首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– Despite the fact that Si is considered a potentially important metalloid in planetary systems, little is known about the effect of Si in metallic melts on trace element partitioning behavior. Previous studies have established the effects of S, C, and P, nonmetals, through solid metal/liquid metal experiments in the corresponding Fe binary systems, but the Fe‐Si system is not appropriate for similar experiments because of the high solubility of Si in solid metal. In this work, we present the results from 0.1 MPa experiments with two coexisting immiscible metallic liquids in the Fe‐S‐Si system. By leveraging the extensive available knowledge about the effect of S on trace element partitioning behavior, we explore the effect of Si. Results for 22 trace elements are presented. Strong Si avoidance behavior is demonstrated by As, Au, Ga, Ge, Sb, Sn, and Zn. Iridium, Os, Pt, Re, Ru, and W exhibit weak Si avoidance tendencies. Silicon appears to have no significant effect on the partitioning behaviors of Ag, Co, Cu, Cr, Ni, Pd, and V, all of which had similar partition coefficients over a wide range of Si liquid concentrations from Si‐free to 13 wt%. The only elements in our experiments to show evidence of a potentially weak attraction to Si were Mo and Rh. Applications of the newly determined effects of Si to problems in planetary science indicate that (1) The elements Ni, Co, Mo, and W, which are commonly used in planetary differentiation models, are minimally affected by the presence of Si in the metal, especially in comparison to other effects such as from oxygen fugacity. 2) Reduced enstatite‐rich meteorites may record a chemical signature due to Si in the metallic melts during partial melting, and if so, elements identified by this study as having strong Si avoidance may offer unique insight into unraveling the history of these meteorites.  相似文献   

2.
Abstract— Magmatic iron meteorites are commonly thought to have formed by fractional crystallization of the metallic cores of asteroid‐sized bodies. As fractional crystallization proceeds, light elements such as P and S become enriched in the molten portion of the core. The light element content of the metallic liquid influences the partitioning behavior of trace elements and may cause liquid immiscibility to occur. The elemental trends observed in magmatic iron meteorites may have been affected by both of these processes. We have examined experimentally the effect of P on the solid‐metal‐liquid‐metal partitioning behavior of Ag and Pd, Re and Os, two element pairs used to date iron meteorite processes. Phosphorus has no effect on the partition coefficient of either Ag or Pd, which are incompatible and identical within experimental error. Compatible Re and Os also have identical partitioning behavior, within experimental error, and show increasing compatibility in the solid metal with increasing P content of the metallic liquid. Including the effects of both S and P on the partitioning behavior of Re and Os, simple fractional crystallization calculations can reproduce the large variation of Re and Os concentrations observed in four magmatic iron meteorite groups but have difficulty matching the later crystallizing portions of the trends. We have also conducted experiments with three phases—solid metal and two immiscible metallic liquids—to determine the location of the liquid immiscibility field near conditions thought to be relevant to magmatic iron meteorites. Our results show a significantly smaller liquid immiscibility field as compared to the previously published Fe‐P‐S phase diagram. Our revised phase diagram suggests that liquid immiscibility was encountered during the crystallization of asteroidal cores, but much later during the crystallization process than predicted by the previously published diagram.  相似文献   

3.
Experimental trace element partitioning values are often used to model the chemical evolution of metallic phases in meteorites, but limited experimental data were previously available to constrain the partitioning behavior in the basic Fe‐Ni system. In this study, we conducted experiments that produced equilibrium solid metal and liquid metal phases in the Fe‐Ni system and measured the partition coefficients of 25 elements. The results are in good agreement with values modeled from IVB iron meteorites and with the limited previous experimental data. Additional experiments with low levels of S and P were also conducted to help constrain the partitioning behaviors of elements as a function of these light elements. The new experimental results were used to derive a set of parameterization values for element solid metal–liquid metal partitioning behavior in the Fe‐Ni‐S, Fe‐Ni‐P, and Fe‐Ni‐C ternary systems at 0.1 MPa. The new parameterizations require that the partitioning behaviors in the light‐element–free Fe‐Ni system are those determined experimentally by this study, in contrast to previous parameterizations that allowed this value to be determined as a best‐fit parameter. These new parameterizations, with self‐consistent values for partitioning in the endmember Fe‐Ni system, provide a valuable resource for future studies that model the chemical evolution of metallic phases in meteorites.  相似文献   

4.
Abstract— ‐Iron meteorites exhibit a large range in Ni concentrations, from only 4% to nearly 60%. Most previous experiments aimed at understanding the crystallization of iron meteorites have been conducted in systems with about 10% Ni or less. We performed solid metal/liquid metal experiments to determine the effect of Ni on partition coefficients for 20 trace elements pertinent to iron meteorites. Experiments were conducted in both the end‐member Ni‐S system as well as in the Fe‐Ni‐S system with intermediate Ni compositions applicable to high‐Ni iron meteorites. The Ni content of the system affects solid metal/liquid metal partitioning behavior. For a given S concentration, partition coefficients in the Ni‐S system can be over an order of magnitude larger than in the Fe‐S system. However, for compositions relevant to even the most Ni‐rich iron meteorites, the effect of Ni on partitioning behavior is minor, amounting to less than a factor of two for the majority of trace elements studied. Any effect of Ni also appears minor when it is compared to the large influence S has on element partitioning behavior. Thus, we conclude that in the presence of an evolving S‐bearing metallic melt, crystallization models can safely neglect effects from Ni when considering the full range of iron meteorite compositions.  相似文献   

5.
Meteorite fusion crusts form during the passage of a meteoroid through the Earth's atmosphere and are highly oxidized intergrowths as documented by the presence of e.g., oxides. The porous and irregular fusion crust surrounding the Almahata Sitta sulfide‐metal assemblage MS‐166 was found highly enriched in wüstite (Fe1‐xO). Frictional heating of the outer portions of the assemblage caused partial melting of predominantly the Fe‐sulfide and minor amounts of the outer Ni‐rich portions of the originally zoned metal in MS‐166. Along with melting significant amounts of oxygen were incorporated into the molten fusion crust and mainly FeS was oxidized and desulfurized to form wüstite. Considerable amounts of FeS were lost due to ablation, whereas the cores of the large metal grains appear largely unmelted leaving behind metal grains and surrounding wüstite‐rich material (matte). Metal grains along with the surrounding matte typically form an often highly porous framework of globules interconnected with the matte. Although textures and chemical composition suggest that melting of Fe,Ni metal occurred only partially (Ni‐rich rims), there is a trace elemental imprint of siderophile element partitioning influenced by oxygen in the metallic melt as indicated by the behavior of W and Ga, the two elements significantly affected by oxygen in a metallic melt. It is remarkable that MS‐166 survived the atmospheric passage as troilite inclusions in iron meteorites are preferentially destroyed.  相似文献   

6.
Abstract— Magmatic iron meteorites are generally agreed to represent metal that crystallized in asteroidal cores from a large pool of liquid. Estimates suggest that the metallic liquid contained significant amounts of S and P, both of which are incompatible and exert a strong effect on trace element partitioning. In tandem, S and P are also prone to cause immiscibility between sulfide liquid and P-rich metal liquid. The liquid immiscibility field occupies ~70% of the portion of the Fe-Ni-S-P system in which Fe is the first phase to crystallize. In spite of this, previous fractional crystallization models have taken into account only one liquid phase and have encountered significant discrepancies between the meteorite data and model values for the key elements Ni, Ir, Ga, Ge and Au at even moderate degrees of fractionation. For the first time, a model for trace element partitioning between immiscible liquids in the Fe-Ni-S-P system is presented in order to assess the effects on fractionation in magmatic iron meteorite groups. The onset of liquid immiscibility causes a significant change in the enrichment patterns of S and P in both liquids; so elements with contrasting partitioning behavior will show trends deviating clearly from one-liquid trends. A trend recorded in the solid metal will either be a smooth curve as long as equilibrium is maintained between the two liquids or the trend may diverge into a field limited by two extreme curves depending on the degree of disequilibrium. Bulk initial liquids for most magmatic groups have S/P (wt%) ratios well below 25. In these cases and due to the constitution of the Fe-Ni-S-P system, most of the metal will crystallize from the rapidly decreasing volume of metal liquid and only a subordinate amount from the sulfide liquid. Because of the strong extraction of P into the metal liquid, P will have a much larger influence on trace element partitioning than a low initial P content might suggest. My model calculations suggest that liquid immiscibility played a significant role during the solidification of the IIIAB parent body's core. The two-liquid model reproduces the IIIAB trends more closely than previous one-liquid models and can account for: (a) the general widening of the IIIAB trend with increasing Ni and decreasing Ir contents, (b) the occurrence of high-Ni members that are not strongly depleted in Ir, Ga and Ge; and (c) an upper limit at ~11 wt% Ni where the metal liquid was almost consumed.  相似文献   

7.
Abstract— Many solar system processes involve a metallic liquid, and the composition of the metallic liquid, such as the liquid's concentrations of S, P, and C, will influence the partitioning of elements during such processes. We present a method for parameterizing solid metal‐liquid metal partition coefficients for siderophile (metal‐loving) elements as a function of the metallic liquid composition. Our parameterization method is based on an older theory of Jones and Malvin (1990), which stated that the metallic liquid is composed of metal and non‐metal‐bearing domains, and the domains are the dominant influence on the partitioning behavior. By revising the means by which the metal domains are calculated, our revised parameterization method is able to match experimental partitioning data from the Fe‐Ni‐S, Fe‐Ni‐P, Fe‐Ni‐S‐P, and Fe‐Ni‐C systems. Mathematical expressions were derived for the solid metal‐liquid metal partitioning of 13 siderophile elements. Elements that are chalcophile (S‐loving), P‐loving, or C‐loving prefer the non‐metal‐bearing domains in the metallic liquid and, consequently, aren't fit by the parameterization method presented here. Possible applications for our parameterization method include modeling the crystallization of iron meteorites, planetary differentiation, and the solidification of Earth's inner core.  相似文献   

8.
The depletion of volatile siderophile elements (VSE) Sn, Ag, Bi, Cd, and P in mantles of differentiated planetary bodies can be attributed to volatile‐depleted precursor materials (building blocks), fractionation during core formation, fractionation into and retention in sulfide minerals, and/or volatile loss associated with magmatism. Quantitative models to constrain the fractionation due to core formation have not been possible due to the lack of activity and partitioning data. Interaction parameters in Fe‐Si liquids have been measured at 1 GPa, 1600 °C and increase in the order Cd (~6), Ag (~10), Sn (~28), Bi (~46), and P (~58). These large and positive values contrast with smaller and negative values in Fe‐S liquids indicating that any chalcophile behavior exhibited by these elements will be erased by dissolution of a small amount of Si in the metallic liquid. A newly updated activity model is applied to Earth, Mars, and Vesta. Five elements (P, Zn, Sn, Cd, and In) in Earth's primitive upper mantle can largely be explained by metal‐silicate equilibrium at high PT conditions where the core‐forming metal is a Fe‐Ni‐S‐Si‐C metallic liquid, but two other—Ag and Bi—become overabundant during core formation and require a removal mechanism such as late sulfide segregation. All of the VSE in the mantle of Mars are consistent with core formation in a volatile element depleted body, and do not require any additional processes. Only P and Ag in Vesta's mantle are consistent with combined core formation and volatile‐depleted precursors, whereas the rest require accretion of chondritic or volatile‐bearing material after core formation. The concentrations of Zn, Ag, and Cd modeled for Vesta's core are similar to the concentration range measured in magmatic iron meteorites indicating that these volatile elements were already depleted in Vesta's precursor materials.  相似文献   

9.
Abstract— Experimental solid metal‐liquid metal partition coefficients have been used to model the crystallization of magmatic iron meteorites and understand the evolution of asteroid cores. However, the majority of the partitioning experiments have been conducted with trace elements doped at levels that are orders of magnitude higher than measured in iron meteorites. Concern about Henry's Law and the unnatural doping levels have been cited as one reason that two recent iron meteorite studies have dismissed the experimental partition coefficients in their modeling. Using laser ablation ICP‐MS analysis, this study reports experimentally determined solid metal‐liquid metal trace element partition coefficients from runs doped down to the levels occurring in iron meteorites. The analyses for 12 trace elements (As, Co, Cr, Cu, Ga, Ge, Ir, Os, Pd, Pt, Re, and W) show no deviations from Henry's Law, and these results support decades of experimental work in which the partition coefficients were assumed to be independent of trace element concentration. Further, since our experiments are doped with natural levels of trace elements, the partitioning results are directly applicable to iron meteorites and should be used when modeling their crystallization. In contrast, our new Ag data are inconsistent with previous studies, suggesting the high Ag‐content in previous studies may have influenced the measured Ag partitioning behavior.  相似文献   

10.
Some of the defining characteristics of the IIG iron meteorite group are their high bulk P contents and massive, coarse schreibersite, which have been calculated to make up roughly 11–14 wt% of each specimen. In this study, we produced two data sets to investigate the formation of schreibersites in IIG irons: measurements of trace elements in the IIG iron meteorite Twannberg and experimental determinations of trace element partitioning into schreibersite. The schreibersite‐bearing experiments were conducted with schreibersite in equilibrium with a P‐rich melt and with bulk Ni contents ranging from 0 to 40 wt%. The partitioning behavior for the 20 elements measured in this study did not vary with Ni content. Comparison of the Twannberg measurements with the experimental results required a correction factor to account for the fact that the experiments were conducted in a simplified system that did not contain a solid metal phase. Previously determined solid metal/P‐rich melt partition coefficients were applied to infer schreibersite/solid metal partitioning behavior from the experiments, and once this correction was applied, the two data sets showed broad similarities between the schreibersite/solid metal distribution of elements. However, there were also differences noted, in particular between the Ni and P contents of the solid metal relative to the schreibersite inferred from the experiments compared to that measured in the Twannberg sample. These differences support previous interpretations that subsolidus schreibersite evolution has strongly influenced the Ni and P content now present in the solid metal phase of IIG irons. Quantitative attempts to match the IIG solid metal composition to that of late‐stage IIAB irons through subsolidus schreibersite growth were not successful, but qualitatively, this study corroborates the striking similarities between the IIAB and IIG groups, which are highly suggestive of a possible genetic link between the groups as has been previously proposed.  相似文献   

11.
Abstract– Pd and Ag partitioning between liquid Fe metallic sulfide and liquid silicate under plausible magma ocean conditions constrains potential core 107Ag content and the origin of observed Pd and Ag mantle abundances. DPdmetallic sulfide/silicate (element concentration in metallic liquid/concentration in silicate liquid) in our experiments is insensitive to S content and temperature, but increases with total Pd content. DPdmetallic sulfide/silicate at low Pd concentration ranges from approximately 150–650. Metallic sulfide Pd content and silicate Pd content anticorrelate in our study. A curved silicate saturation surface in the Fe sulfide–silicate Pd ternary can explain both the metallic sulfide–silicate Pd anticorrelation and interstudy differences in DPdmetallic sulfide/silicate behavior. The size and shape of the curved silicate phase volume may respond to physical and chemical conditions, reducing the general applicability of D calculations. Ag becomes decreasingly siderophile as S increases: DAgmetallic sulfide/silicate decreases from 144 at 0 wt% S to 2.5 at 28 wt% S added to the starting metal sulfide liquid. Model calculations indicate that 1% core material incorporated into the Hawai’ian plume would yield a 107Ag signature on the surface smaller than detectable by current analytical techniques. Observed Pd and Ag mantle depletions relative to bulk Earth are consistent with depletions calculated with the data from this study for a magma ocean scenario without additional accretionary input after core formation.  相似文献   

12.
Abstract— We report on the major and trace element abundances of 18 diogenites, and O‐isotopes for 3 of them. Our analyses extend significantly the diogenite compositional range, both in respect of Mg‐rich (e.g., Meteorite Hills [MET] 00425, MgO = 31.5 wt%) and Mg‐poor varieties (e.g., Dhofar 700, MgO = 23 wt%). The wide ranges of siderophile and chalcophile element abundances are well explained by the presence of inhomogeneously distributed sulfide or metal grains within the analyzed chips. The behavior of incompatible elements in diogenites is more complex, as exemplified by the diversity of their REE patterns. Apart from a few diogenite samples that contain minute amounts of phosphate, and whose incompatible element abundances are unlike the orthopyroxene ones, the range of incompatible element abundances, and particularly the range of Dy/Yb ratios in diogenites is best explained by the diversity of their parental melts. We estimate that the FeO/MgO ratios of the diogenite parental melts range from about 1.4 to 3.5 and therefore largely overlap the values obtained for non‐cumulate eucrites. Our results rule out the often accepted view that all the diogenites formed from parental melts more primitive than eucrites during the crystallization of a magma ocean. Instead, they point to a more complex history, and suggest that diogenites were derived from liquids produced by the remelting of cumulates formed from the magma ocean.  相似文献   

13.
Glass‐bearing inclusions hosted by different mineral phases in SNC meteorites provide important information on the conditions that prevailed during formation of early phases and/or on the composition of the primary trapped liquids/melts of these rocks. Although extensive previous work has been reported on such inclusions, several questions are still unresolved. We performed a chemical and petrographic study of the constituents (glasses and mineral assemblage) of glassy and multiphase inclusions in Shergotty and Chassigny. We focused on obtaining accurate trace element contents of glasses and co‐existing minerals and discussing their highly variable REE contents. Our results reveal an unusual geochemistry of trace element contents that appear to be independent of their major element compositions. Chemical equilibrium between phases inside inclusions as well as between glasses and host minerals could not be established. The LREE contents of glasses in glass inclusions can vary by up to two orders of magnitude. The depletion in trace element abundances shown by glasses seem to be inconsistent with these phases being residual melts. The light lithophile element contents of glasses are highly variable with enrichment in incompatible elements (e.g., Be, Sr, Ba, and LREE) indicating some processes involving percolation of fluids. All of these features are incompatible with glass‐bearing inclusions in the host minerals acting as closed systems preserving unmodified primary liquids/melts. Glass‐bearing inclusions in Shergotty and Chassigny appear to have been altered (as was the rock itself) by different postformational processes (e.g., shock, metamorphism, metasomatic [?] fluids) that affected these meteorites with different degree of intensity. Our results indicate that these inclusions could not preserve a reliable sample of the primary trapped melt.  相似文献   

14.
Abstract— D'Orbigny is an exceptional angrite. Chemically, it resembles other angrites such as Asuka‐881371, Sahara 99555, Lewis Cliff (LEW) 87051, and LEW 86010, but its structure and texture are peculiar. It has a compact and porous lithology, abundant glasses, augite‐bearing druses, and chemical and mineralogical properties that are highly unusual for igneous rocks. Our previous studies led us to a new view on angrites: they can possibly be considered as CAIs that grew to larger sizes than the ones we know from carbonaceous chondrites. Thus, angrites may bear a record of rare and special conditions in some part of the early solar nebula. Here we report trace element contents of D'Orbigny phases. Trace element data were obtained from both the porous and the compact part of this meteorite. We have confronted our results with the popular igneous genetic model. According to this model, if all phases of D'Orbigny crystallized from the same system, as an igneous origin implies, a record of this genesis should be expressed in the distribution of trace elements among early and late phases. Our results show that the trace element distribution of the two contemporaneous phases olivine and plagioclase, which form the backbone of the rock, seem to require liquids of different composition. Abundances of highly incompatible elements in all olivines, including the megacrysts, indicate disequilibrium with the bulk rock and suggest liquids very rich in these elements (>10,000 x CI), which is much richer than any fractional crystallization could possibly produce. In addition, trace element contents of late phases are incompatible with formation from the bulk system's residual melt. These results add additional severe constraints to the many conflicts that existed previously between an igneous model for the origin of angrites and the mineralogical and chemical observations. This new trace element content data, reported here, corroborate our previous results based on the shape, structure, mineralogy, chemical, and isotopic data of the whole meteorite, as well as on a petrographic and chemical composition study of all types of glasses and give strength to a new genetic model that postulates that D'Orbigny (and possibly all angrites) could have formed in the solar nebula under changing redox conditions, more akin to chondritic constituents (e.g., CAIs) than to planetary differentiated rock.  相似文献   

15.
This study uses experimentally determined plagioclase‐melt D values to estimate the trace element concentrations of Sr, Hf, Ga, W, Mo, Ru, Pd, Au, Ni, and Co in a crystallizing lunar magma ocean at the point of plagioclase flotation. Similarly, experimentally determined metal‐silicate partition experiments combined with a composition model for the Moon are used to constrain the concentrations of W, Mo, Ru, Pd, Au, Ni, and Co in the lunar magma ocean at the time of core formation. The metal‐silicate derived lunar mantle estimates are generally consistent with previous estimates for the concentration of these elements in the lunar mantle. Plagioclase‐melt derived concentrations for Sr, Ga, Ru, Pd, Au, Ni, and Co are also consistent with prior estimates. Estimates for Hf, W, and Mo, however, are higher. These elements may be concentrated in the residual liquid during fractional crystallization due to their incompatibility. Alternatively, the apparent enrichment could reflect the inappropriate use of bulk anorthosite data, rather than data for plagioclase separates.  相似文献   

16.
Abstract— The METEOMOD model is a computer program designed to calculate melting-crystallization relationships in igneous systems compositionally similar to ordinary chondrites and basaltic achondrites. The core of METEOMOD is a set of empirically calibrated equations, called geothermometers, which describe equilibria between silicate melt and minerals such as olivine, orthopyroxene, pigeonite, augite, plagioclase, and metallic Fe in terms of pressure, temperature, and liquid compositions. The silicate mineral geothermometers are calibrated from a database containing the compositions of melts and minerals produced in melting experiments on 113 meteoritic and 141 synthetic systems. The metallic iron-silicate melt geothermometer is calibrated from a database of 396 melting experiments. The Meteorite Melting Model or METEOMOD calculates crystallization temperatures and contents of major end members in mineral solid solutions with accuracies of ±10–15 °C and ±1–2 mol%, respectively. Input parameters for the program are (1) increment in crystallization degree; (2) one of 12fO2 buffers routinely used in petrology; (3) shift from the buffer in log units, if any; (4) a choice of equilibrium or fractional crystallization trajectory; (5) terminal crystallization degree; (6) contents of ten major elements in wt%; (7) a set of minor and trace elements in parts per million; (8) the number of initial compositions to be modeled in a single computation run. The output consists of a series of tables that list equilibrium temperatures, O fugacities, and proportions of melt and minerals and their compositions, as a function of the degree of crystallization. The results of application of METEOMOD to modeling of melting-crystallization of the St. Severin LL chondrite are compared with the experimental data of Jurewicz et al. (1995).  相似文献   

17.
Abstract— Portales Valley (PV) is an unusual metal‐veined meteorite that has been classified as an H6 chondrite. It has been regarded either as an annealed impact melt breccia, as a primitive achondrite, or as a meteorite with affinities to silicated iron meteorites. We studied the petrology of PV using a variety of geochemical‐mineralogical techniques. Our results suggest that PV is the first well‐documented metallic‐melt meteorite breccia. Mineral‐chemical and other data suggest that the protolith to PV was an H chondrite. The composition of FeNi metal in PV is somewhat fractionated compared to H chondrites and varies between coarse vein and silicate‐rich portions. It is best modeled as having formed by partial melting at temperatures of ?940–1150 °C, with incomplete separation of solid from liquid metal. Solid metal concentrated in the coarse vein areas and S‐bearing liquid metal concentrated in the silicate‐rich areas, possibly as a result of a surface energy effect. Both carbon and phosphorus must have been scavenged from large volumes and concentrated in metallic liquid. Graphite nodules formed by crystallization from this liquid, whereas phosphate formed by reaction between P‐bearing metal and clinopyroxene components, depleting clinopyroxene throughout much of the meteorite and growing coarse phosphate at metal‐silicate interfaces. Some phosphate probably crystallized from P‐bearing liquids, but most probably formed by solid‐state reaction at ?975‐725 °C. Phosphate‐forming and FeO‐reduction reactions were widespread in PV and entailed a change in the mineralogy of the stony portion on a large scale. Portales Valley experienced protracted annealing from supersolidus to subsolidus temperatures, probably by cooling at depth within its parent body, but the main differences between PV and H chondrites arose because maximum temperatures were higher in PV. A combination of a relatively weak shock event and elevated pre‐shock temperatures probably produced the vein‐and‐breccia texture, with endogenic heating being the main heat source for melting, and with stress waves from an impact event being an essential trigger for mobilizing metal. Portales Valley is best classified as an H7 metallic‐melt breccia of shock stage S1. The meteorite is transitional between more primitive (chondritic) and evolved (achondrite, iron) meteorite types and offers clues as to how differentiation could have occurred in some asteroidal bodies.  相似文献   

18.
Models of planetary core formation beginning with melting of Fe,Ni metal and troilite are not readily applicable to oxidized and sulfur-rich chondrites containing only trace quantities of metal. Cores formed in these bodies must be dominated by sulfides. Siderophile trace elements used to model metallic core formation could be used to model oxidized, sulfide-dominated core formation and identify related meteorites if their trace element systematics can be quantified. Insufficient information exists regarding the behavior of these core-forming elements among sulfides during metamorphism prior to anatexis. Major, minor, and trace element concentrations of sulfides are reported in this study for petrologic type 3–6 R chondrite materials. Sulfide-dominated core-forming components in such oxidized chondrites (ƒO2 ≥ iron-wüstite) follow metamorphic evolutionary pathways that are distinct from reduced, metal-bearing counterparts. Most siderophile trace elements partition into pentlandite at approximately 10× chondritic abundances, but Pt, W, Mo, Ga, and Ge are depleted by 1–2 orders of magnitude relative to siderophile elements with similar volatilities. The distribution of siderophile elements is further altered during hydrothermal alteration as pyrrhotite oxidizes to form magnetite. Oxidized, sulfide-dominated core formation differs from metallic core formation models both physically and geochemically. Incongruent melting of pentlandite at 865°C generates melts capable of migrating along solid silicate grains, which can segregate to form a Ni,S-rich core at lower temperatures compared to reduced differentiated parent bodies and with distinct siderophile interelement proportions.  相似文献   

19.
Melting of Martian mantle, formation, and evolution of primary magma from the depleted mantle were previously modeled from experimental petrology and geochemical studies of Martian meteorites. Based on in situ major and trace element study of a range of olivine‐hosted melt inclusions in various stages of crystallization of Tissint, a depleted olivine–phyric shergottite, we further constrain different stages of depletion and enrichment in the depleted mantle source of the shergottite suite. Two types of melt inclusions were petrographically recognized. Type I melt inclusions occur in the megacrystic olivine core (Fo76‐70), while type II melt inclusions are hosted by the outer mantle of the olivine (Fo66‐55). REE‐plot indicates type I melt inclusions, which are unique because they represent the most depleted trace element data from the parent magmas of all the depleted shergottites, are an order of magnitude depleted compared to the type II melt inclusions. The absolute REE content of type II displays parallel trend but somewhat lower value than the Tissint whole‐rock. Model calculations indicate two‐stage mantle melting events followed by enrichment through mixing with a hypothetical residual melt from solidifying magma ocean. This resulted in ~10 times enrichment of incompatible trace elements from parent magma stage to the remaining melt after 45% crystallization, simulating the whole‐rock of Tissint. We rule out any assimilation due to crustal recycling into the upper mantle, as proposed by a recent study. Rather, we propose the presence of Al, Ca, Na, P, and REE‐rich layer at the shallower upper mantle above the depleted mantle source region during the geologic evolution of Mars.  相似文献   

20.
Impact melt‐bearing clastic deposits (suevites) are one of the most important records of the impact cratering process. A deeper understanding of their composition and formation is therefore essential. This study focuses on impact melt particles in suevite at Ries, Germany. Textures and chemical evidence indicate that the suevite contains three melt types that originate from different shock levels in the target. The most abundant melt type (“melt type 1”) represents well‐mixed whole‐rock melting of crystalline basement and includes incompletely mixed mafic melt schlieren (“melt type 1 mafic”). Polymineralic melt type 2 comprises mixes between monomineralic melt types 3 and melt type 1. Melt types 2 and 3 are located within melt type 1 as small patches or schlieren but also isolated within the suevite matrix. The main melt type 1 is heterogeneous with respect to trace elements, varying geographically around the crater: in the western sector, it has lower values in trace elements, e.g., Ba, Zr, Th, and Ce, than in the eastern sector. The west–east zoning likely reflects the heterogeneous nature of crystalline basement target rocks with lower trace element contents, e.g., Ba, Zr, Th, and Ce, in the west compared to the east. The chemical zoning pattern of suevite melt type 1 indicates that mixing during ejection and emplacement occurred only on a local (hundreds of meters) scale. The incomplete larger scale mixing indicated by the preservation of these local chemical signatures, and schlieren corroborate the assumption that mixing, ejection, and quenching were very rapid, short‐lived processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号