首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
With black-body temperature(TBB) from GMS infrared cloud imagery for 16 tropical cyclones in 1996-1997 and domestic and overseas reports of gale by tropical cyclones as well as some conventional andshipboard wind reports, a number of conceptual charts are statistically summarized to determine ranges of gales on near gale and 10 of the storm. A method by which the radius of gale is operationally useful has beed tested.  相似文献   

2.
利用GMSTBB资料分析了1998年夏季长江大水的天气成因。结果指出:在强厄尔尼诺事件和青藏高原强降雪及积雪造成的异常大气环流背景下,副热带高压异常强大且位置偏南偏西,赤道辐合带和夏季风显著偏弱,中纬度地区冷空气不断东移南下,冷暖空气频繁交汇,形成4个持续性暴雨和大暴雨时段,酿成了这场大水。  相似文献   

3.
引入大气热力学变量密度温度Tρ,采取与实际大气较为相符的可逆饱和湿绝热抬升过程,利用MM5V3.5模式输出资料,计算了对流有效位能ECAP。在此基础上,介绍了能量螺旋度指数IEH。分析了2003年7月江淮梅雨暴雨等强对流天气发生过程中对流有效位能ECAP及能量螺旋度指数IEH的量值变化。结果表明:ECAP、IEH等参数对强风暴的发生发展有一定的指示作用,值得在业务工作中推广应用。  相似文献   

4.
Based on TBB data from Meteorological Institute Research of Japan, study is carried out of the features of seasonal transition of Asian-Australian monsoons and Asian summer monsoon establishment,indicating that the transition begins as early as in April, followed by abrupt change in May-June; the Asian summer monsoon situation is fully established in June. The winter convective center in Sumatra moved steadily northwestward across the "land bridge" of the maritime continent and the Indo-China Peninsula as time goes from winter to summer, thus giving rise to the change in large scale circulations that is responsible for the summer monsoon establishment over SE Asia and India; the South China Sea to the western Pacific summer monsoon onset bears a close relation to the active convection in the Indo China Peninsula and steady eastward retreat of the subtropical TBB high-value band,corresponding to the western Pacific subtropical high.  相似文献   

5.
一次大范围暴雨过程的诊断分析   总被引:1,自引:1,他引:0  
用ECMWF 0.75°×0.75°, 6 h间隔再分析资料、地面加密观测资料、Micaps资料和云图TBB资料, 对2012年8月20日一次大范围暴雨过程进行诊断分析。结果表明:本次大暴雨过程是在高层急流入口辐散和中低层的低槽切变线的耦合作用以及台风的间接影响使得低槽系统移动缓慢和提供水汽的有利条件下产生的。暴雨带中水汽主要来源于南海和东海。从等熵位涡、湿位涡和总能量分析说明这次暴雨和大暴雨是在水汽条件充沛条件下, 对流不稳定叠加斜压不稳定和对称不稳定等共同作用下, 产生暴雨-大暴雨。另外, 南北两支气流在暴雨区强烈辐合(南侧为上升运动, 北侧为下沉运动)也起到了重要作用, 且总能量垂直廓线与雨团中心对流强度和强降水时段对应较好。低层东海东南暖湿气流和干冷的东北气流对本次大范围暴雨过程的产生起触发作用。  相似文献   

6.
用太平洋区域30a逐月混合层厚度(dml)及浅层海温(Ts)距平资料,分析了20°S以北太平洋区域dml年际变率的地理分布和季节变化,得到两个纬向dml高变率带,它们分别位于北太平洋(45°N附近)和赤道中、西太平洋。重点分析了赤道太平洋dml高变率带,并对其上混合层气候位置、dml年际异常与ElNino事件关系及伴随强ElNino事件的dml正异常东传等作了初步分析。  相似文献   

7.
以欧洲中期天气预报中心的再分析资料ERA5为参考数据,评估由探空数据建立的中国区域88个单站大气加权平均温度(Tm)与地表气温(Ts)线性关系模型的精度.各站Tm-Ts线性模型计算的Tm(计算值)与ERA5 气压层数据积分所得的Tm(参考值)间偏差均方根值(RMSE)为1.8~5.5 K.不同站模型计算值与参考值间存在-1.22~4.54 K 的系统性偏差,且绝大多数测站(82个站)系统性偏差为正值,即模型计算值总体上大于参考值.补偿各站系统性偏差后,模型计算值与参考值间RMSE降为1.5~3.5 K.与使用中国区域统一模型相比,使用单站模型平均能提高0.6 K的Tm计算精度,尤其在中国西部、西北和内蒙区域,精度提高可达1~3.9 K.对所有测站模型计算值和参考值间偏差时序进行分析,发现超过半数测站的偏差存在明显季节性变化.  相似文献   

8.
宋学锋  巩秀峰 《气象》2006,32(S1):126-129
利用田间调查和区域试验资料,分析了马铃薯退化与生态气候因子的关系,较详细地阐述了综合纬度、不同时期的温度因子(日最低气溫△Tmin、日较差△T、日最高气温Tmax、平均气温T)、风速、相对湿度和降水对退化的影响,得出:退化与综合纬度存在明显的负相关关系;温度因子中日最低气温Tmin和曰较差气温△T对退化的影响要大于曰最高气温Tmax和平均气温T;7、8月份的风速和相对湿度是影响退化的又一重要生态因子;萌芽期和开花结薯期温度与退化的关系最为密切等。这些结论在深入研究环境条件对退化的影响,评选优良种薯基地,进行专用薯种植区划和有效防止退化等方面具有一定的参考价值。  相似文献   

9.
利用地面加密降水资料、NCEP fnl再分析资料和风云4A卫星TBB资料,对2020年7月5-8日长江中下游地区的连续性大暴雨过程进行了诊断分析。结果表明,这次连续性大暴雨过程是在有利的大尺度环流背景下,受切变线影响由列车型对流云团产生的。7月5-8日,亚洲中高纬度大气环流调整,贝湖的东阻高崩溃,带动中高纬度的中高层冷空气持续南下,在长江流域与北上的暖湿气流交汇,使得暴雨产生和发展;同时干冷空气的侵入加强了暴雨过程的对流性不稳定,对暴雨的加强和发展起到重要作用。暴雨期间,低空西南急流的增强提供了有利的水汽输送条件,高空急流增强并发生“倾斜”,高低空急流的耦合在长江中下游上空形成了强烈的高空辐合与低空辐散,使得旺盛的上升运动延伸至对流层高层。在有利的环流背景条件下,中尺度对流系统的“列车效应”是导致本次大暴雨的直接原因。  相似文献   

10.
长江流域是我国夏季高温热浪灾害的多发区之一,该地区日最高温度(Tmax)具有显著的低频(10~30 d和30~60 d周期)变化特征,超前-滞后相关分析和气温方程诊断的结果显示,影响长江流域Tmax低频变化的大尺度环流/对流信号包含:自欧亚大陆东移南下的低频波列,自东北亚向西南方向传播的异常环流,以及由西太平洋向东亚传播的低频对流;这些低频对流/环流活动通过改变辐射加热过程及绝热过程,导致长江流域Tmax的低频变化。为了客观且有效地辨识和捕捉这些先兆信号,并考虑长江流域Tmax与大尺度因子间的非线性作用,本文采用机器学习方法中的卷积神经网络(Convolutional Neural Network,CNN)对大量历史数据进行训练,并构建了长江流域Tmax的延伸期预报模型。在独立预报阶段,CNN预报模型对长江流域区域平均Tmax的预报时效达30 d,提前5~30 d预报的Tmax与观测Tmax的时间相关系数介于0.63~0.70(通过99%置信度的显著性检验),量级偏差(均方根误差)小于1个标准差,显示出CNN在延伸期灾害天气预报的应用潜力。  相似文献   

11.
采用常规气象观测、地面加密降水资料、FY-2E卫星逐时TBB资料以及WRFV3.3高分辨率模式输出资料,对2010年7月12—13日安庆罕见特大暴雨过程的中尺度对流系统的发生发展、结构特征及形成原因进行了综合分析。WRFV3.3中尺度非静力模式很好地模拟了此次切变线暴雨的雨带走向、几个暴雨中心的位置和强度,以及中尺度对流系统的整个发展过程。分析结果表明:此次特大暴雨是在高层200 hPa强大的南亚高压稳定少动,中层500 hPa的短波槽的生成、转向和发展与副高的维持,低层的700 hPa和850 hPa中尺度低涡、切变线以及地面梅雨锋扰动的共同作用下造成的;700 hPa低涡、切变线以及沿切变线相继生成和强烈发展的β中尺度对流系统是这次特大暴雨的直接制造者。细网格模拟结果揭示,安庆特大暴雨与850 hPa上的β中尺度对流系统(MβCS)的生成和强烈发展直接相关。该MβCS具有明显的动力—热力结构特征,显示:强上升运动与饱和气柱的耦合,强散度柱与强涡柱的耦合发展,强上升运动与位势不稳定的耦合发展,湿静力不稳定与湿对称不稳定共存。  相似文献   

12.
王啸华  郑媛媛  徐芬  李杨  侯俊 《气象科学》2015,35(4):497-505
利用高分辨率的加密气象自动站资料、FY2D卫星资料、多普勒雷达资料、常规观测资料以及6 h 1次的NCEP再分析资料等,对2011年6月18日和2011年7月18日江苏地区分别发生在梅雨期开始阶段和结束阶段的两场暴雨进行中尺度天气系统演变和雷达回波参数等特征的对比分析。结果表明:(1)6月18日的天气形势是典型的梅雨期降水形势,在梅雨锋附近产生了区域性暴雨。水汽输送主要是对流层中低层的西南暖湿气流。7月18日的局地暴雨则是出现在低压倒槽顶端右侧的偏东气流中。(2)两次暴雨过程强降水发生前都存在对流层低层辐合快速增强的过程。7月18日暴雨强降水发生前散度值下降则更为迅速。(3)两次暴雨过程中强降水区都出现在地面辐合系统附近的东北气流中,且随着地面辐合系统移动。(4)两次暴雨过程都出现了TBB低于-62℃的强对流云团。(5)6月18日,与多个线性排列的"逆风区"对应的强回波中心形成了"列车效应";7月18日,对流回波带上单体不断流入,在低空急流左前端合并成团状强对流区,分别是形成两次暴雨的重要原因。  相似文献   

13.
利用MM5(V3.6)模式对2003年6月低纬高原地区一次大暴雨过程进行了数值模拟和地形敏感性试验。分析表明:产生低纬高原暴雨的水汽在不同的层次来源不同,低层辐合和高层弱辐散是本次MβCS暴雨的触发因子;700~500hPa强相当位温梯度产生强不稳定能量的积累并迅速释放,高层增暖形成暖中心使高层等压面升高和500hPa有β中尺度气旋性扰动生成,从而导致低层辐合和高层辐散进一步加强;低纬高原地区MβCS的暖心结构维持时间较高原下游地区短,是MβCS生命史相对短,降水突发性强、强度大、历时短的主要原因。  相似文献   

14.
2007—2013年夏季江淮地区MCS和MCV与暴雨关系的统计特征   总被引:1,自引:1,他引:0  
利用FY-2D逐时TBB资料和NCEP/NCAR再分析资料,对2007-2013年夏季(6-8月)江淮地区暴雨和大暴雨日的MCS和MCV进行普查,将MCS分为圆状的MCC和MβCCS以及带状的PECS和MβECS,并根据MCV能否激发新的对流将其分为发展型和不发展型。结果表明:夏季江淮地区由MCS造成的暴雨和大暴雨日占总天数的74.3%。追踪产生暴雨的65次MCS过程中,带状MCS所占比例明显大于圆状MCS;MCS多生成于江淮中东部的陆地上,以向东-东北和南-东南移动为主,其移动距离集中在1~5个经纬距。暴雨和大暴雨日中出现的MCV主要位于对流层中低层,且多出现在MCS的西侧和北侧;PECS和MβECS比MCC更易衍生MCV过程,未出现MβCCS伴随的MCV个例。不同类型MCS衍生出的MCV厚度差异很小,MCV的厚度与其类型、对应暴雨日的等级无明显关系。6-8月,MCV发生的次数递减,MCV多发生于午后14时左右,夜间到凌晨很少生成。由MCS引发的大暴雨日中,有MCV出现的天数占61.5%,明显较暴雨日高,大暴雨日中出现的MCV多数都能引发"二次对流"。  相似文献   

15.
使用Anderson-Ⅱ型9级撞击采样器测量了南京市鼓楼商业区、江北工业区、钟山风景区和宁六高速公路交通源春、夏、秋三季的大气气溶胶质量浓度。分析结果表明:南京市PM2.1和PM10的质量浓度存在明显的季节变化,秋季>春季>夏季;ρPM10春季为167.47 μg/m3,夏季为 85.99 μg/m3,秋季为238.99 μg/m3;ρPM2.1春季为59.66 μg/m3,夏季为42.80 μg/m3,秋季为100.15 μg/m3。不同季节中ρPM10ρPM2.1均存在较好的相关性,夏季相关性最好,相关系数为0.952;秋季次之,相关系数为0.783;春季相对较差,相关系数为0.613。城市不同功能区之间ρPM2.1ρPM10的质量浓度值差异很大,交通源>工业区>商业区>风景区。城市不同功能区的质量浓度谱分布基本一致,均为双峰型分布,峰值分别位于0.43~0.65 μm/m3和9.0~10.0 μm/m3。南京市春、夏、秋三个季节大气粒子质量浓度谱为双峰分布,粒子主要集中在0.43~3.3 μm/m3的粒径段。江北工业区ρPM10ρPM2.1质量浓度的相关系数为0.814,略高于鼓楼商业区的0.797。  相似文献   

16.
南京市城市不同功能区PM10和PM2.1质量浓度的季节变化特征   总被引:1,自引:0,他引:1  
使用Anderson-Ⅱ型9级撞击采样器测量了南京市鼓楼商业区、江北工业区、钟山风景区和宁六高速公路交通源春、夏、秋三季的大气气溶胶质量浓度。分析结果表明:南京市PM2.1和PM10的质量浓度存在明显的季节变化,秋季>春季>夏季;ρPM10春季为167.47 μg/m3,夏季为 85.99 μg/m3,秋季为238.99 μg/m3;ρPM2.1春季为59.66 μg/m3,夏季为42.80 μg/m3,秋季为100.15 μg/m3。不同季节中ρPM10ρPM2.1均存在较好的相关性,夏季相关性最好,相关系数为0.952;秋季次之,相关系数为0.783;春季相对较差,相关系数为0.613。城市不同功能区之间ρPM2.1ρPM10的质量浓度值差异很大,交通源>工业区>商业区>风景区。城市不同功能区的质量浓度谱分布基本一致,均为双峰型分布,峰值分别位于0.43~0.65 μm/m3和9.0~10.0 μm/m3。南京市春、夏、秋三个季节大气粒子质量浓度谱为双峰分布,粒子主要集中在0.43~3.3 μm/m3的粒径段。江北工业区ρPM10ρPM2.1质量浓度的相关系数为0.814,略高于鼓楼商业区的0.797。  相似文献   

17.
【目的】为揭示边界层O3异常升高及大气热力、动力条件对其影响的机理。【方法】该文基于多源观测资料,采用天气分型、统计合成和物理量诊断等方法,探究了2022年9月福建邵武(国家级气象探空站、O3探空观测科学试验基地)出现边界层O3异常升高的特征及大气热动力的综合作用。【结果】2022年9月邵武近地层O3-8h异常正距平最高达125.4%;在非光化学时段(21时—次日07时)O3较多年平均值增长137.1%;边界层O3体积混合比(OVMR)明显高于不同季节的平均状态,21日O3探空观测到边界层O3总量为全年同层探空观测的极大值。O3异常升高是副热带高压和3个台风外围共同影响的结果,导致全月较30 a气候态平均呈现:太阳辐射偏强、低云量偏少、地面气温升高,相对湿度偏低、降水量偏少,偏北风持续时间长且风速偏大;7日和21日边界层O3总量高值日的气象探空廓线呈现大气层结稳定、空气干燥、湿层薄,同时下沉对流有效位能DCAPE值较高,在200~800 J·kg-1之间,即存在明显的下沉气流;低层主导风为偏东风,风速在4~8m·s-1之间。【结论】气象要素配置与大气的热力、动力条件一方面有利于O3光化学生成,另一方面有利于上风向高浓度O3水平输送和边界层高浓度O3垂直下沉侵入,而后者是O3异常升高的主要来源。  相似文献   

18.
陈立  张杰  刘振元 《气象科学》2015,35(6):710-719
利用AIRS卫星产品中的气温和水汽资料,计算出K指数(IK)和沙氏指数(IS)这两种大气不稳定指数。对暴雨发生前6 h左右这两种大气不稳定指数进行统计分析。统计结果表明:在暴雨发生前6 h左右,80%左右的暴雨发生在IK >27.5℃或IS <3℃的情况下。由于IK的分布与暴雨发生的频率基本呈现出较为明显的递增变化,因此IKIS相比能更好地反映暴雨天气的发生。为了更好地描述暴雨发生前的大气不稳定特征,将AIRS计算的IKIS做了适当的结合,得到KS指数(IKS)并将其运用到一次暴雨个例进行验证,从验证效果来看:暴雨发生的区域在6 h前基本都处在了IKS较高的情况下,IKS对暴雨具有一定的指示意义。通过对暴雨区域像元中AIRS反演的气温和水汽误差分析中可以得出:AIRS计算的IKIS误差主要由AIRS在有效云量较高时850hPa高度上反演的气温以及700hPa和850hPa高度上反演的水汽的误差导致的。  相似文献   

19.
北上台风暴雨过程涡散场的能量收支和转换特征   总被引:7,自引:2,他引:5  
于玉斌  姚秀萍 《气象学报》1999,57(4):439-449
利用辐散风和旋转风的动能收支方程,对北方一次北上台风倒槽暴雨过程暴雨区内的涡散场能量收支和转换进行了计算.结果表明:暴雨区内动能的增加是暴雨增幅的一个主要原因.暴雨发展时,就旋转风动能(KR)而言,旋转风动能通量(HFR)辐合是主要能源,而旋转风的动能产生项(GR)是主要能汇;就辐散风动能(KD)而言,辐散风的动能产生项(GD)是主要能源,辐散风动能通量(HFD)辐散是主要能汇;总动能水平通量(HF)提供的辐合主要表现于对流层中、低层,这就使得低层辐合加强,上升运动加强,有利于暴雨的增幅.在暴雨过程中次网格尺度效应由能源转变为能汇,在暴雨发展之时能汇减小;能量的转换项C(KD,KR)总为正值,在转换项中,地转效应项的贡献很大.说明暴雨过程能量均由KDKR转换,也就是说有效位能经KDKR转换,充分说明了在整个暴雨过程中,尽管辐散风动能变化(∂KD/∂t)很小,但是它在其中充当“桥梁”作用,C(KD,KR)在暴雨发展时达到最大,此时能量转换最为旺盛;对流层低层辐散风动能向旋转风动能的转换是暴雨产生和发展的重要条件.此次暴雨过程,在暴雨区内表现为斜压不稳定和正压稳定共存的特征,其发展过程是系统斜压不稳定增长,正压稳定性减弱的过程,暴雨增幅的另一个重要原因就是暴雨区内低层斜压的发展.  相似文献   

20.
基于中国区域逐日降雪、降水、气温、相对湿度、气压和风速等观测数据,构建了中国区域的Logistic降雪判定方法,并对该方法和当前广泛应用的其他降雪判定方法在中国区域的适用性展开对比研究。结果表明,单温度阈值法和S曲线法对[-3,4] ℃气温区间内的降雪模拟不确定性相对较大。比较而言,Logistic拟合的系列方法成功率更高,对中国不同区域降雪识别也更为稳健,尤其是对青藏高原地区降雪事件的识别效果明显优于其他方法。在Logistic方法中,温度和相对湿度对降雪判定起决定作用,而气压和风速的影响相对较小。Logistic湿球温度方案(LogTw)和气温+相对湿度方案(LogTaHR)均能很好地再现降雪量的空间分布和年际变化特征,且相应偏差均小于其他方法;总体上,这两种方案对降雪量识别效果差别不大。因此,可使用LogTw方案或LogTaHR方案对中国区域降雪事件进行判别,尤其是对模式中降雪事件的识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号