首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Increasing sea‐surface temperatures and ocean acidification (OA) are impacting physiologic processes in a variety of marine organisms. Many sea anemones, corals and jellies in the phylum Cnidaria form endosymbiotic relationships with Symbiodinium spp. (phylum Dinoflagellata) supply the hosts with fixed carbon from photosynthesis. Much work has focused on the generally negative effects of rising temperature and OA on calcification in Symbiodinium‐coral symbioses, but has not directly measured symbiont photosynthesis in hospite or fixed carbon translocation from symbiont to host. Symbiodinium species or types vary in their environmental tolerance and photosynthetic capacity; therefore, primary production in symbiotic associations can vary with symbiont type. However, symbiont type has not been identified in a large portion of Symbiodinium?cnidarian studies. Future climate conditions and OA may favor non‐calcifying, soft‐bodied cnidarians, including zoanthids. Here we show that two zoanthid species, Palythoa sp. and Zoanthus sp., harboring different symbiont types (C1 and A4), had very different responses to increased temperature and increased partial pressure of CO2 (pCO2), or dissolved CO2, and low pH. Thermal stress did not affect carbon fixation or fixed carbon translocation in the Zoanthus sp./A4 association, and high pCO2/low pH increased carbon fixation. In contrast, both thermal stress and high pCO2/low pH greatly inhibited carbon fixation in the Palythoa sp./C1 association. However, the combined treatment of high temperature and high pCO2 increased carbon fixation relative to the treatment of high temperature alone. Our observations support the growing body of evidence that demonstrates that the response of symbiotic cnidarians to thermal stress and OA must be considered on a host‐specific and symbiont‐specific basis. In addition, we show that the effects of increased temperature and pCO2 on photosynthesis may change when these two stressors are combined. Understanding how carbon fixation and translocation varies among different host?symbiont combinations is critical to predicting which Symbiodinium associations may persist in warm, acidified oceans.  相似文献   

2.
Most behavioral studies on hermaphroditic fishes have focused on small‐sized species, which are tractable for research. Although many species of large hermaphroditic fishes are important fishery resources, their proximate mechanisms (visual, chemical and/or behavioral cues) in the social regulation of sex change have not been determined. Determination of these would inform resource management and aquaculture. In order to get closer to understanding the proximate mechanisms underlying the social regulation of female‐to‐male sex change in large hermaphroditic fishes, this study reports situations that induced female‐to‐male sex change in black‐spot tuskfish, Choerodon schoenleinii, a species of large protogynous fish, in massive laboratory tanks. The situations differed in the possibility of male‐to‐female tactile contact and in the group sex ratio, enabling us to infer plausible proximate mechanisms underlying sex change induction. Tactile contact between individuals is suspected to be closely related to the incidence of female‐to‐male sex change in C. schoenleinii. Visual and chemical cues alone may be insufficient to inhibit such sex changes. Male‐to‐female tactile contact may have an important influence on female‐to‐male sex change, i.e., inhibition of this sex change, in this species. The effect of sex ratio of a social group on the incidence of sex change may be due to the relative frequency and intensity of male tactile contact with each female, which may vary with the number of females. In the absence of a dominant male, tactile contact among females may affect the incidence of sex change, as well as determine which individuals change sex.  相似文献   

3.
Our capacity to detect and interrogate patterns in nature depends on the use of standard methods for measuring biological units. Consensus methods to quantify the size of individual animals and characteristics of biological communities are critical for comparisons across time and space. Nowhere is this more important than when dealing with organisms such as sea anemones that display high plasticity in body shape. Despite the need for accurate measures of anemone size for ecological comparisons, there is little consensus on the accuracy and precision of size inferences for these animals. We assessed several morphological parameters to determine which in‐field measure accurately and reliably reflects the reference size of an anemone measured in the laboratory: (i) column height, (ii) column diameter, (iii) limbus diameter, (iv) pedal disc diameter, (v) pedal disc area or (vi) pedal disc perimeter. The results revealed large variability in the accuracy and precision amongst measures, which have implications for their suitability as a standard method for in situ measurements. In general, measures of diameter were preferable to those of height, area and perimeter; and those associated with attachment (i.e. the limbus and pedal disc diameter) performed the best. Overall, considering concurrence with measures obtained from two differing but useful reference states, pedal disc diameter was the most accurate parameter (mean percentage difference = 0.6) with which to estimate the size of sea anemones in the field, and we thus recommend its use as an effective, non‐destructive means of gaining insights into their behavioural and evolutionary ecology.  相似文献   

4.
The spatial and temporal biomass distribution of Chaceon affinis and its vulnerability to fishing activity in Gran Canaria (Canary Islands) were investigated. The first goal was to assess the influence of the slope steepness and substrate on the size of crab patches, size of the crabs, and crab biomass. The second goal was to evaluate spatial and temporal variation in the biomass over a 15‐month period. The last goal was to assess the influence of fishing activity upon the reduction in the biomass over the same 15‐month period. Only two or three locations in the sampling area generated high‐biomass contour patches. When these patches were superimposed on the isobath lines, they were coincident with the main depth range described for the species in the area. The map of the biomass values clearly showed three structures with cores of the highest biomass in both muddy and rocky‐muddy areas. The biomass was higher on muddy than on rocky‐muddy bottoms. Biomass was twice as high when steepness was reduced to one third between isobaths of 500 and 900 m. The size of crab patches increases linearly with the decrease in slope steepness. The spatial structure of crabs remained fairly stable over time, showing that biomass changes with depth over time. Maps of the estimated biomass values over the 15‐month period showed the same two main patches over time with the cores of highest biomass separated by a distance of between 4.2 and 4.5 km. Although the bathymetric distribution by sexes showed temporal changes, with a displacement to deeper areas made by both sexes over the studied period, only a partial temporal segregation between males and females was observed. During the study period, crabs underwent a significant decline in biomass and this was consistent with the combined catches of both commercial and experimental fishing in the area. Due to its low mobility, C. affinis is highly vulnerable to local depletion by intensive fishing efforts.  相似文献   

5.
Population abundance, distribution and habitat preference of the Mediterranean sympatric seahorses Hippocampus guttulatus and Hippocampus hippocampus were investigated in a semi‐enclosed sea system (Apulian coast, Ionian Sea). A total of 242 individuals of seahorses were sighted in the 11 transects surveyed in summer 2011. Hippocampus guttulatus (n = 225) were 14 times more abundant than H. hippocampus (17). The mean abundance of H. guttulatus for all the pooled sites was 0.018 m?2 (SE ± 0.003) ranging from a maximum of 0.035 (SE ± 0.007) to a minimum of 0.008 (SE ± 0.002). The size structure of long‐snouted seahorse shows a population ranging from 7 to 14 cm (SL) with a peak at 10 cm (TL). Juveniles (96.0 ± 8.0 mm) represent a significant fraction of the population, accounting more than 21% of the sighted individuals. In Mar Piccolo, H. guttulatus is able to shelter both in monotonous habitats, including the algal beds, and diversified ones, such as the rich filter‐feeder communities that colonize hard substrates. By contrast, H. hippocampus is mainly associated with habitats of low complexity. Today, the Mar Piccolo di Taranto is among the most heavily polluted water bodies in South Italy, with trace metals, hydrocarbons, pesticides and organic wastes affecting both biotic and abiotic matrices. However, despite the high level of degradation, the presence of a large mussel farm has avoided the impact of towed fishing gears, and eutrophication of water bodies has ensured a high trophic level that supports large crustacean populations, potential prey for seahorses.  相似文献   

6.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   

7.
For most marine invertebrate species, dispersal is achieved mainly or exclusively by pelagic larvae. When the duration of the pelagic larval stage is long, genetic homogeneity over large geographic scales is expected. However, genetic structure has often been reported over small spatial scales, suggesting that more complex processes occur than a simple positive relationship between pelagic larval duration and gene flow. Concholepas concholepas has a larval stage that can last up to 3 months in the water column with a wide distributional range covering from 6°S to 56°S. We used a hierarchical sampling technique to test if the genetic homogeneity of this highly dispersive species is maintained throughout its total geographic range in spite of environmental heterogeneity. In the three studied regions (Antofagasta Bay, Valdivia and Patagonia), a spatial pattern of isolation by distance in conjunction with a spatial genetic structure was observed. Within each region, different spatial genetic patterns were detected. In Antofagasta Bay and Valdivia there was evidence of substantial gene flow among populations, whereas in Patagonia, populations showed genetic structure and a unique, genetically isolated location was identified. These results revealed the existence of spatial differences in the genetic patterns among regions with different coastal topographies in C. concholepas, and give us new insights into the inter‐relationships of larval dispersal potential, actual larval dispersal and physical processes. Regarding the sustainable management of C. concholepas, two important issues are derived from this study: (i) to highlight the need for a regional context in the management of C. concholepas, (ii) to determine the distinctiveness of the most austral population and to focus on the conservation efforts due to the relevance of this area.  相似文献   

8.
9.
Size‐frequency distributions can support reliable inferences concerning population dynamics of brachiopods, but only a few data are available so far. In this study, length and width frequency distributions of dead specimens of the Recent brachiopods Joania cordata and Argyrotheca cuneata from the Marine Protected Area ‘Secche di Tor Paterno’, Central Tyrrhenian Sea, Italy (41°35′ N, 12°20′ E), are reported in order to add new data about size‐frequency distributions of brachiopods. The studied specimens came from death assemblages in the coralligenous substrate, in the Posidonia oceanica meadows, and in the sand channels. The observed patterns vary from left‐skewed (J. cordata) to right‐skewed (A. cuneata), indicating respectively a low and high mortality of smaller individuals. Significant differences between the coralligenous substrate and the P. oceanica meadow were observed for both species, revealing a variation among different habitats. All length and width distributions are clearly polymodal, but the biological meaning of the peaks is difficult to interpret, as the two species seem to have a 2‐year life span. A biometric analysis of shell sizes revealed that length and width are the most variable parameters during the growth of the animal.  相似文献   

10.
Commercially harvested since ancient times, the highly valuable red coral Corallium rubrum (Linnaeus, 1758) is an octocoral endemic to the Mediterranean Sea and adjacent Eastern Atlantic Ocean, where it occurs on rocky bottoms over a wide bathymetric range. Current knowledge is restricted to its shallow populations (15–50 m depth), with comparably little attention given to the deeper populations (50–200 m) that are nowadays the main target of exploitation. In this study, red coral distribution and population structure were assessed in three historically exploited areas (Amalfi, Ischia Island and Elba Island) in the Tyrrhenian Sea (Western Mediterranean Sea) between 50 and 130 m depth by means of ROV during a cruise carried out in the summer of 2010. Red coral populations showed a maximum patch frequency of 0.20 ± 0.04 SD patches·m?1 and a density ranging between 28 and 204 colonies·m?2, with a fairly continuous bathymetric distribution. The highest red coral densities in the investigated areas were found on cliffs and boulders mainly exposed to the east, at the greatest depth, and characterized by medium percentage sediment cover. The study populations contained a high percentage (46% on average) of harvestable colonies (>7 mm basal diameter). Moreover, some colonies with fifth‐order branches were also observed, highlighting the probable older age of some components of these populations. The Ischia population showed the highest colony occupancy, density and size, suggesting a better conservation status than the populations at the other study locations. These results indicate that deep dwelling red coral populations in non‐stressed or less‐harvested areas may diverge from the inverse size‐density relationship previously observed in red coral populations with increasing depth.  相似文献   

11.
The growth dynamics of two co‐occurring seagrass species, Zostera marina and Halophila nipponica, were examined on the southern coast of the Korean peninsula. Zostera marina is a native dominant seagrass species in Korean coastal waters, whereas H. nipponica is a non‐native tropical and subtropical species that has extended its distributional range to the temperate coastal areas of Korea. To examine the differences in the growth dynamics of H. nipponica and Z marina, their morphology, density, productivity and biomass, as well as local environmental conditions, were monitored monthly from January 2008 to July 2009. Underwater irradiance at the study site was the highest in April 2009 and the lowest in January 2008. Water temperature ranged from 10.4°C in January 2009 to 24.8°C in September 2008. Significant differences in growth dynamics were observed between the species, due to the effect of water temperature at the study site. Density and areal productivity were the highest in April 2008 and June 2008, respectively, for Z marina but the highest in July 2008 for H. nipponica. Leaf size, shoot height and shoot weight were the highest in July 2008 for Z marina but the highest in August 2008 or September 2008 for H. nipponica. The productivity of both species was strongly correlated with water temperature at the study site. However, the productivity of these species was not strongly correlated with underwater irradiance or the nutrient availability of either the water column or sediment pore water. Zostera marina exhibited the ecological characteristics of a temperate seagrass, whereas H. nipponica retained the features of a subtropical/tropical seagrass, even after adapting to the temperate coastal waters of Korea.  相似文献   

12.
Understanding processes that contribute to a better comprehension of the population dynamics of long‐lived species is critical for the maintenance and potential recovery of such species. Despite the abundance of soft corals in Mediterranean rocky reefs, little information exists on their life histories and reproductive patterns. In this study, we assessed the main reproductive characteristics and early life‐history traits of the long‐lived soft coral Alcyonium acaule. The sex ratio was 1:1; the smallest fertile colonies were one finger in size (2.1 ± 0.6 cm in height), and both colony and polyp fertility increased with colony size. Likewise, the number of eggs and spermary sacs per polyp increased significantly with colony size, whereas the diameter of the female and male sexual products did not. Over 6 years of observations (2007–2012), spawning occurred primarily in July, after the seawater reached 20 °C, in a single spawning episode per year. Approximately 80% of female colonies released eggs, which were retained on the surface of the mother colony by mucous strings for up to a few days. High fertilization rates were observed during spawning in 2008 and 2009 (94.9% and 87.0%, respectively). The timing of development was ~24 h for the blastulae, ~48–72 h for the planulae and 8–22 days for metamorphosis into primary polyps. Survivorship of planulae was relatively high (~50% at 45 days after release), but only 24% of larvae metamorphosed into primary polyps, and their survivorship was moderate after 2 months (65% in 2008 and 74% in 2009). Asexual reproduction was negligible, indicating that sexual reproduction is the main mechanism supporting the maintenance and recovery of populations.  相似文献   

13.
It has recently been realized that sponges take up much of the dissolved organic matter (DOM) available in the water of reefs. The energy derived from this DOM is suggested to be invested in renewing the sponge filter cells (choanocytes) every few hours, generating an outflow of detrital particulate organic matter (POM) that is rapidly ingested by other invertebrates. By this DOM‐to‐POM recycling, sponges are proposed to fuel the food web of oligotrophic marine communities, including reefs, caves and deep‐sea environments. In four species studied herein by electron microscopy, the POM found in the outgoing aquiferous canals had a complex composition, with large between‐species differences. It may include choanocytes (0–52%), and also mesohyl cells, such as archeocytes (9–20%) and spherulous, and granular cells with inclusions (27–90%). Exocytosed vesicles also occurred. Surprisingly, to end up into the outgoing canals, the internal mesohyl cells squeezed between the epithelial cells (endopinacocytes) of the canal wall. Mesohyl cells were also able to transfer their inclusions to the endopinacocytes, which in turn extruded their acquired vesicle loads into the canal lumen. The unanticipated abundant participation of mesohyl cells and endopinacocytes in the production of POM appears to be an ordinary process that occurs continuously in the sponges, mostly related to elimination of digestion leftovers and excretion by‐products. Therefore, POM is generated by sponges irrespective of whether the primary food source is particulate (evidence from this study) or DOM (previous literature). Altogether, these results indicate that the cellular mechanisms behind the relevant organic‐matter recycling carried out by sponges are more diverse than initially anticipated. The varying ratios of choanocytes/mesohyl cells in the POM across species suggest that different sponge species may impact differently the energetics of food webs of the respective oligotrophic habitats where they dominate.  相似文献   

14.
Leaf growth, biomass and production of Cymodocea nodosa were measured from October 2006 to September 2007 in Monastir Bay (Tunisia). Shoot density showed a clear seasonal pattern, increasing during spring and summer and decreasing during fall and winter. Monthly mean shoot density ranged between 633 ± 48 and 704 ± 48 shoots?m?2. The monthly average total biomass ranged between 560 ± 37 and 646 ± 32 g dry weight (DW)?m?2. Total biomass varied significantly among stations and sampling times but did not show seasonal variation. Leaf plastochrone intervals varied seasonally, with an annual average of 28–30 days. Leaf productivity was highest in August (2.61 g DW?m?2?day?1) and lowest in February (0.35 g DW?m?2?day?1). Annual belowground primary production varied from 263 to 311 g DW?m?2?year?1. Annual leaf production was approximately equal for all the stations (from 264 to 289 g DW?m?2?year?1). Variability in water temperature, air temperature and salinity explained the annual variability in biological characteristics. Changes in belowground and total biomass were not correlated with seasonal variability in the environmental parameters monitored. Additionally, a literature review was conducted of C. nodosa features at other Mediterranean sites, encompassing 30 studies from 1985 to 2014.  相似文献   

15.
We know of no comparative assessment on the benefits and costs of long‐term covering and sheltering behaviors in sea urchins. The present study investigated the long‐term effects of conditions suitable for sheltering and covering behaviors on fitness‐related traits of sea urchins Glyptocidaris crenularis. In general, conditions suitable for covering and sheltering behaviors significantly affected the fitness‐related traits of G. crenularis in a long‐term laboratory study of 31 months. Glyptocidaris crenularis kept in conditions suitable for sheltering behavior (bricks with openings) showed significantly lower test size, body weight, organ (test, lantern, gonad and gut) weights, gonad index and slower gonad development than those kept in conditions suitable for covering behavior (presence of shells) and the control conditions (without conditions for covering and sheltering). However, the index of maximum pressure resistance of the test was significantly higher in G. crenularis kept in the sheltering conditions than those in the covering and control conditions. The present study provides new insight into the mechanisms of covering and sheltering behaviors and has implications for the conservation and aquaculture of sea urchins.  相似文献   

16.
Inter‐decadal and geographic variations in the diets of Steller sea lion, Eumetopias jubatus, were examined based on the contents of 408 stomachs collected from coastal areas around Hokkaido Island during the periods 1994–1998 and 2005–2012. The most important prey species in the 1990s were gadid fishes (walleye pollock [Gadus chalcogrammus], Pacific cod [Gadus microcephalus] and saffron cod [Eleginus gracilis]). The frequency of occurrence and gravimetric contribution of gadids decreased in the 2000s latter period at three study sites (Rausu, Shakotan and Rebun) and were replaced by Okhotsk Atka mackerel (Pleurogrammus azonus) and smooth lumpsucker (Aptocyclus ventricosus). However, analysis based on gravimetric composition indicated that the dietary diversity of prey showed only a slight inter‐decadal difference, reflecting the wide diversity of prey ingested during both study periods. These results indicate that Steller sea lions along the Hokkaido coast are opportunistic feeders that utilize a wide variety of prey, and appear to feed mainly upon prey that is easily obtained.  相似文献   

17.
The pleated ascidian Styela plicata (Lesueur, 1823) is a solitary species commonly found in ports and marinas around the world. It has been recorded in the Mediterranean region since the mid‐19th century. In the present work, the species’ genetic diversity was analysed, employing a 613‐bp portion of the mitochondrial cytochrome c oxidase subunit I (COI) gene from 149 individuals collected in 14 ports along Italian coasts at spatial scales ranging from 1 to approximately 2200 km. Haplotype and nucleotide diversity values were = 0–0.933 (total = 0.789) and π = 0–0.145 (total π = 0.0094), respectively. A general southward trend of increasing within‐population genetic diversity was observed. Analysis of molecular variance revealed significant genetic structuring but no significant differences were detected among basins, and no isolation by distance was found. Our data were integrated with the COI sequences available from previous studies and re‐analysed in order to investigate the possible routes of introduction of this ascidian into the Mediterranean Sea. The presence of the two COI haplogroups detected in previous molecular investigations on S. plicata at intercontinental spatial scale was confirmed in the Mediterranean Sea. The results revealed multiple introductions of S. plicata, although some locations appear to have experienced rapid expansion from few founding individuals with reduced genetic diversity. However, continuous introductions would confound the pattern deriving from single founder events and make it difficult to estimate the time needed for gene diffusion into established populations. This mixing of effects creates difficulties in understanding the past and current dynamics of this introduction, and managing this alien invasive ascidian whose genetic structure is continuously shuffled by vessel‐mediated transport.  相似文献   

18.
19.
The population dynamics and gametogenesis of the non‐indigenous polychaete species Branchiomma luctuosum Grube, 1869 (Annelida, Sabellidae) has been investigated at three sites in the Taranto Seas (Ionian Sea, Mediterranean Sea). The species, probably introduced from the Red Sea, has been reported in the Mediterranean Sea since 1983. The species is hermaphrodite, and the reproductive season is between June and October when the largest mean size of oocytes was recorded together with the presence of mature spermatozoa. Small oocytes are present in specimens reaching about 20–25 mm in length. Therefore oogenesis seems to begin early during the first year of life, but the first reproduction can occur when the worms attain a larger size and are at least 6 months of age. Although most of the individuals reproduce seasonally within a discrete period, some individuals can reproduce in different periods during the year, the oogenesis of individuals not being synchronous. A life span of at least 2 years is highlighted, with a faster growth rate during the first months (about 20 mm per month) decreasing to about 10 mm from the 3rd to the 8th months and slowing down again after the worm reaches 100 mm in size. Some differences in growth performance are discussed, enhanced by comparing the sites located at greater depth (5–7 m) and those located at 0.5 m depth, together with the possible interactions of this alien species with the autochthonous sabellid Sabella spallanzanii.  相似文献   

20.
The rostrum shows a large variation across caridean shrimps; however, our knowledge about the biological significance of this morphological structure is very limited, and information on its genetic control is completely absent. The present study concentrates on an unusual rostral dimorphism in a population of small Mediterranean caridean shrimp and combines laboratory and field observations. Analysis of lab‐reared offspring supports the hypothesis that the post‐larval elongation of the rostrum is controlled by a single genetic locus, with the long dentate rostrum representing the recessive state and the short larval‐like rostrum representing the completely dominant state. The short rostrum is a sparsely distributed character; our results obtained from field studies suggest that it reduces the viability and probability of egg‐bearing among large females but, unexpectedly, the specimens with a short rostrum show consistently more rapid sex differentiation and a significantly higher propensity to become males. Therefore, it has to be concluded that, under certain conditions, a single emergent character could influence the species evolution in a rather complex manner, thus affecting the life history, population structure and dynamics and mortality in certain subgroups. In turn, the genetic factors responsible for the different phenotypes would tend to be segregated through different subpopulations and size classes, thus partially escaping the negative selective pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号