首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is to study the temporal dynamics of rhizome epiphytes and sessile animals living on the rhizomes of the seagrass Posidonia oceanica in the east of Tunisia. Surveys were conducted in October 2009, and in January, April and August 2010 on a fringing reef located in Chebba. Rhizomes were sampled by SCUBA diving at three stations. Samples were examined with a microscope to estimate the cover of macroinvertebrate and macroalgal organisms on the top 10 cm of each rhizome. Results revealed a high diversity of epiphytes on P. oceanica rhizomes with a dominance of red and brown algae, ascidians, and bryozoans. Distinct temporal changes were observed in Oued Lafrann, with a high January cover (winter period) for all groups. These winter increases can be attributed to: (i) the low phenological parameters of P. oceanica in winter that reduce the effects of shading, (ii) life cycles of the epiphytes and invertebrates, (iii) water motion and (iv) grazing.  相似文献   

2.
A survey on the epiphytic microorganisms growing on Posidonia oceanica leaves was conducted along a depth transect along the coast of Eastern Tunisia (Mahdia). Samples were collected by SCUBA diving at depths of 3, 5, 10 and 12 m in July 2008 and January 2009. A total of 58 microepiphyte taxa were identified. Multivariate analyses revealed temporal and spatial variation of the abundance of epiphytic microalgae. Water motion, light availability, temperature and motility of species seem to be responsible of temporal and bathymetric variations of epiphytic microalgae. Unlike diatoms, dinoflagellates were more abundant in deep waters, suggesting that they are more vulnerable to hydrodynamics. The significant correlation between leaf area index and abundance of epiphytic species indicates that the phenological parameters of the host plant influence the abundance of the epiphytic microorganisms. Among the epiphytic dinoflagellates, our data showed a great number of potentially toxic species (Alexandrium minitum, Amphidinium carterae, Karenia selliformis, Coolia monatis, Karlodinium veneficum, Ostreopsis siamensis, Prorocentrum concavum, Prorocentrum minimum, Prorocentrum rathymum and Prorocentrum lima). These species were more abundant in the deep station under more sheltered conditions than found at inshore shallower stations, which are subjected to high water motion.  相似文献   

3.
The aim of this research was to study spatial and temporal variation in epiphyte cover and leaf biomass of Posidonia oceanica in Eastern Tunisia. Sampling was conducted at four stations on the Mahdia coast during October and December 2010, and April and August 2011, which correspond respectively to autumn, winter, spring and summer in this area. Posidonia oceanica shoots were collected at two depths (5 and 10 m). Cover of macroinvertebrates and macroalgae was estimated on adult leaves. The results showed that leaf and epiphyte biomasses vary significantly according to sampling date, with the highest values recorded in August. We found a high diversity of epiphytic assemblages on the leaves of P. oceanica with clear qualitative and quantitative dominance of Rhodophyceae compared to other groups, followed by Phaeophyceae. Most epiphyte species on the leaves of P. oceanica in Eastern Tunisia are the same as those in other parts of the Mediterranean Sea. No bathymetrical variation in the epiphytic community was found in our study area, which can be explained by the high levels of water clarity in Mahdia.  相似文献   

4.
We conducted a field experiment to assess the response of phytal harpacticoids to nutrient‐driven increases of epiphyte load in Posidonia oceanica meadows. First, we evaluated differences in species richness, diversity and assemblage structure of phytal harpacticoids in P. oceanica meadows with differing epiphyte loads. Secondly, we conducted a field experiment where epiphyte load was increased through an in situ addition of nutrients to the water column and evaluated the responses of the harpacticoid assemblages. We predicted that there would be changes in the harpacticoid assemblages as a result of nutrient‐driven increases of epiphyte load, and that these changes would be of a larger magnitude in meadows of low epiphyte load. Our results show that the harpacticoid fauna (>500 μm) present in P. oceanica meadows in the Bay of Palma comprised taxa which are considered phytal and other less abundant ones previously described as sediment dwellers or commensal on other invertebrate species. Nutrient addition had an overall significant effect on epiphyte biomass and on harpacticoid abundance, diversity and assemblage structure, possibly as a response to the increased resources and habitat complexity provided by epiphytes. The abundance of dominant species at each location was favoured by nutrient addition and in some cases correlated with epiphytic biomass, although never strongly. This may indicate that structural complexity or diversity of the epiphytic cover might be more important than the actual epiphytic biomass for the harpacticoid species investigated. More species‐specific studies are necessary to ascertain this and clarify the relationships between harpacticoids and epiphytes in seagrass meadows. To our knowledge, this is the first account of harpacticoid species associated with P. oceanica leaves and the epiphytic community they harbour in the Mediterranean Sea.  相似文献   

5.
A study was undertaken of the patterns of spatial variability, epiphytic biomass and distribution of epiphytic fauna and flora of Posidonia oceanica. Samples were taken at four stations located approximately 4 km apart, exposed to different current conditions. Stations A and B, situated near the Oued Mimoun tidal channel with its relatively strong bi‐directional flows, were affected by high current tide. The other two stations, North Oued Mimoun (L1) and South Oued Mimoun (L2), were located further from the channel, in low current tide conditions. Sampling was conducted in the Attaya area of Kerkennah Island (Tunisia) in August 2009 at depths between 2 and 3 m, with the results indicating differences among the stations. Shoot density decreased when exposed to high levels of hydrodynamic activity generated by current tides whereas the epiphytic biomass of P. oceanica leaves decreased at sheltered stations located far from the channel. Epiphytic algae such as Heterokontophyta, Rhodophyta and Chlorophyta, and epiphytic fauna represented by Bryozoa, Hydrozoa, Annelida, Porifera and Tunicata, dominated the epiphytic assemblages and were abundant at the station most exposed to high current tide hydrodynamics. Cyanobacteria, however, were dominant in stations exposed to low current tide.  相似文献   

6.
Growth Dynamics in Posidonia oceanica (L.) Delile   总被引:1,自引:0,他引:1  
Helmut  Pirc 《Marine Ecology》1985,6(2):141-165
Abstract. Amounts of photosynthate in the rhizomes, in photosynthetically inactive basal parts of the leaves and different old leaf blades were examined. Winter leaf growth was supported by mobilisation of starch in the rhizome. This winter growth enables Posidonia oceanica to utilize the increased energy influx in early spring via the substantial leaf area already developed and to approach highest productivity in spring. During summer and autumn considerable concentrations of soluble carbohydrates were found in the leaves and rhizomes. Starch was stored in the rhizomes in concentrations of up to 6.8 % of dry weight. Levels of nitrogen and free amino acids were correlated with growth rates. The percentage of total nitrogen present as free amino acid-nitrogen decreased from November (35 %) to summer (less than 1 %), by which time leaf growth had stopped. In contrast to this, amounts of organic anions were low in winter and spring and reached their maximum in summer.
Within a shoot, sites of leaf growth were characterized by high amounts of total nitrogen and free amino acids (innermost leaves), while carbon Fixation was highest in the leaves #2–#4. Particularly high concentrations of soluble carbohydrates were found midway along leaf blades.
It is evident that this unusual growth rhythm of Posidonia oceanica was only possible because of the ability to store considerable amounts of carbon and nitrogen in the rhizomes.
The results of this investigation demonstrate on the one hand that the chemical composition of the plant is strongly correlated with growth and production, and on the other hand that it is dependent on environmental factors, such as energy influx and temperature, which change with season.  相似文献   

7.
Abstract. In view of proposed human use of seagrass production the influence of cropping on the growth of Posidonia oceanica (L.) DELILE was investigated. Removal of photosynthetic tissue reduces productivity throughout most of the growth season. This is consistent with the observed low natural grazing rates in aquatic macrophytes. A high mortality of shoots points to possible irreversible damage to the meadow. Harvesting of Posidonia should therefore be restricted to the end of the leaf growth period in early fall.  相似文献   

8.
The decapod assemblage associated with a Posidonia oceanica meadow located near its western limit of biogeographic distribution was studied over an annual cycle. Fauna samples were taken seasonally over a year (five replicates per season) in two sites located 7 km apart, using a non‐destructive sampling method (airlift sampler) for the seagrass. The dominant species of the assemblage, Pisidia longimana, Pilumnus hirtellus and Athanas nitescens, were associated with the protective rhizome stratum, which is mainly used as a nursery. The correlations between decapod assemblage structure and some phenological parameters of the seagrass shoots and wave height were negative or null, which reflects that species associated with the rhizome had a higher importance than those associated with the leaf stratum. The abundance and composition of the decapod assemblage as well as the ecological indexes displayed a seasonality trend with maximum values in summer‐autumn and minimum in winter‐spring, which were related to the seawater temperature and the recruitment periods of the dominant species. The spatial differences found in the structure and dynamics of the assemblages may be due to variations in the recruitment of the dominant species, probably as a result of the influence of local factors (e.g. temperature, currents) and the high dispersal ability of decapods, together with the patchy configuration and the surrounding habitats. The studied meadows are fragmented and are integrated within a mosaic of habitats (Cymodocea nodosa patches, algal meadows, rocky and sandy bottoms), which promotes the movement of individuals and species among them, maintaining a high species richness and evenness.  相似文献   

9.
Abstract. Growth of Posidonia oceanica (L.) DELILE was studied in a natural stand in 4 m depth at Ischia (Gulf of Naples). Renewal and growth of leaves was continuous throughout the year but showed strong seasonal modulation. The major factor for individual leaf growth as well as for the seasonal aspects of the entire foliage is seasonal modulation of leaf appearance rather than of leaf growth. Leaf area index varied between 2 nm2 m-2 in autumn and 6 m2 m-2 in late summer. Annual production is estimated to be 613 g dw m-2 for leaf blades, 54 g dw m-2 for leaf sheaths, and 27 g dw m-2 for rhizomes. Rhizome production is highly different between the primary and the secondary growth axis (274 versus 30 mg dw -shoot-1 y-1 respectively) in plagiotrope growth. Both foliage and rhizome growth are positively correlated with leaf width.  相似文献   

10.
11.
Abstract. P. oceanica forms broad prairies which completely surround the island of Ischia. This is a histochemical and ultrastructural study of the photosynthetic apparatus of the Posidonia plant. In the leaf, epidermal cells have a porous region underneath the cuticle and contain most of the chloroplasts. Fiber bundles run hypodermally and phenol storing cells are present in the mesophyll. Chloroplast ontogenesis is characterized by juvenile stages with provesicular bodies. Sea depth apparently affects some morphological features of the photosynthetic apparatus, like leaf blade thickness, phenolic cell and hypodermal fiber frequency.  相似文献   

12.
Rudolf  Novak 《Marine Ecology》1984,5(2):143-190
Abstract. Microbial colonization on the leaves of a shoot of the mediterranean seagrass Posidonia oceanica (L.) DELILE was studied using Scanning Electron Microscopy. Methods of field ecology such as transect, random plot and stratified sampling survey were applied to the microbial niveau to gain both qualitative and quantitative information on the microbial assemblage. While macro-epiphytic growth was significantly greater on the outer leaf sides, microbial colonization density was significantly higher on the inner leaf sides, both on leaf surface and epiphyte surface. Diatoms colonized the surface of incrusting algae and epiphytic animals in significantly lower numbers than the Posidonia leaf surface and were absent on erect epiphytic algae. Bacterial densities on epiphyte surfaces even exceeded values of the corresponding leaf surfaces on algal thalli near the leaf tips and on old leaves. Diatoms reach highest mean density on mature leaves and close to the leaf tips, while bacteria reach their greatest density on the oldest leaf and closer to the leaf base. Diatom density in general increases with exposure time of plant surface, while greatest bacterial density was observed at 7–10 weeks exposure. Basal leaf parts on younger leaves were dominated by rod-shaped bacteria, while distal leaf parts and old leaves were dominated by small coccoid bacteria. Surfaces of epiphytic algae were always distinctly dominated by small coccoid bacteria, and edges of thalli attracted high microbial densities. Microbial biomass (calculated from cell volumes using standard conversion factors) amounts to 2.3 g dry weight m-2 in the Posidonia stand where the shoot was sampled. The observed patterns of epiphytic colonization are interpreted as the result of a complex, dynamically changing system of interactions both within the epiphytic community and between the epiphytic community, the host plant, and it's environment. A model of the organization of the epiphytic community on Posidonia leaves is presented. “Ultra-ecology” is a term introduced to denote a type of SEM research in the micro-environment which is analogous to in situ investigation in “macroscopic” ecological work.  相似文献   

13.
The relationship between flowering and growth performance of Posidonia oceanica (L.) Delile in meadows distributed along the south‐eastern coast of Sicily (Italy) was investigated by means of a statistical model (generalized linear mixed model) combined with the lepidochronological analysis. Over a 28‐year period, 67 floral stalk remains were observed. The highest flowering index was recorded in lepidochronological year 1998 (10.1%) and the Inflorescence Frequency per age showed a clear decrease corresponding to 15‐year‐old shoots. The sexual reproductive event had positive effects on rhizome elongation (cm year?1) and leaf production (no. leaves year?1) in the same flowering year, whilst no effect on the rhizome production (mg year?1) was observed. Rhizome growth variables showed significant negative lagged responses in the two years following flowering. On the whole, we calculated that the effect exerted by flowering, in terms of loss on rhizome elongation and production, was about 27% and 38%, respectively. Although it has been demonstrated that recovery from the stress induced by sexual reproduction is limited to the two years after flowering, the magnitude of the reproductive cost may become quite considerable especially in comparison with the whole lifespan of individual shoots.  相似文献   

14.
The meadows of the Mediterranean endemic seagrass Posidonia oceanica exhibit relatively high variations of structural and biometric features at various spatial scales. An investigation performed in 1992 in the meadow off Lacco Ameno (Island of Ischia, Gulf of Naples, Italy) detected peculiar spatial patterns of plant distribution, characterized by nestlike structures with radially increasing or decreasing shoot densities. Eight years later (2000), geo‐referenced collections at selected points were repeated to trace the temporal variations of shoot density and investigate the recurrence of the density cores previously detected. In addition, shoots for molecular analyses were collected to check the hypothesis that nestlike patterns exhibit highest levels of genetic variability, due to the confluence of several genetically distinct stolons. The 2000 survey confirmed the presence of the main density cores detected in 1992, although their spatial distribution was slightly shifted and a general decrease of spatial anisotropy was observed, probably due to an increased disturbance, mainly due to pleasure boat anchoring. Patterns of genetic diversity showed a more complex picture, well related to the shoot density spatial pattern, especially when compared with the previous 1992 survey. Patterns of genetic diversity confirmed our previous hypotheses on the genesis of shoot density cores, suggesting they are produced over long time, due to a slow stolonization process and a convergence of different genotypes. Regression of the meadow and decrease of density may lead, in short periods, to a homogenization of the density patterns, while genetic diversity cores represent a long‐term ‘memory’ of their previous distribution.  相似文献   

15.
F. Boero    L. Chessa    C. Chimenz  E. Fresi 《Marine Ecology》1985,6(1):27-33
Abstract. The vertical zonation of the hydroid fauna associated with Posidonia oceanica leaves in three different localities of the central Mediterranean reveals the presence of two distinct communities. This depth-related zonation shows patterns that are independent on the geographic area.  相似文献   

16.
Abstract. In situ investigations of growth and production in a stand of Posidonia oceanica (L.) DELILE at a depth of 4 m at Ischia (Gulf of Naples) were carried out over two growing seasons. Posidonia starts to grow in August and an average bundle produces ten leaves in increasing time intervals until May. Growth curves for the leaves are given. Maximum leaf standing crop is in May with 1300 g dry weight per m-2, leaf area index at this time reaches 22 m2 m-2. Leaf net productivity is highest in March with 12 g dry weight per m2 per day. Annual leaf production is estimated as 3110 g dry weight per m2, “underground” production as 115 g dry weight per m2. About half the leaf production is exported from the system. Adaptive strategies of the growth and production pattern are discussed.  相似文献   

17.
This paper investigates patterns of variability in epiphytes of Posidonia oceanica leaves at various spatial scales around Sicily, including geographical differences among the Mediterranean basins, differences between the small islands and mainland, and the variability among and within replicated meadows in each of the previous conditions. Data on percentage cover of the most common epiphytic organisms were analysed by univariate techniques. Encrusting red algae, encrusting brown algae, filamentous algae, encrusting bryozoans, erect bryozoans, hydroids and Foraminifera were the most abundant taxa. Significant differences in the abundance of taxa were detected among geographical regions, while no significant differences were found between the islands and mainland. At smaller scales, variability was concentrated mostly among leaves 100s of centimetres apart and among meadows a few kilometres apart. These results suggest that both geographical and local processes are important in structuring the epiphytes of P. oceanica leaves in this area of the Mediterranean.  相似文献   

18.
Abstract. Posidonia oceanica prairies have been studied and mapped around the Island of Ischia and in adjacent waters. Prairies were found to cover an area of 15.7 km2 and to be distributed between 0.5 and 39 m depth. The observed distribution is comparable to those reported by previous authors indicating that prairies have not undergone remarkable regressions in the last 50 years. Patterns recorded within the beds and at their lower limits, as indicated also by their sediments characteristics, are correlated to hydrodynamic energy. Two main types of water motion are responsible for the different types of erosive features: a) steady currents flowing parallel to the coast; b) rip-, wave induced currents flowing normal to the coast.  相似文献   

19.
Fish farming impact on the seasonal biomass, carbon and nutrient (nitrogen and phosphorus) balance of the endemic Mediterranean seagrass Posidonia oceanica was assessed in the Aegean Sea (Greece) in order to detect changes in magnitude and fate of seagrass production and nutrient incorporation with organic loading of the meadows. Phosphorus concentration in the leaves, rhizomes and roots was enhanced under the cages throughout the study. Standing biomass was diminished by 64% and carbon, nitrogen and phosphorus standing stock by 64%, 61% and 48%, respectively, under the cages in relation to those at the control. Seagrass production decreased by 68% and element (C, N, P) incorporation by 67%, 58% and 58%, respectively, under the cages. Leaf shedding was reduced by 81% and loss of elements (C, N, and P) through shedding by 82%, 74% and 72%, respectively, under the cages. Leaf and element (C, N, P) residual loss rate, accounting for grazing and mechanical breakage of leaves, was decreased by 79%, 85%, 100% and 96%, respectively, at the control station. At the control station, 13.98 g C m?2 yr?1, 1.91 g N m?2 yr?1 and 0.05 g P m?2 yr?1 were produced in excess of export and loss. In contrast, under the cages 12.69 g C m?2 yr?1, 0.31 g N m?2 yr?1 and 0.04 g P m?2 yr?1 were released from the meadow. Organic loading due to fish farm discharges transformed the seagrass meadow under the cages from a typical sink to a source of organic carbon and nutrients.  相似文献   

20.
Leaf mechanical traits are important to understand how aquatic plants fracture and deform when subjected to abiotic (currents or waves) or biotic (herbivory attack) mechanical forces. The likely occurrence of variation during leaf ontogeny in these traits may thus have implications for hydrodynamic performance and vulnerability to herbivory damage, and may be associated with changes in morphologic and chemical traits. Seagrasses, marine flowering plants, consist of shoot bundles holding several leaves with different developmental stages, in which outer older leaves protect inner younger leaves. In this study we examined the long‐lived seagrass Posidonia oceanica to determine ontogenic variation in mechanical traits across leaf position within a shoot, representing different developmental stages. Moreover, we investigated whether or not the collection procedure (classical uprooted shoot versus non‐destructive shoot method: cutting the shoot without a portion of rhizome) and time span after collection influence mechanical measurements. Neither collection procedure nor time elapsed within 48 h of collection affected measurements of leaf biomechanical traits when seagrass shoots were kept moist in dark cool conditions. Ontogenic variation in mechanical traits in P. oceanica leaves over intermediate and adult developmental stages was observed: leaves weakened and lost stiffness with aging, while mid‐aged leaves (the longest and thickest ones) were able to withstand higher breaking forces. In addition, younger leaves had higher nitrogen content and lower fiber content than older leaves. The observed patterns may explain fine‐scale within‐shoot ecological processes of leaves at different developmental stages, such as leaf shedding and herbivory consumption in P. oceanica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号