首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— In the early morning hours of December 13, 2002, a bright Geminid fireball with an absolute magnitude of ?9.2 ± 0.5 was observed from Southern Saskatchewan, Canada. The fireball displayed distinct small‐scale oscillations in brightness, or flickering, indicative of the parent meteoroid being both non‐spherical and rotating. Using the light curve derived from a calibrated radiometer, we determine a photometric mass of 0.429 ± 0.15 kg for the meteoroid, and we estimate from its initial rotation rate of some 6 Hz that the meteoroid was ejected from the parent body (3200) Phaethon some 2500 ± 500 years ago. We find that 70% of Geminid fireballs brighter than magnitude ?3 display distinct flickering effects, a value that is in stark contrast to the 18% flickering rate exhibited by sporadic fireballs. The high coincidence of flickering and the deep atmospheric penetration of Geminid fireballs are suggestive of Geminid meteoroids having a highly resilient structure, a consequence, we suggest, of their having suffered a high degree of thermal processing. The possibility of Gemind material surviving atmospheric ablation and being sampled is briefly discussed, but the likelihood of collecting and identifying any such material is admittedly very small.  相似文献   

2.
Using high-resolution, low-scan-rate, all-sky CCD cameras and high-level CCD video cameras, the SPanish Meteor and fireball Network (SPMN) recorded the 2007 κ Cygnid fireball outburst from several observing stations. Here, accurate trajectory, radiant and orbital data obtained for the κ Cygnid meteor are presented. The typical astrometric uncertainty is 1–2 arcmin, while velocity determination errors are of the order of 0.3–0.6 km s−1, though this depends on the distance of each event to the station and its particular viewing geometry. The observed orbital differences among 1993 and 2007 outbursts support the hypothesis that the formation of this meteoroid stream is a consequence of the fragmentation of a comet nucleus. Such disruptive process proceed as a cascade, where the break up of the progenitor body leads to produce small remnants, some fully disintegrate into different clumps of particles and other remaining as dormant objects such as 2008ED69, 2001MG1 and 2004LA12 which are now observed as near-Earth asteroids. In addition to the orbital data, we present a unique spectrum of a bright  κ  Cygnid fireball revealing that the main rocky components have chondritic abundances, and estimations of the tensile strength of those fireballs that exhibited a catastrophic disruption behaviour. All this evidence of the structure and composition of the κ Cygnid meteoroids is consistent with being composed by fine-grained materials typically released from comets.  相似文献   

3.
The existence of asteroidal meteoroid streams capable of producing meteorite-dropping bolides has long being invoked, but evidence is scarce. Recent modelling of previously reported associations suggests that the time-scales to keep the orbital coherence of these streams producing meteorites are too short. We present an unequivocal association between near earth object (NEO) 2002NY40 and at least one bright fireball detected over Finland in 2006 August. Another two additional fireballs recorded from Spain and Finland seem to be related, together producing a fireball-producing stream (β Aquarids). On the basis of historical data, the 2006 finding suggests the existence of a meteoroid complex capable of producing meteorites. Taking into account present time-scales for orbital decoherence, if 2002NY40 has large meteoroids associated with it, such behaviour would be the consequence of a relatively recent asteroidal fragmentation. Supporting our claim, the heliocentric orbits of two recently discovered NEOs, 2004NL8 and 2002NY40, were found to exhibit a good similarity to each other and also to the orbits of the three bolides. The fireball spectra of the two Finish bolides showed that the chemical abundances of these objects are consistent with the main elements found in chondrites. This result is consistent with the probable Low iron, Low metal (LL) chondritic mineralogy of asteroid 2002NY40. Consequently, this asteroid may be delivering LL chondrites to the Earth. Additional fireball reports found in the literature suggest that the associated β Aquarid complex may have been delivering meteorites to the Earth during, at least, the last millennium.  相似文献   

4.
We propose that the Taurid meteor shower may contain bodies able to survive and be recovered as meteorites. We review the expected properties of meteorite‐producing fireballs, and suggest that end heights below 35 km and terminal speeds below 10 km s?1 are necessary conditions for fireballs expected to produce meteorites. Applying the meteoroid strength index (PE criteria) of Ceplecha and McCrosky (1976) to a suite of 33 photographically recorded Taurid fireballs, we find a large spread in the apparent meteoroid strengths within the stream, including some very strong meteoroids. We also examine in detail the flight behavior of a Taurid fireball (SOMN 101031) and show that it has the potential to be a (small) meteorite‐producing event. Similarly, photographic observations of a bright, potential Taurid fireball recorded in November of 1995 in Spain show that it also had meteorite‐producing characteristics, despite a very high entry velocity (33 km s?1). Finally, we note that the recent Maribo meteorite fall may have had a very high entry velocity (28 km s?1), further suggesting that survival of meteorites at Taurid‐like velocities is possible. Application of a numerical entry model also shows plausible survival of meteorites at Taurid‐like velocities, provided the initial meteoroids are fairly strong and large, both of which are characteristics found in the Taurid stream.  相似文献   

5.
Abstract— The properties and history of the parent meteoroid of the Morávka H5–6 ordinary chondrites have been studied by a combination of various methods. The pre‐atmospheric mass of the meteoroid was computed from fireball radiation, infrasound, seismic signal, and the content of noble gases in the meteorites. All methods gave consistent results. The best estimate of the pre‐atmospheric mass is 1500 ± 500 kg. The fireball integral bolometric luminous efficiency was 9%, and the acoustic efficiency was 0.14%. The meteoroid cosmic ray exposure age was determined to be (6.7 ± 1.0) × 106 yr. The meteorite shows a clear deficit of helium, both 3He and 4He. This deficit can be explained by solar heating. Numerical backward integration of the meteoroid orbit (determined in a previous paper from video records of the fireball) shows that the perihelion distance was probably lower than 0.5 AU and possibly as low as 0.1 AU 5 Ma ago. The collision which excavated Morávka probably occurred while the parent body was on a near‐Earth orbit, as opposed to being confined entirely to the main asteroid belt. An overview of meteorite macroscopic properties, petrology, mineralogy, and chemical composition is given. The meteorites show all mineralogical features of H chondrites. The shock level is S2. Minor deviations from other H chondrites in abundances of trace elements La, Ce, Cs, and Rb were found. The ablation crust is enriched with siderophile elements.  相似文献   

6.
Abstract— We present instrumental observations of the Tagish Lake fireball and interpret the observed characteristics in the context of two different models of ablation. From these models we estimate the pre‐atmospheric mass of the Tagish Lake meteoroid to be ?56 tonnes and its porosity to be between 37 and 58%, with the lowest part of this range most probable. These models further suggest that some 1300 kg of gram‐sized or larger Tagish Lake material survived ablation to reach the Earth's surface, representing an ablation loss of 97% for the fireball. Satellite recordings of the Tagish Lake fireball indicate that 1.1 times 1012 J of optical energy were emitted by the fireball during the last 4 s of its flight. The fraction of the total kinetic energy converted to light in the satellite pass band is found to be 16%. Infrasonic observations of the airwave associated with the fireball establish a total energy for the event of 1.66 ± 0.70 kT TNT equivalent energy. The fraction of this total energy converted to acoustic signal energy is found to be between 0.10 and 0.23%. Examination of the seismic recordings of the airwave from Tagish Lake have established that the acoustic energy near the sub‐terminal point is converted to seismic body waves in the upper‐most portion of the Earth's crust. The acoustic energy to seismic energy coupling efficiency is found to be near 10?6 for the Tagish Lake fireball. The resulting energy estimate is near 1.7 kT, corresponding to a meteoroid 4 m in diameter. The seismic record indicates extensive, nearly continuous fragmentation of the body over the height intervals from 50 to 32 km. Seismic and infrasound energy estimates are in close agreement with the pre‐atmospheric mass of 56 tonnes established from the modeling. The observed flight characteristics of the Tagish Lake fireball indicate that the bulk compressive strength of the pre‐atmospheric Tagish Lake meteoroid was near 0.25 MPa, while the material compressive strength (most appropriate to the recovered meteorites) was closer to 0.7 MPa. These are much lower than values found for fireballs of ordinary chondritic composition. The behavior of the Tagish Lake fireball suggests that it represents the lowest end of the strength spectrum of carbonaceous chondrites or the high end of cometary meteoroids. The bulk density and porosity results for the Tagish Lake meteoroid suggest that the low bulk densities measured for some small primitive bodies in the solar system may reflect physical structure dominated by microporosity rather than macroporosity and rubble‐pile assemblages.  相似文献   

7.
Abstract— We present data for 259 meteoric fireballs observed with the Canadian camera network, including velocities, heights, orbits, luminosities along each trail, estimates of preatmospheric masses and surviving meteorites (if any) as well as membership in meteor showers. Some 213 of the events comprise an unbiased sample of the 754 fireballs observed in a total of 1.51 × 1010 km2 h of clear-sky observations. The number of fireballs and the amount of clear sky in which they were recorded are given for each day of the year. We find at least 37% of the unbiased sample are members of some 15 recognized meteor showers. Preatmospheric masses, based on an assumed luminous efficiency of 0.04 for velocities >10 km s?1, range from 1 g for some very fast fireballs up to hundreds of kilograms for the largest events. We present plots and equations for the flux, as a function of initial mass, for the entire group of fireballs and for some subgroups: meteorite-dropping objects; meteor shower members; groups that appear to be mainly of asteroidal or cometary origin; and for very fast objects. For masses of a few kilograms, asteroidal objects outnumber cometary ones. Cometary objects attain greater peak brightness than asteroidal ones of equal mass largely due to higher velocity, but also because they fragment more severely. For 66 fireballs, we estimate the meteoroid density using photometric and dynamic masses. Presumed cometary objects have typical densities near 1.0, while asteroidal values show two groups that suggest meteoroids similar to carbonaceous and ordinary chondrites. Our basic data may be used by others for further studies or to reexamine our results using assumptions different from those employed in this paper.  相似文献   

8.
Abstract— We explore the orbital dynamics of Earth‐crossing objects with the intent to understand the time scales under which an “orbital stream” of material could produce time‐correlated meteorite falls. These “meteoroid streams” have been suggested to be associated with three well‐known meteorite‐dropping fireballs (Innisfree, Peekskill, and P?íbram). We have performed two different analyses of the statistical significance of the “orbital similarity,” in particular calculating how often orbits of the same level of similarity would come from a random sample. Secondly, we have performed extremely detailed numerical integrations related to these three cases, and we find that if they were streams of objects in similar orbits, then they would become “decoherent” (in the sense that the day‐of‐fall of meteorites of these streams become almost random) on time scales of 104–105 yr. Thus, an extremely recent breakup would be required, much more recent that the cosmic ray exposure ages of the recovered falls in each case. We conclude that orbital destruction is too efficient to allow the existence of long‐lived meteoroid streams and that the statistical evidence for such streams is insufficient; random fall patterns show comparable levels of clustering.  相似文献   

9.
Enhanced Taurid activity in terms of visual meteor and fireball rates has been found in 1988, 1991, 1995, 1998 and 2005 data. The years of heightened activity are shown to be unequivocally linked to the encounters of swarms of resonantly trapped particles in the Taurid meteoroid stream according to the model proposed by Asher & Clube. While the annual activity level of the Taurid meteor shower in terms of zenithal hourly rate  (ZHR) is 7.8 ± 1.2  , swarm year activity typically reaches ZHRs of 12–17. The annual fraction of fireballs is below 1 per cent; in swarm years, this fraction is as high as 2.4–4.6 per cent near the maximum of the Taurid activity period.  相似文献   

10.
Abstract— The fall of the Cali meteorite took place on 6 July 2007 at 16 h 32 ± 1 min local time (21 h 32 ± 1 min UTC). A daylight fireball was witnessed by hundreds of people in the Cauca Valley in Colombia from which 10 meteorite samples with a total mass of 478 g were recovered near 3°24.3′N, 76°30.6′W. The fireball trajectory and radiant have been reconstructed with moderate accuracy. From the computed radiant and from considering various plausible velocities, we obtained a range of orbital solutions that suggest that the Cali progenitor meteoroid probably originated in the main asteroid belt. Based on petrography, mineral chemistry, magnetic susceptibility, thermoluminescence, and bulk chemistry, the Cali meteorite is classified as an H/L4 ordinary chondrite breccia.  相似文献   

11.
Object 2003 EH1 was recently identified as the parent body of the Quadrantid meteor shower. The origin of this body is still uncertain. We use data on 51 Quadrantid meteors obtained from double-station video observations as an insight on the parent body properties. A data analysis shows that the Quadrantids are similar to other meteor showers of cometary origin in some aspects, but in others to Geminid meteors. Quadrantid meteoroids have partially lost volatile component, but are not depleted to the same extent as Geminid meteoroids. In consideration of the orbital history of 2003 EH1, these results lead us to the conclusion that the parent body is a dormant comet.  相似文献   

12.
Results are presented of a statistical analysis of dynamic parameters for 114 comets with split nuclei. A list of the objects includes actually split comets, fragments of cometary pairs, lost comets with designation D, and comets with large-scale atmospheric features. Some aspects of the hypothesis that splitting is caused by collisions of cometary nuclei with meteoroid swarms are investigated. To verify the hypothesis, an analysis is conducted of the positions of split comets’ orbits relative to 58 meteor streams from Cook’s catalogue. The calculations give the number (N) of orbital nodes of split comets relative to the plane of each swarm within a distance of 0.001, 0.005, 0.01, 0.05, and 0.1 AU from each swarm. A special algorithm is proposed for determining the degree of redundancy of N by finding the expected value and dispersion for the number of the nodes. The comparison of N with the expected value, together with the consideration of the dispersion, reveals a redundancy of N in 29 cases. Therefore, collisions of comets with meteoroid swarms can be considered as one of the possible causes of comet splitting. A similar testing is conducted for the asteroid belt and Kuiper belt as potential sources of a vast number of sporadic meteoroids. Based on the results of the calculations, the former may be considered as the most effective region of splitting of periodic comets.  相似文献   

13.
Abstract— Using visual observations that were reported 140 years ago in the Comptes Rendus de l'Académie des Sciences de Paris, we have determined the atmospheric trajectory and the orbit of the Orgueil meteorite, which fell May 14, 1864, near Montauban, France. Despite the intrinsic uncertainty of visual observations, we were able to calculate a reasonably precise atmospheric trajectory and a moderately precise orbit for the Orgueil meteoroid. The atmosphere entry point was ?70 km high and the meteoroid terminal point was ?20 km high. The calculated luminous path was ?150 km with an entry angle of 20°. These characteristics are broadly similar to that of other meteorites for which the trajectory is known. Five out of six orbital parameters for the Orgueil orbit are well constrained. In particular, the perihelion lies inside the Earth's orbit (q ?0.87 AU), as is expected for an Earth‐crossing meteorite, and the orbital plane is close to the ecliptic (i ?0°). The aphelion distance (Q) depends critically on the pre‐atmospheric velocity. From the calculated atmospheric path and the fireball duration, which was reported by seven witnesses, we have estimated the pre‐atmospheric velocity to be larger than 17.8 km/sec, which corresponds to an aphelion distance Q larger than 5.2 AU, the semi‐major axis of Jupiter orbit. These results suggest that Orgueil has an orbit similar to that of Jupiter‐family comets (JFCs), although an Halley‐type comet cannot be excluded. This is at odds with other meteorites that have an asteroidal origin, but it is compatible with 140 years of data‐gathering that has established the very special nature of Orgueil compared to other meteorites. A cometary origin of the Orgueil meteorite does not contradict cosmochemistry data on CI1 chondrites. If CI1 chondrites originate from comets, it implies that comets are much more processed than previously thought and should contain secondary minerals. The forthcoming return of cometary samples by the Stardust mission will provide a unique opportunity to corroborate (or contradict) our hypothesis.  相似文献   

14.
Abstract– The fall of the Berduc meteorite took place on April 7, 2008, at 01 h 02 min 28 s ± 1 s UTC. A daylight fireball was witnessed by hundreds of people from Argentina and Uruguay, and also recorded by an infrasound array in Paraguay. From the available data, the fireball trajectory and radiant have been reconstructed with moderate accuracy. The modeled trajectory was tested to fit the infrasound and strewn field data. From the computed apparent radiant α = 87 ± 2° and δ = ?11 ± 2° and taking into account a range of plausible initial velocities, we obtained a range of orbital solutions. All of them suggest that the progenitor meteoroid originated from the main asteroid belt and followed an orbit of low inclination. Based on petrography, mineral chemistry, magnetic susceptibility, and bulk chemistry, the Berduc meteorite is classified as an L6 ordinary chondrite.  相似文献   

15.
The distribution of meteor signals reflected from a backscatter radar is considered according to their duration. This duration time (T) is used to classify the meteor echoes and to calculate the mass index (S) of different meteoroids of shower plus sporadic background. Observational data on particle size distribution of the Geminid meteor shower are very scarce, particularly at low latitudes. In this paper the observational data from Gadanki radar (13.46°N, 79.18°E) have been used to determine the particle size distribution and the number density of meteoroids inside the stream of the Geminid meteor shower. The mean variation of meteor number density across the stream has been determined for three echo duration classes, T<0.4, T=0.4–1 and T>1 s. We are more interested in the appearance of echoes of various durations and therefore meteors of various masses in order to understand more on the filamentary structure of the stream. It is observed that the faint particle flux peaks earlier than the larger particles. We found a decreasing trend in the mass index values from the day of peak activity to the next observation days. The mass index profile was found to be U-shaped with a minimum value near the time of peak activity. The observed minimum s values are 1.64±0.05 and 1.65±0.04 in the years 2003 and 2005, respectively. The activity of the shower indicates the mass segregation of meteoroids inside the stream. Our results are best comparable with the “scissors” structure model of the meteoroid stream formation of Ryabova [2007. Mathematical modeling of the Geminid meteoroid stream. Mon. Not. R. Astron. Soc. 375, 1371–1380] by considering the asteroid 3200 Phaethon as an extinct comet.  相似文献   

16.
We deal with theoretical meteoroid streams the parent bodies of which are two Halley-type comets in orbits situated at a relatively large distance from the orbit of Earth: 126P/1996 P1 and 161P/2004 V2. For two perihelion passages of each comet in the far past, we model the theoretical stream and follow its dynamical evolution until the present. We predict the characteristics of potential meteor showers according to the dynamical properties of theoretical particles currently approaching the orbit of the Earth. Our dynamical study reveals that the comet 161P/2004 V2 could have an associated Earth-observable meteor shower, although no significant number of theoretical particles are identified with real, photographic, video, or radar meteors. However, the mean radiant of the shower is predicted on the southern sky (its declination is about −23°) where a relatively low number of real meteors has been detected and, therefore, recorded in the databases used. The shower of 161P has a compact radiant area and a relatively large geocentric velocity of ∼53 km s−1. A significant fraction of particles assumed to be released from comet 126P also cross the Earth’s orbit and, eventually, could be observed as meteors. However, their radiant area is largely dispersed (declination of radiants spans from about +60° to the south pole) and, therefore, mixed with the sporadic meteor background. An identification with real meteors is practically impossible.  相似文献   

17.
Jupiter and Saturn produce important gravitational impulses on meteoroids released by comet 109P/Swift-Tuttle. The meteoroids from this comet once released follow retrograde orbits that during their periodic approaches to these planets (within 1.6 and 0.9 A.U., respectively) are impulsed gaining orbital energy. This perturbation effect is translated into a net inward shift in the node of the perturbed meteoroids. Such geometry with Jupiter occurred in 2004 over a meteoroid trail ejected by this comet during the 1862 A.D. return of the comet to perihelion. In order to study the predicted outburst produced by one-revolution meteoroids, the Spanish Photographic Meteor Network (SPMN) performed an extensive campaign. As a part of this observational effort here are presented 10 accurate meteoroid orbits. We discuss their origin by comparing them with the theoretical orbital elements of the dust trails intercepting the Earth during the 2004 Perseid return.  相似文献   

18.
To evaluate the feasibility of measuring differences in bulk composition among carbonaceous meteorite parent bodies from an asteroid or comet orbiter, we present the results of a performance simulation of an orbital gamma‐ray spectroscopy (GRS) experiment in a Dawn‐like orbit around spherical model asteroids with a range of carbonaceous compositions. The orbital altitude was held equal to the asteroid radius for 4.5 months. Both the asteroid gamma‐ray spectrum and the spacecraft background flux were calculated using the MCNPX Monte‐Carlo code. GRS is sensitive to depths below the optical surface (to ≈20–50 cm depth depending on material density). This technique can therefore measure underlying compositions beneath a sulfur‐depleted (e.g., Nittler et al. 2001 ) or desiccated surface layer. We find that 3σ uncertainties of under 1 wt% are achievable for H, C, O, Si, S, Fe, and Cl for five carbonaceous meteorite compositions using the heritage Mars Odyssey GRS design in a spacecraft‐deck‐mounted configuration at the Odyssey end‐of‐mission energy resolution, FWHM = 5.7 keV at 1332 keV. The calculated compositional uncertainties are smaller than the compositional differences between carbonaceous chondrite subclasses.  相似文献   

19.
A Draconid meteor shower outburst was observed from on board two scientific aircraft deployed above Northern Europe on 8th October 2011. The activity profile was measured using a set of photographic and video cameras. The main peak of the activity occurred around 20:15 ± 0:0.5 UT which is consistent with the model prediction as well as with the IMO network visual observations. The corrected hourly rates reached a value of almost 350. The brighter meteors peaked about 15–20 min earlier than the dimmer ones. This difference can be explained by different directions of the ejection of the meteoroids from the parent comet. One of the instruments was even able to detect meteors connected with the material ejected from the parent comet before 1900 and thus confirmed the prediction of the model, although it was based on uncertain pre-1900 cometary data. Another small peak of the activity, which was caused by material ejected during the 1926 perihelion passage of the parent comet, was detected around 21:10 UT. The mass distribution index determined using the narrow field-of-view video camera was 2.0 ± 0.1. This work shows that the observation of meteor outbursts can constrain the orbital elements, outgassing activity and existence of jets at the surface of a comet.  相似文献   

20.
Because of their short cosmic ray exposure ages, chondritic meteorites are more likely to have been broken off from parent bodies in Earth-crossing orbits than from parent bodies in the asteroid belt. The radii of the objects now in the vicinity of the Earth (Apollo and Amor objects) are too small to be unfragmented asteroids of the theory for the origin of gas-rich meteorites of Anders. Because of the abundant evidence for very heavy shock and reheating among L- and H-chondrites, I conclude that the asteroidal origin for the ordinary chondrites is still the most likely. A cometary origin for the CI chondrites is examined. Regolith and megaregolith do not necessarily have to be formed by impacts on the cometary nucleus. The short-period comet Encke receives about 1/10 the solar-wind flux of a belt asteroid at 2.5 AU in its present orbit. The thickness of the megaregolith (C1 chondrites) is estimated between 0.1 and 0.3 km. Stirring of the megaregolith without substantial loss of dust from the comet might occur when the comet is transitional between “active” and “dead.” The consolidation of C1- “dust” into rock is somewhat problematic, but if liquid water and water vapor have played a role, then a crust rich in solar gases might form in the outer regions of a comet. A testable alternative explanation is suggested, namely that the solar gases in the C1 chondrites do not come from the Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号