首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhenium is an important element with which to test hypotheses of isotope variation. Historically, it has been difficult to precisely correct the instrumental mass bias in thermal ionization mass spectrometry. We used W as an internal standard to correct mass bias on the MC‐ICP‐MS, and obtained the first precise δ187Re values (~±0.02‰, 2SE) for iron meteorites and chondritic metal. Relative to metal from H chondrites, IVB irons are systematically higher in δ187Re by ~0.14 ‰. δ187Re for other irons are similar to H chondritic metal, although some individual samples show significant isotope fractionation. Since 185Re has a high neutron capture cross section, the effect of galactic cosmic‐ray (GCR) irradiation on δ187Re was examined using correlations with Pt isotopes. The pre‐GCR irradiation δ187Re for IVB irons is lower, but the difference in δ187Re between IVB irons and other meteoritic metal remains. Nuclear volume‐dependent fractionation for Re is about the right magnitude near the melting point of iron, but because of the refractory and compatible character of Re, a compelling explanation in terms of mass‐dependent fractionation is elusive. The magnitude of a nucleosynthetic s‐process deficit for Re estimated from Mo and Ru isotopes is essentially unresolvable. Since thermal processing reduced nucleosynthetic effects in Pd, it is conceivable that Re isotopic variations larger than those in Mo and Ru may be present in IVBs since Re is more refractory than Mo and Ru. Thus, the Re isotopic difference between IVBs and other irons or chondritic metal remains unexplained.  相似文献   

2.
Planetary bodies a few hundred kilometers in radii are the precursors to larger planets but it is unclear whether these bodies themselves formed very rapidly or accreted slowly over several millions of years. Ordinary H chondrite meteorites provide an opportunity to investigate the accretion time scale of a small planetary body given that variable degrees of thermal metamorphism present in H chondrites provide a proxy for their stratigraphic depth and, therefore, relative accretion times. We exploit this feature to search for nucleosynthetic isotope variability of 54Cr, which is a sensitive tracer of spatial and temporal variations in the protoplanetary disk's solids, between 17 H chondrites covering all petrologic types to obtain clues about the parent body accretionary rate. We find no systematic variability in the mass‐biased corrected abundances of 53Cr or 54Cr outside of the analytical uncertainties, suggesting very rapid accretion of the H chondrite parent body consistent with turbulent accretion. By utilizing the μ54Cr–planetary mass relationship observed between inner solar system planetary bodies, we calculate that the H chondrite accretion occurred at 1.1 ± 0.4 or 1.8 ± 0.2 Myr after the formation of calcium‐aluminum‐rich inclusions (CAIs), assuming either the initial 26Al/27Al abundance of inner solar system solids determined from angrite meteorites or CAIs from CV chondrites, respectively. Notably, these ages are in agreement with age estimates based on the parent bodies’ thermal evolution when correcting these calculations to the same initial 26Al/27Al abundance, reinforcing the idea of a secular evolution in the isotopic composition of inner disk solids.  相似文献   

3.
Abstract– High‐precision Cu isotopic compositions have been measured for the metal phase of 29 iron meteorites from various groups and for four terrestrial standards. The data are reported as the δ65Cu permil deviation of the 65Cu/63Cu ratio relative to the NIST SRM 976 standard. Terrestrial mantle rocks have a very narrow range of variations and scatter around zero. In contrast, iron meteorites show δ65Cu approximately 2.3‰ variations. Different groups of iron meteorites have distinct δ65Cu values. Nonmagmatic IAB‐IIICD iron meteorites have similar δ65Cu (0.03 ± 0.08 and 0.12 ± 0.10, respectively), close to terrestrial values (approximately 0). The other group of nonmagmatic irons, IIE, is isotopically distinct (?0.69 ± 0.15). IVB is the iron meteorite group with the strongest elemental depletion in Cu and samples in this group are enriched in the lighter isotope (δ65Cu down to ?2.26‰). Evaporation should have produced an enrichment in 65Cu over 63Cu (δ65Cu >0) and can therefore be ruled out as a mechanism for volatile loss in IVB meteorites. In silicate‐bearing iron meteorites, Δ17O correlates with δ65Cu. This correlation between nonmass‐dependent and mass‐dependent parameters suggests that the Cu isotopic composition of iron meteorites has not been modified by planetary differentiation to a large extent. Therefore, Cu isotopic ratios can be used to confirm genetic links. Cu isotopes thus confirm genetic relationships between groups of iron meteorites (e.g., IAB and IIICD; IIIE and IIIAB); and between iron meteorites and chondrites (e.g., IIE and H chondrites). Several genetic connections between iron meteorites groups are confirmed by Cu isotopes, (e.g., IAB and IIICD; IIIE and IIIAB); and between iron meteorites and chondrites (e.g., IIE and H chondrites).  相似文献   

4.
Highly siderophile elements (HSE) strongly partition into metal phases over silicate minerals and so offer important constraints on nebular and core formation processes acting on early planetesimals. Abundances of the HSE are also an important tool for constraining relationships between metal-rich meteorites. The first bulk rock and in situ HSE abundance and 187Re-187Os data are reported for the ungrouped metal-rich achondrite Tafassasset to examine models of its petrogenesis and origin. Bulk rock and metal grain HSE abundances are elevated at ~2 and ~15 times CI chondrite abundances, respectively, and are largely unfractionated from one another. Metal within Tafassasset is therefore likely to have quenched shortly after partial melting without significant fractional crystallization. Metal grain HSE abundances can be used to calculate a metal fraction of 14 ± 4 wt%, overlapping with the parent bodies of CC iron meteorites, which have also been related to Tafassasset using nucleosynthetic isotope anomalies. Despite such similarities, HSE systematics of bulk rock Tafassasset are not equivalent to any known chondrites, and metal grains do not overlap with iron meteorites or chondrite metal grains, precluding a direct genetic relationship.  相似文献   

5.
The existence of mass‐independent chromium isotope variability of nucleosynthetic origin in meteorites and their components provides a means to investigate potential genetic relationship between meteorites and planetary bodies. Moreover, chromium abundances are depleted in most surficial terrestrial rocks relative to chondrites such that Cr isotopes are a powerful tool to detect the contribution of various types of extra‐terrestrial material in terrestrial impactites. This approach can thus be used to constrain the nature of the bolide resulting in breccia and melt rocks in terrestrial impact structures. Here, we report the Cr isotope composition of impact rocks from the ~0.57 Ma Lonar crater (India), which is the best‐preserved impact structure excavated in basaltic target rocks. Results confirm the presence of a chondritic component in several bulk rock samples of up to 3%. The impactor that created the Lonar crater had a composition that was most likely similar to that of carbonaceous chondrites, possibly a CM‐type chondrite.  相似文献   

6.
Abstract– The isotope fractionation of Zn in meteorites has been measured for the first time using thermal ionization mass spectrometry and a double spiking technique. The magnitude of δZn ranged from ?0.29 to +0.38‰ amu?1 for five stone meteorites whereas the iron meteorite Canyon Diablo displays δZn of 1.11 ± 0.11‰ amu?1. The results for chondrites in this work can be divided into positive and negative δZn, supporting a previous proposal that chondrites are a mixture of materials from two different temperature sources. The Zn isotope fractionation present in meteorites may represent a primordial heterogeneity formed in the early solar system. An anomalous isotopic composition of Zn obtained for the Redfields iron meteorite suggests large‐scale inherited isotope heterogeneity of the protosolar nebula, or the presence of a parent body that has formed within its own isotopically anomalous reservoir. These anomalies are in the same direction but smaller than nuclear field shift effects observed in chemical exchange reactions. The isotope dilution mass spectrometry (IDMS) technique was used to measure Zn concentration, yielding a range from 20.1 μg g?1 to 302 μg g?1 in five stone meteorites and from 0.019 to 26 μg g?1 in seven iron meteorites. The IDMS‐measured abundance of Zn in Orgueil is 302 ± 14 μg g?1 and should be considered for future compilations of the abundance of Zn in the solar system.  相似文献   

7.
High‐precision isotope data of meteorites show that the long‐standing notion of a “chondritic uniform reservoir” is not always applicable for describing the isotopic composition of the bulk Earth and other planetary bodies. To mitigate the effects of this “isotopic crisis” and to better understand the genetic relations of meteorites and the Earth‐forming reservoir, we performed a comprehensive petrographic, elemental, and multi‐isotopic (O, Ca, Ti, Cr, Ni, Mo, Ru, and W) study of the ungrouped achondrites NWA 5363 and NWA 5400, for both of which terrestrial O isotope signatures were previously reported. Also, we obtained isotope data for the chondrites Pillistfer (EL6), Allegan (H6), and Allende (CV3), and compiled available anomaly data for undifferentiated and differentiated meteorites. The chemical compositions of NWA 5363 and NWA 5400 are strikingly similar, except for fluid mobile elements tracing desert weathering. We show that NWA 5363 and NWA 5400 are paired samples from a primitive achondrite parent‐body and interpret these rocks as restite assemblages after silicate melt extraction and siderophile element addition. Hafnium‐tungsten chronology yields a model age of 2.2 ± 0.8 Myr after CAI, which probably dates both of these events within uncertainty. We confirm the terrestrial O isotope signature of NWA 5363/NWA 5400; however, the discovery of nucleosynthetic anomalies in Ca, Ti, Cr, Mo, and Ru reveals that the NWA5363/NWA 5400 parent‐body is not the “missing link” that could explain the composition of the Earth by the mixing of known meteorites. Until this “missing link” or a direct sample of the terrestrial reservoir is identified, guidelines are provided of how to use chondrites for estimating the isotopic composition of the bulk Earth.  相似文献   

8.
Abstract– We review the 26Al ages of chondrules in various type 3.0 chondrites. The 26Al ages of chondrules are 1–3 Myr after calcium‐aluminum‐rich inclusion (CAI) for LL3.0, CO3.0, and Acfer 094 (Ungrouped C 3.0). Available data for chondrules in CR chondrites indicate that many chondrules are relatively younger (≥3 Myr), although data from chondrules in CR3.0 are not yet available to confirm their younger ages. The total ranges for the 26Al ages of chondrules in a single chondrite group are more than 0.5–1 Myr. However, most chondrules show relatively narrow range of ages in a single chondrite group (0.2–0.4 Myr, 1 SD), which might be short enough to preserve the group‐specific chemical and isotope signatures against radial diffusion of solid in the disk. Distinct oxygen isotope reservoirs might exist in the protoplanetary disk simultaneously, which could be spatially separated.  相似文献   

9.
Abstract— We have studied Pb‐isotope systematics of chondrules from the oxidized CV3 carbonaceous chondrite Allende. The chondrules contain variably radiogenic Pb with a 206Pb/204Pb ratio between 19.5–268. Pb‐Pb isochron regression for eight most radiogenic analyses yielded the date of 4566.2 ± 2.5 Ma. Internal residue‐leachate isochrons for eight chondrule fractions yielded consistent dates with a weighted average of 4566.6 ± 1.0 Ma, our best estimate for an average age of Allende chondrule formation. This Pb‐Pb age is consistent with the range of model 26Al‐26Mg ages of bulk Allende chondrules reported by Bizzarro et al. (2004) and is indistinguishable from Pb‐Pb ages of Ca‐Al‐rich inclusions (CAIs) from CV chondrites (4567.2 ± 0.6 Ma) (Amelin et al. 2002) and the oldest basaltic meteorites. We infer that chondrule formation started contemporaneously with or shortly after formation of CV CAIs and overlapped in time with formation of the basaltic crust and iron cores of differentiated asteroids. The entire period of chondrule formation lasted from 4566.6 ± 1.0 Ma (Allende) to 4564.7 ± 0.6 Ma (CR chondrite Acfer 059) to 4562.7 ± 0.5 Ma (CB chondrite Gujba) and was either continuous or consisted of at least three discrete episodes. Since chondrules in CB chondrites appear to have formed from a vapor‐melt plume produced by a giant impact between planetary embryos after dust in the protoplanetary disk had largely dissipated (Krot et al. 2005), there were possibly a variety of processes in the early solar system occurring over at least 4–5 Myr that we now combine under the umbrella name of “chondrule formation.”  相似文献   

10.
Abstract– Refractory materials, such as calcium‐aluminum‐rich inclusions (CAIs) and crystalline silicates, are widely found in chondritic meteorites as well as comets, taken as evidence for large‐scale mixing in the solar nebula. Most models for mixing in the solar nebula begin with a well‐formed protoplanetary disk. Here, we relax this assumption by modeling the formation and evolution of the solar nebula during and after the period when it accreted material from its parent molecular cloud. We consider how disk building impacts the long‐term evolution of the disk and the implications for grain transport and mixing within it. Our model shows that materials that formed before infall was complete could be preserved in primitive bodies, especially those that accreted in the outer disk. This potentially explains the discovery of refractory objects with low initial 26Al/27Al ratios in comets. Our model also shows that the highest fraction of refractory materials in meteorites formed around the time that infall stopped. Thus, we suggest that the calcium‐aluminum‐rich inclusions in chondrites would be dominated by the population that formed during the transition from class I to class II stage of young stellar objects. This helps us to understand the meaning of t = 0 in solar system chronology. Moreover, our model offers a possible explanation for the existence of isotopic variations observed among refractory materials—that the anomalous materials formed before the collapse of the parent molecular cloud was complete.  相似文献   

11.
Abstract— We used the nuclear reaction 37Cl (n,γ) 38Ar, achieved during neutron irradiation for dating meteorites by the 39Ar‐40Ar technique, to calculate the elemental Cl concentration of 132 samples of 94 different meteorites (mostly finds) representing several different classes. determined k and ca concentrations are also reported. Total [Cl] varies considerably, both among meteorites of the same class and among different meteorite classes. The range in [Cl] is approximately 15–177 ppm for ordinary chondrites; approximately 24–650 ppm for enstatite chondrites; approximately 4–177 ppm for eucrites; approximately 7–128 ppm for mesosiderites; approximately 35–268 ppm for acapulcoites and lodranites; and approximately 12–507 ppm for winonaites and iron silicates. As expected, most differentiated meteorites have lower [Cl] compared to chondrites and iron silicates. Analyses of 11 interior samples (~0.1 g each) of a large L6 chondrite varied over 68–129 ppm, which is a measure of the homogeneity of Cl distribution. By evaluating Ar release during stepwise sample degassing, we separated the Cl into low‐temperature and high‐temperature components, the former of which may consist of terrestrial contamination. Most samples show low‐temperature Cl concentrations of <40 ppm, but for several samples terrestrial Cl contamination constitutes significant fractions of the total Cl. Among most differentiated meteorites, finds show considerably greater low‐temperature [Cl] compared to falls.  相似文献   

12.
Abstract– Although iron isotopes are increasingly used for meteorites studies, no attempt has been made to evaluate the effect of terrestrial weathering on this isotopic tracer. We have thus conducted a petrographic, chemical, and iron isotopic study of equilibrated ordinary chondrites (OC) recovered from hot Moroccan and Algerian Saharan deserts environment. As previously noticed, we observe that terrestrial desertic weathering is characterized by the oxidation of Fe‐Ni metal (Fe0), sulfide and Fe2+ occurring in olivine and pyroxene. It produces Fe‐oxides and oxyhydroxides that partially replace metal, sulfide grains and also fill fractures. The bulk chemical compositions of the ordinary chondrites studied show a strong Sr and Ba enrichment and a S depletion during weathering. Bulk meteoritic iron isotope compositions are well correlated with the degree of weathering and S, Sr, and Ba contents. Most weathered chondrites display the heaviest isotopic composition, by up to 0.1‰, which is of similar magnitude to the isotopic variations resulting from meteorite parent bodies’ formation and evolution. This is probably due to the release of isotopically light Fe2+ to waters on the Earth’s surface. Hence, when subtle Fe isotopic effects have to be studied in chondrites, meteorites with weathering grade above W2 should be avoided.  相似文献   

13.
CM meteorites are dominant members of carbonaceous chondrites (CCs), which evidently accreted in a region separated from the terrestrial planets. These chondrites are key in determining the accretion regions of solar system materials, since in Mg and Cr isotope space, they intersect between what are identified as inner and outer solar system reservoirs. In this model, the outer reservoir is represented by metal‐rich carbonaceous chondrites (MRCCs), including CR chondrites. An important question remains whether the barrier between MRCCs and CCs was a temporal or spatial one. CM chondrites and chondrules are used here to identify the nature of the barrier as well as the timescale of chondrite parent body accretion. We find based on high precision Mg and Cr isotope data of seven CM chondrites and 12 chondrules, that accretion in the CM chondrite reservoir was continuous lasting <3 Myr and showing late accretion of MRCC‐like material reflected by the anomalous CM chondrite Bells. We further argue that although MRCCs likely accreted later than CM chondrites, CR chondrules must have initially formed from a reservoir spatially separated from CM chondrules. Finally, we hypothesize on the nature of the spatial barrier separating these reservoirs.  相似文献   

14.
The CB chondrites are metal‐rich meteorites with characteristics that sharply distinguish them from other chondrite groups. Their unusual chemical and petrologic features and a young formation age of bulk chondrules dated from the CBa chondrite Gujba are interpreted to reflect a single‐stage impact origin. Here, we report high‐precision internal isochrons for four individual chondrules of the Gujba chondrite to probe the formation history of CB chondrites and evaluate the concordancy of relevant short‐lived radionuclide chronometers. All four chondrules define a brief formation interval with a weighted mean age of 4562.49 ± 0.21 Myr, consistent with its origin from the vapor‐melt impact plume generated by colliding planetesimals. Formation in a debris disk mostly devoid of nebular gas and dust sets an upper limit for the solar protoplanetary disk lifetime at 4.8 ± 0.3 Myr. Finally, given the well‐behaved Pb‐Pb systematics of all four chondrules, a precise formation age and the concordancy of the Mn‐Cr, Hf‐W, and I‐Xe short‐lived radionuclide relative chronometers, we propose that Gujba may serve as a suitable time anchor for these systems.  相似文献   

15.
Neutron capture effects in meteorites and lunar surface samples have been successfully used in the past to study exposure histories and shielding conditions. In recent years, however, it turned out that neutron capture effects produce a nuisance for some of the short‐lived radionuclide systems. The most prominent example is the 182Hf‐182W system in iron meteorites, for which neutron capture effects lower the 182W/184W ratio, thereby producing too old apparent ages. Here, we present a thorough study of neutron capture effects in iron meteorites, ordinary chondrites, and carbonaceous chondrites, whereas the focus is on iron meteorites. We study in detail the effects responsible for neutron production, neutron transport, and neutron slowing down and find that neutron capture in all studied meteorite types is not, as usually expected, exclusively via thermal neutrons. In contrast, most of the neutron capture in iron meteorites is in the epithermal energy range and there is a significant contribution from epithermal neutron capture even in stony meteorites. Using sophisticated particle spectra and evaluated cross section data files for neutron capture reactions we calculate the neutron capture effects for Sm, Gd, Cd, Pd, Pt, and Os isotopes, which all can serve as neutron‐dose proxies, either in stony or in iron meteorites. In addition, we model neutron capture effects in W and Ag isotopes. For W isotopes, the GCR‐induced shifts perfectly correlate with Os and Pt isotope shifts, which therefore can be used as neutron‐dose proxies and permit a reliable correction. We also found that GCR‐induced effects for the 107Pd‐107Ag system can be significant and need to be corrected, a result that is in contrast to earlier studies.  相似文献   

16.
Abstract— We examined an improved system for extraction of carbon from meteorites, using a vacuum‐tight RF melting method. Meteorite samples mixed with an iron combustion accelerator, including a specific amount of carbon (0.052%), were combusted in a RF furnace (LECO HF‐10). 14CO2 extracted from the meteorite was diluted with a known amount of nearly 14C‐free CO2, evolved from the iron accelerator on combustion. The 14C activities of the recently fallen Holbrook (L6) and Mt. Tazerzait (L5) meteorites were measured by this method. The mean value was 56.5 ± 3.0 dpm/kg, which is similar to the values reported for recently fallen L6 chondrites. Furthermore, terrestrial ages were measured for four Antarctic meteorites: 1.8 ± 0.5 kyr for Yamato (Y‐) 75097 (L6), 1.8 ± 0.5 kyr for Y‐75108 (L6), and 0.1 ± 0.1 kyr for Y‐74192 (H5). For Y‐74190 (L6), an apparent age of 0.8 ± 0.5 kyr was calculated. After consideration of the shielding effect by using 22Ne/21Ne values, we obtained about 1.8 kyr for the terrestrial age of this chondrite. The five samples Y‐74190, Y‐75097, and Y‐75108, together with Y‐75102 (L6) and Y‐75271 (L6), have been reported to be paired and fragments of an L‐chondrite shower (Honda 1981; Takaoka 1987). The result of this work and literature data for the latter two samples confirmed that they are paired. More discussion and experimental work are needed for other recently fallen meteorites, both for L and H chondrites, and a correction for the shielding effect should be done to determine a more reliable terrestrial age.  相似文献   

17.
Abstract— Mössbauer spectroscopy is a very useful tool for identifying ferric iron weathering products in meteorites because of the capability to quantify the relative amounts of ferric iron in them. Mössbauer measurements were made of 33 Antarctic H chondrites (predominately H5) and two paired Antarctic CR chondrites. The primary goals of this study are to determine if Mössbauer spectroscopy can be used to determine which phases are weathering in Antarctic meteorites and if the relative amounts of ferric iron correlate with terrestrial age. Determining which minerals are weathering in ordinary chondrites appears very difficult due to variations in composition for different ordinary chondrites of the same meteorite class and possible problems in preparing homogeneous samples. The analysis of the two paired CR chondrites appears to indicate that metallic iron is predominately weathering to produce ferric iron for this class of meteorite. No correlation is seen between the relative amounts of ferric iron and terrestrial age for ordinary chondrites. One Antarctic H5 chondrite (ALHA77294) with a short 14C age of 135 ± 200 years from the dating of interior carbonate weathering products does have a relatively low amount of ferric iron, which is consistent with this meteorite being exposed on the surface for a relatively short time.  相似文献   

18.
Abstract— Radiochronometry of L chondritic meteorites yields a rough age estimate for a major collision in the asteroid belt about 500 Myr ago. Fossil meteorites from Sweden indicate a highly increased influx of extraterrestrial matter in the Middle Ordovician ~480 Myr ago. An association with the L‐chondrite parent body event was suggested, but a definite link is precluded by the lack of more precise radiometric ages. Suggested ages range between 450 ± 30 Myr and 520 ± 60 Myr, and can neither convincingly prove a single breakup event, nor constrain the delivery times of meteorites from the asteroid belt to Earth. Here we report the discovery of multiple 40Ar‐39Ar isochrons in shocked L chondrites, particularly the regolith breccia Ghubara, that allow the separation of radiogenic argon from multiple excess argon components. This approach, applied to several L chondrites, yields an improved age value that indicates a single asteroid breakup event at 470 ± 6 Myr, fully consistent with a refined age estimate of the Middle Ordovician meteorite shower at 467.3 ± 1.6 Myr (according to A Geologic Time Scale 2004). Our results link these fossil meteorites directly to the L‐chondrite asteroid destruction, rapidly transferred from the asteroid belt. The increased terrestrial meteorite influx most likely involved larger projectiles that contributed to an increase in the terrestrial cratering rate, which implies severe environmental stress.  相似文献   

19.
We measured the concentrations and isotopic compositions of He, Ne, and Ar in 14 fragments from 12 different meteorites: three carbonaceous chondrites, six L chondrites (three most likely paired), one H chondrite, one R chondrite, and one ungrouped chondrite. The data obtained for the CV3 chondrites Ramlat as Sahmah (RaS) 221 and RaS 251 support the hypothesis of exposure age peaks for CV chondrites at approximately 9 Ma and 27 Ma. The exposure age for Shi?r 033 (CR chondrite) of 7.3 Ma is also indicative of a possible CR chondrite exposure age peak. The three L chondrites Jiddat al Harasis (JaH) 091, JaH 230, and JaH 296, which are most likely paired, fall together with Hallingeberg into the L chondrite exposure age peak of approximately 15 Ma. The two L chondrites Shelburne and Lake Torrens fall into the peaks at approximately 40 Ma and 5 Ma, respectively. The ages for Bassikounou (H chondrite) and RaS 201 (R chondrite) are approximately 3.5 Ma and 5.8 Ma, respectively. Six of the studied meteorites show clear evidence for 3He diffusive losses, the deficits range from approximately 17% for one Lake Torrens aliquot to approximately 45% for RaS 211. The three carbonaceous chondrites RaS 221, RaS 251, and Shi?r 033 all have excess 4He, either of planetary or solar origin. However, very high 4He/20Ne ratios occur at relatively low 20Ne/22Ne ratios, which is unexpected and needs further study. The measured 40Ar ages fit well into established systematics. They are between 2.5 and 4.5 Ga for the carbonaceous chondrites, older than 3.6 Ga for the L and H chondrites, and about 2.4 Ga for the R chondrite as well as for the ungrouped chondrite. Interestingly, none of our studied L chondrites has been degassed in the 470 Ma break‐up event. Using the amount of trapped 36Ar as a proxy for noble gas contamination due to terrestrial weathering we are able to demonstrate that the samples studied here are not or only very slightly affected by terrestrial weathering (at least in terms of their noble gas budget).  相似文献   

20.
Abstract— Concentration and isotopic composition of the light noble gases as well as of 84Kr, 129Xe, and 132Xe have been measured in bulk samples of 60 carbonaceous chondrites; 45 were measured for the first time. Solar noble gases were found in nine specimens (Arch, Acfer 094, Dar al Gani 056, Graves Nunataks 95229, Grosnaja, Isna, Mt. Prestrud 95404, Yamato (Y) 86009, and Y 86751). These meteorites are thus regolith breccias. The CV and CO chondrites contain abundant planetary‐type noble gases, but not CK chondrites. Characteristic features of CK chondrites are high 129Xe/132Xe ratios. The petrologic type of carbonaceous chondrites is correlated with the concentration of trapped heavy noble gases, similar to observations shown for ordinary chondrites. However, this correlation is disturbed for several meteorites due to a contribution of atmospheric noble gases, an effect correlated to terrestrial weathering effects. Cosmic‐ray exposure ages are calculated from cosmogenic 21Ne. They range from about 1 to 63.5 Ma for CO, CV, and CK classes, which is longer than exposure ages reported for CM and CI chondrites. Only the CO3 chondrite Isna has an exceptionally low exposure age of 0.15 Ma. No dominant clusters are observed in the cosmic‐ray exposure age distribution; only for CV and CK chondrites do potential peaks seem to develop at ~9 and ~29 Ma. Several pairings among the chondrites from hot deserts are suggested, but 52 of the 60 investigated meteorites are individual falls. In general, we confirm the results of Mazor et al. (1970) regarding cosmic‐ray exposure and trapped heavy noble gases. With this study, a considerable number of new carbonaceous chondrites were added to the noble gas data base, but this is still not sufficient to obtain a clear picture of the collisional history of the carbonaceous chondrite groups. Obviously, the exposure histories of CI and CM chondrites differ from those of CV, CO, and CK chondrites that have much longer exposure ages. The close relationship among the latter three is also evident from the similar cosmic‐ray exposure age patterns that do not reveal a clear picture of major breakup events. The CK chondrites, however, with their wide range of petrologic types, form the only carbonaceous chondrite group which so far lacks a solar‐gas‐bearing regolith breccia. The CK chondrites contain only minute amounts of trapped noble gases and their noble gas fingerprint is thus distinguishable from the other groups. In the future, more analyses of newly collected CK chondrites are needed to unravel the genetic and historic evolution of this group. It is also evident that the problems of weathering and pairing have to be considered when noble gas data of carbonaceous chondrite are interpreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号