 m/s. Our observations are the first video records of a bright fireball and the first motion pictures of a fireball with an associated meteorite fall.  相似文献   

14.
Abstract– The Grimsby meteorite (H4–6) fell on September 25, 2009. As of mid‐2010, 13 fragments totaling 215 g have been recovered. Records of the accompanying fireball from the Southern Ontario Meteor Network, including six all‐sky video cameras, a large format CCD, infrasound and radar records, have been used to characterize the trajectory, speed, orbit, and initial mass of the meteoroid. From the four highest quality all‐sky video records, the initial entry velocity was 20.91 ± 0.19 km s?1 while the derived radiant has a local azimuth of 309.40° ± 0.19° and entry angle of 55.20° ± 0.13°. Three major fragmentation episodes are identified at 39, 33, and 30 km height, with corresponding uncertainties of approximately 2 km. Evidence for early fragmentation at heights of approximately 70 km is found in radar data; dynamic pressure of this earliest fragmentation is near 0.1 MPa while the main flare at 39 km occurred under ram pressures of 1.5 MPa. The fireball was luminous to at least 19.7 km altitude and the dynamic mass estimate of the largest remaining fragment at this height is approximately several kilograms. The initial mass is constrained to be <100 kg from infrasound data and ablation modeling, with a most probable mass of 20–50 kg. The preatmospheric orbit is typical of an Apollo asteroid with a likely immediate origin in either the 3:1 or ν6 resonances.  相似文献   

15.
Abstract— On September 15, 2007, a bright fireball was observed and a big explosion was heard by many inhabitants near the southern shore of Lake Titicaca. In the community of Carancas (Peru), a 13.5 m crater and several fragments of a stony meteorite were found close to the site of the impact. The Carancas event is the first impact crater whose formation was directly observed by several witnesses as well as the first unambiguous seismic recording of a crater‐forming meteorite impact on Earth. We present several lines of evidence that suggest that the Carancas crater was a hypervelocity impact. An event like this should have not occurred according to the accepted picture of stony meteoroids ablating in the Earth's atmosphere, therefore it challenges our present models of entry dynamics. We discuss alternatives to explain this particular event. This emphasizes the weakness in the pervasive use of “average” parameters (such as tensile strength, fragmentation behavior and ablation behavior) in current modeling efforts. This underscores the need to examine a full range of possible values for these parameters when drawing general conclusions from models about impact processes.  相似文献   

16.
The trajectory and orbit of the LL7 ordinary chondrite Dishchii'bikoh are derived from low‐light video observations of a fireball first detected at 10:56:26 UTC on June 2, 2016. Results show a relatively steep ~21° inclined orbit and a short 1.13 AU semimajor axis. Following entry in Earth's atmosphere, the meteor luminosity oscillated corresponding to a meteoroid spin rate of 2.28 ± 0.02 rotations per second. A large fragment broke off at 44 km altitude. Further down, mass was lost to dust during flares at altitudes of 34, 29, and 25 km. Surviving meteorites were detected by Doppler weather radar and several small 0.9–29 g meteorites were recovered under the radar reflection footprint. Based on cosmogenic radionuclides and ground‐based radiometric observations, the Dishchii'bikoh meteoroid was 80 ± 20 cm in diameter assuming the density was 3.5 g/cm3. The meteoroid's collisional history confirms that the unusual petrologic class of LL7 does not require a different parent body than three previously observed LL chondrite falls. Dishchii'bikoh was ejected 11 Ma ago from parent body material that has a 4471 ± 6 Ma U‐Pb age, the same as that of Chelyabinsk (4452 ± 21 Ma). The distribution of the four known pre‐impact LL chondrite orbits is best matched by dynamical modeling if the source of LL chondrites is in the inner asteroid belt in a low inclined orbit, with the highly inclined Dishchii'bikoh being the result of interactions with Earth before impacting.  相似文献   

17.
Three masses of the Chelyabinsk meteorite have been studied with a wide range of analytical techniques to understand the mineralogical variation and thermal history of the Chelyabinsk parent body. The samples exhibit little to no postentry oxidation via Mössbauer and Raman spectroscopy indicating their fresh character, but despite the rapid collection and care of handling some low levels of terrestrial contamination did nonetheless result. Detailed studies show three distinct lithologies, indicative of a genomict breccia. A light‐colored lithology is LL5 material that has experienced thermal metamorphism and subsequent shock at levels near S4. The second lithology is a shock‐darkened LL5 material in which the darkening is caused by melt and metal‐troilite veins along grain boundaries. The third lithology is an impact melt breccia that formed at high temperatures (~1600 °C), and it experienced rapid cooling and degassing of S2 gas. Portions of light and dark lithologies from Chel‐101, and the impact melt breccias (Chel‐102 and Chel‐103) were prepared and analyzed for Rb‐Sr, Sm‐Nd, and Ar‐Ar dating. When combined with results from other studies and chronometers, at least eight impact events (e.g., ~4.53 Ga, ~4.45 Ga, ~3.73 Ga, ~2.81 Ga, ~1.46 Ga, ~852 Ma, ~312 Ma, and ~27 Ma) are clearly identified for Chelyabinsk, indicating a complex history of impacts and heating events. Finally, noble gases yield young cosmic ray exposure ages, near 1 Ma. These young ages, together with the absence of measurable cosmogenic derived Sm and Cr, indicate that Chelyabinsk may have been derived from a recent breakup event on an NEO of LL chondrite composition.  相似文献   

18.
Two peat columns from Tunguska (Siberia) were analysed for pollen, spores, charcoal, trace elements and γ-emitters in order to identify the fingerprints of the impact of a still unidentified cosmic body (TCB), which occurred in the summer of 1908, and the level of environmental pollution in a background area of central Siberia. Peat layers were subject to non-destructive γ-ray spectrometry to derive radiochronology by the excess 210Pb method. The age-to-depth relationship was crosschecked by using both 1963 horizon of 137Cs associated to maximum global fallout deposition and palynological data profiles. Vertical distributions of trace elements in the peat columns were obtained by PIXE multielemental analysis allowing determination of the levels of environmental contamination in a background region of the Siberian taiga.The association of heavy metals such as Ni, Co and Cu in the profiles suggests the connection of the area with mining and metal smelting activity in the north of the region through atmospheric circulation. As concerns global scale contamination, the inventory of the artificial radionuclide 137Cs (4.6 kBq m− 2) shows a value typical of remote slightly contaminated areas resulting from global scale redistribution of radioactive fallout from Cold War nuclear weapon testing. The atmospheric inventory of the natural radionuclide 210Pb, for which a mean annual flux of 200 Bq m− 2 yr− 1 has been calculated, is typical of continental regions.The influence of Tunguska Cosmic Body in the peat is recognizable by a large discontinuity in the palynological profile of the peat monolith at a depth coinciding with the 1908 layer as determined by the 210Pb technique, showing a large peak of total pollen counting attributed to the impact of the shockwave on the area in which huge tree stands were destroyed. Following the event, tree pollen concentration decreases abruptly showing the temporary inception of a mire environment with an increase of Sphagnum spore concentrations. Results of elemental analysis so far available do not show anomalies in the concentration profiles at depths coinciding with the Tunguska event layer indicating the need for pre-concentration technique enabling the detection of element associations typical of extraterrestrial materials.  相似文献   

19.
Abstract— On January 15, 2006, Stardust, a man‐made space capsule, plummeted to Earth for a soft landing after spending seven years in space. Since the expected initial speed of the body was about 12.9 km/s, a four‐element ground‐based infrasound array was deployed to Wendover, Nevada, USA, to measure the hypersonic booms from the re‐entry. At a distance of ~33 km from the nominal trajectory, we easily recorded the weak acoustic arrivals and their continued rumbling after the main hypersonic boom arrival. In this paper, we report on subsequent analyses of these data, including an assessment of the expected entry characteristics (dynamics, energetics, ablation and panchromatic luminosity, etc.) on the basis of a bolide/meteor/fireball entry model that was specifically adapted for modeling a re‐entering man‐made object. Throughout the infrasonic data analyses, we compared our results for Stardust to those previously obtained for Genesis. From the associated entry parameters, we were also able to compute the kinetic energy density conservation properties for the propagating line source blast wave and compared the inviscid theoretical predictions against observed ground‐based infrasound amplitude and wave period data as a function of range. Finally, we made a top‐down bottom‐up assessment of the line source wave normals propagating downward into the complex temperature/sound speed and horizontal wind speed environment during January 15, 2006. This assessment proved to be generally consistent with the signal processing analysis and with the observed time delay between the known Stardust entry and the time of observations of infrasound signals, and so forth.  相似文献   

20.
In the standard fireball model of gamma-ray bursts (GRBs), the fireball starts with an optically thick phase. As it expands, the fireball becomes optically thin at some stage. The thermal radiation trapped in the originally opaque fireball then leaks out, producing a transient event. The appearance of the event is investigated in the framework of a homogeneous, spherically symmetric and freely expanding fireball produced instantly by an explosive process without continuous injection of mass and energy. We find that, generally, the event has a time duration shorter than that of the main burst, which is presumably produced by the internal shock after the fireball becomes optically thin. The event is separated from the main burst by a quiescent time interval, and is weaker than the main burst at least in a high-energy band. Hence, the event corresponds to a GRB precursor. The precursor event predicted by our model has a smooth and Fast Rise and Exponential Decay (FRED) shaped light curve, and a quasi-thermal spectrum. Typically, the characteristic blackbody photon energy is in the X-ray band. However, if the distortion of the blackbody spectrum by electron scattering is considered, the characteristic photon energy could be boosted to the gamma-ray band. Our model may explain a class of observed GRB precursors – those having smooth and FRED-shaped light curves and quasi-thermal spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号