首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
利用2010-2019年浙江省暖季(5-9月)1426个国家站和区域站小时雨量数据和NCEP 1° X 1°逐日4次再分析资料,分析了浙江省暖季短时强降水、极端短时强降水时空分布特征及区域性短时强降水事件,结果表明:①近10年暖季短时强降水频次呈增多趋势,降水强度变化平稳;8月(上旬)降水频次最多,9月(中旬)强度最强...  相似文献   

2.
本文利用遵义市2016-2020年夏季逐时降水资料和ERA5再分析资料,分析遵义市夏季短时强降水的时空分布特征,并统计午后和后半夜前发生短时强降水的物理量特征,得到以下结论:(1)遵义市夏季短时强降水日变化呈现双锋结构,夜间的峰值主要发生在6月,白天峰值贡献主要来自7-8月。6月和7月的短时强降水是夜间多于白天,而8月则是白天多于夜间,且多为午后强对流。遵义市夏季短时强降水夜间出现异常值概率的大于白天。(2)有6个县的夜雨均值明显高于昼雨,且在昼雨的1倍以上,仅有凤冈和湄潭的夜雨均值低于昼雨均值,7个县日变化双峰结构较为明显,仁怀有明显的4峰结构,可能与我市西高东低的地形分布有关。(3)遵义市夏季短时强降水在西部、北部地区发生短时强降水的概率较高,西部主要集中在河谷地带,北部主要集中在娄山山脉,短时强降水平均站次6-8月逐渐减少,10站次以上站点逐渐北推且减少,可能与副高西伸北抬有关。(4)高海拔站点午后短时强降水对CAPE、K、LI要求更低,低海拔站点需要更好的抬升和中低层暖湿条件,850hPa与500hPa温差则是高海拔站点高于低海拔站点。(5)与14时相比,后半夜发生短时强降水对CAPE、LI、T850-500等要求变低,且抬升指数有4个站均值高于0℃,指示意义没有午后好,后半夜短时强降水K指数的要求变高,大气可降水量要求也是变高的,但主要是高海拔站点变高。  相似文献   

3.
2010—2016年江西省暖季短时强降水特征分析   总被引:2,自引:0,他引:2  
付超  谌芸  朱克云  单九生  曾智琳 《气象》2019,45(9):1238-1247
利用江西省2010—2016年5—9月1597个观测站逐小时降水资料对江西省短时强降水进行统计分析。采用REOF将降水场划分为5个区域:赣北南部(Ⅰ区),抚州市及赣州中部(Ⅱ区),赣北北部(Ⅲ区),赣南南部、北部(Ⅳ区)以及赣中西部(Ⅴ区)。短时强降水高频区主要分布在山地及河谷附近,分别为湘赣交界罗霄山脉东侧、武夷山西侧、信江河谷、乐安河谷和昌江河谷。河谷附近短时强降水频次以昌江河谷最高(16.9次/a),山地附近最高在罗霄山脉东侧(12.6次/a),极端短时强降水分别位于上饶市东北部山区(3.7次/a)及九岭山南侧的锦江河谷(3.3次/a)。短时强降水主要发生在5月第3候,6、7月第3~4候以及8月第2~3候。Ⅳ、Ⅴ区具有单峰型的日变化特征;Ⅰ、Ⅱ、Ⅲ区具有双峰型的日变化特征。主峰基本集中在下午17时;次峰在上午08—10时。短时强降水对暴雨贡献率基本在40%以上,Ⅰ、Ⅱ区的暴雨天气过程将近一半是由短时强降水贡献的。信江河谷是暴雨雨量中心,但并不是短时强降水雨量中心;昌江河谷与武夷山西麓既是暴雨中心也是短时强降水中心。  相似文献   

4.
5.
利用丽水地区2004—2014年的加密气象观测站的逐小时降水观测资料,统计分析了丽水地区短时强降水的时空分布特征,同时结合当地地理环境特征,对时空分布特征的成因进行了分析。结果表明:空间上,丽水地区短时强降水主要存在两个活跃区,分别位于东南部地区与西南部高山地区,地形陡峭区、喇叭口等特殊地形有助于短时强降水的发生;小时雨量最大的站点紧邻水库。时间上,从月分布特征来看,丽水地区短时强降水主要发生在5—9月,受汛期降水与热带天气系统影响,峰值分别出现在6月与8月;从日变化特征来看,丽水地区短时强降水主要呈现三峰分布特征,包括一个显著峰值与另外两个不显著峰值,其中主峰发生在午后14:00—22:00,次峰分别在03:00和08:00,不同季节日变化峰值略有不同。此外,小时雨量最大值出现在日落前后,地形导致的局地热力环流对短时强降水有增幅作用。  相似文献   

6.
利用高密度地面自动站逐小时降水观测资料,分析了河南省2010—2015年雨季(5—9月)短时强降水(flash heavy rain, FHR)的时空分布特征。主要结果如下:河南省FHR集中发生在7、8月,其中7月最多,8月次之;河南雨季FHR量、降水贡献和发生频率的局地差异明显,主要存在4个大值区,即豫北黄河以北地区、豫东商丘地区、豫西南伏牛山以南以东地区、豫南沿淮及其以南地区;地形对降水的增幅作用显著,且主要是通过增加FHR发生频次实现的;FHR频次日变化呈明显的双峰结构,傍晚至凌晨的前半夜为FHR频发时段;4个大值区内FHR频次日变化差异明显,如黄河以北地区其日变化幅度较大、呈单峰型,而沿淮及其以南地区其日变化幅度较小、呈持续活跃型;大部分FHR前后都伴随着连续降水,降水过程的持续时间主要在1~8 h之间,持续时间大于等于3 h的过程主要位于两个与地形密切相关的高频集中区,即伏牛山以东支脉的喇叭口地形区和沿淮及其以南地区。  相似文献   

7.
利用国家气象中心1998—2018年6—9月0.1°×0.1°分辨率的逐小时卫星融合降水资料,分析河北省暖季短时强降水(1 h降水量≥20 mm)的空间分布、日变化特征及成因,结果表明:短时强降水过程的平均小时降水量、降水频次、降水强度、峰值降水量自东南向西北递减,其中东部沿海降水量最大,太行山和燕山的迎风坡附近存在降...  相似文献   

8.
《湖北气象》2021,40(4)
利用2005—2018年贵州省84个国家气象站逐小时降水量资料,采用统计诊断分析方法,在区分量级前提下,结合地形特征,分析贵州1 h短时强降水和逐3 h降水的时空分布特征。结果表明:(1) 14 a中短时强降水共出现5 981站次,年均427.2站次,其空间分布与地形特征密切相关,整体呈现南多北少、东多西少的特征,贵州西南部“喇叭口”地形和东南部雷公山南侧“喇叭口”地形与河谷地形重叠区域为短时强降水高发区。短时强降水分级统计显示,99%的短时强降水集中在前两个雨强较小的等级,而R1h≥80 mm的短时强降水14 a只出现过5站次。各站点最大雨强空间分布与短时强降水的总站次数分布趋势较为一致,一般南部大于北部、中东部大于西部,局部存在差异。平均雨强整体呈现南强北弱的特征。(2)在2005—2013年期间,短时强降水站次数大多处于年均值(427.2站次)之下,2011年达到最低值275站次,2014年站次数骤然增加至564站次,2015年继续增加到最大值662站次,其后迅速回落到比年均值略高的位置小幅变化。各站点短时强降水的年际变化在高发区离散度较大,在贵州西北部低发区离散度较小;月际变化曲线呈单峰型,5—8月份是降水高发时段,6月达到峰值。短时强降水主要以单站出现的局地性降水为主,同一时次出现3站以上的情况很少,以6月最多;短时强降水最早出现旬数呈东早西晚、南早北晚的特征,结束旬数西早东晚,北早南晚;各站点短时强降水出现概率最大旬多数集中在第16—18旬(即6月);短时强降水日变化的时间曲线呈单峰型,21时至次日07时为高发时段,中午12时前后出现较少。短时强降水日变化的空间分布特征为傍晚到前半夜主要集中在贵州西部,而后半夜多出现在东部和南部地区,中午前后全省均较少出现。(3)逐3 h降水时空分布特征与R1h大体一致,局部存在一些差异。  相似文献   

9.
基于2013—2019年暖季新疆北部518个自动站逐时降水资料,运用常规统计、归一化及其偏离程度、降水集中度(PCD)和集中期(PCP)等方法,研究该区短时强降水(Flash Heavy Rain,FHR)时空分布和统计特征。结果表明:(1)近7 a新疆北部FHR发生频次年变化大,2016年最多,2014年最少,前者是后者的3.9倍。(2)FHR集中发生在6—7月,6月下旬为峰值,且日变化呈明显的单峰型,峰值主要在17:00—19:00。(3)FHR发生频次集中在山脉的迎风坡和喇叭口地形附近。(4)FHR PCD呈现由南向北、由西向东逐渐集中,阿勒泰地区最集中;PCP自伊犁河谷至天山北坡,从克拉玛依向西、向北逐渐推迟,阿勒泰地区最晚。(5)PCD伊犁河谷、天山北坡年变化呈增大的趋势,其它区域呈减小的趋势。PCP阿勒泰地区、博州、天山北坡年变化呈增大趋势,其它区域呈减小的趋势。  相似文献   

10.
基于2013~2020年乐山地区9个国家自动站和136个区域自动站逐小时降水资料,应用诊断分析方法,系统研究了乐山地区短时强降水的时空分布及变化特征,探讨了短时强降水发生频次与地形因子的关系。结果表明:乐山地区短时强降水年均频次和极值均呈增加的趋势,强度较为稳定,变率不大。短时强降水在3~10月均有发生,其频次月分布呈现出单峰型的特征,集中发生在7~8月,占全年的77.7%,7月下旬~8月上旬发生频次又占7~8月总量的49.8%。短时强降水频次日变化呈单峰单谷结构,夜间发生概率最大,白天发生概率相对较小,22时~次日04时是短时强降水集中高发时段,虽然短时强降水在午后和傍晚的发生概率相对较小,但其强度较强,也应当引起重视。乐山地区短时强降水空间分布差异较大,存在两级分化的特点,与地形关系密切,总体呈西南部和东北部少、西北部—中部—东南部多的分布特征。短时强降水的发生与经纬度、海拔高度等地形因子显著相关,高发区主要集中在山谷喇叭口、岷江流域的河谷地带及城市热岛区。  相似文献   

11.

利用2005—2018年贵州省84个国家气象站逐小时降水量资料,采用统计诊断分析方法,在区分量级前提下,结合地形特征,分析贵州1 h短时强降水和逐3 h降水的时空分布特征。结果表明:(1)14 a中短时强降水共出现5 981站次,年均427.2站次,其空间分布与地形特征密切相关,整体呈现南多北少、东多西少的特征,贵州西南部“喇叭口”地形和东南部雷公山南侧“喇叭口”地形与河谷地形重叠区域为短时强降水高发区。短时强降水分级统计显示,99%的短时强降水集中在前两个雨强较小的等级,而R1h≥80 mm的短时强降水14 a只出现过5站次。各站点最大雨强空间分布与短时强降水的总站次数分布趋势较为一致,一般南部大于北部、中东部大于西部,局部存在差异。平均雨强整体呈现南强北弱的特征。(2)在2005—2013年期间,短时强降水站次数大多处于年均值(427.2站次)之下,2011年达到最低值275站次,2014年站次数骤然增加至564站次,2015年继续增加到最大值662站次,其后迅速回落到比年均值略高的位置小幅变化。各站点短时强降水的年际变化在高发区离散度较大,在贵州西北部低发区离散度较小;月际变化曲线呈单峰型,5—8月份是降水高发时段,6月达到峰值。短时强降水主要以单站出现的局地性降水为主,同一时次出现3站以上的情况很少,以6月最多;短时强降水最早出现旬数呈东早西晚、南早北晚的特征,结束旬数西早东晚,北早南晚;各站点短时强降水出现概率最大旬多数集中在第16—18旬(即6月);短时强降水日变化的时间曲线呈单峰型,21时至次日07时为高发时段,中午12时前后出现较少。短时强降水日变化的空间分布特征为傍晚到前半夜主要集中在贵州西部,而后半夜多出现在东部和南部地区,中午前后全省均较少出现。(3)逐3 h降水时空分布特征与R1h大体一致,局部存在一些差异。

  相似文献   

12.
王国荣  王令 《暴雨灾害》2013,32(3):276-279
利用北京地区2006—2010 年187 个观测站的逐5 min 观测资料,对北京地区夏季短时强降水过程进行了统计分析。结果表明:空间上,北京地区的短时强降水主要分布在山前及山前的平原地区。靠近城区的西山山前以及城区是一个短时强降水的高发区(高发区A),怀柔、昌平和顺义交界的山前地区到密云水库一带是另一个短时强降水的高发区(高发区B)。此外,位于平谷境内的山前地区也是一个短时强降水的易发区(高发区C)。时间上,短时强降水过程主要发生在午后到前半夜,维持时间主要集中在20~35 min,过程总降水量集中在20~30 mm。三个高发区比较而言,高发区B 由于兼具地形和水源两大有利因素,一方面更容易出现持续时间更短(约20 min 左右)的短时强降水过程,另一方面又有利于长持续短时强降水(约50 min)的形成。总体上,该高发区内的短时强降水过程也具有更大的过程累积雨量。  相似文献   

13.
长江流域(Yangtze River Basin, YZRB)是中国降水集中地。在气候变暖背景下,短时强降水(Short-Duration Heavy Rainfall, SDHR)有增加趋势。2020年主汛期(6—8月)YZRB出现多轮强降水,发生了新中国成立以来仅次于1954年、1998年的流域性大洪水。本文利用中国气象局国家气象信息中心逐小时降水资料,分析了长江上游(YR-A)、长江中游(YR-B)和长江下游(YR-C)三个区域SDHR时空分布以及不同类型短时强降水事件(Short-Duration Heavy Rainfall Event, SDHRE)的统计特征。得到结论如下:1)受地形影响,YZRB山区降水频次增加、降水强度增强,且地形作用会增加山区SDHR的频次,进而增强山区SDHR的降水量;YZRB降水强度的空间分布依赖于SDHR降水量的空间分布。2)YZRB三个区域SDHR降水量和频次的日变化均表现为双峰型,双峰时间在YZRB区域自西向东有从夜间移向白天的趋势,这与对流活动日变化的区域差异有关;SDHR的降水量和频次具有相似的日变化,说明SDHR的降水量主要源自其降水...  相似文献   

14.
利用常规探测、自动站逐时雨量及ECMWF0.25°×0.25°每日4次的ERA-interim再分析等资料,分析2010—2018年6—8月天山北坡短时强降水时空分布及其环流配置特征。结果表明:天山北坡短时强降水时空分布不均,主要发生在沿山海拔1000~2000 m区域,尤其昌吉州频次最多;雨强R≥10 mm/h出现频次2015年最多,而R≥20 mm/h出现频次相较前者骤减,2016年出现最多,均在2014年最少,且6月出现最多;短时强降水日变化明显,16时—次日03时发生频次最多,占总次数的73.8%。天山北坡短时强降水过程以局地分散性居多,占总过程的65.1%;影响系统主要分为西西伯利亚低槽(涡)、中亚低槽、中亚低涡、西北气流等4类,其中,西西伯利亚低槽(涡)、中亚低槽两者占总过程的73.2%。  相似文献   

15.
杨军勇  苏爱芳 《暴雨灾害》2021,71(2):153-159

利用2010—2018年河南省371个气象观测站(包含122个国家站和249个骨干区域站)逐时降水资料,对河南省暖季(5—9月)小时极端降水时空分布特征进行了统计分析。主要结果如下:(1)河南省暖季第99.9百分位小时极端降水阈值、强度、频次和贡献率的局地差异明显,其高值区主要分布在伏牛山南部、黄淮平原东部和淮河流域西南部。(2)河南小时极端降水事件主要发生7、8月,其中7月最多,且有1/4以上为区域性极端降水事件;全省小时极端降水频次日变化表现为明显的双峰型,主峰值出现在傍晚;80 mm·h-1以上小时极端降水频次日变化呈多峰结构,主峰值出现在夜间。(3)山地、丘陵、城市和平原四类下垫面区域的小时极端降水指标存在差异,城市小时极端降水强度最大,频次最低;山地小时极端降水强度最低,频次最高。(4)四类下垫面小时极端降水日变化虽均表现为双峰型,但也存在明显差异:山地其峰值以夜间为主,傍晚为辅;丘陵其峰值夜间、傍晚并存,且峰值强度接近;平原以及城市则以午后峰值为主,其中城市午后峰值强度更高。

  相似文献   

16.
孙京  蔡然  柴健  周悦 《大气科学学报》2021,44(3):461-472
利用高时间分辨率的分钟级雨量资料及LS8000闪电定位仪地闪数据,对比分析2014-2017年台风型、低压型、西南季风型和切变线型天气系统引发的深圳地区夏季短时强降水和闪电活动,并通过分析降水和闪电的日变化、降水频次、闪电峰值、持续时间、雷达回波顶高等,探讨不同天气流型引发的降水和闪电的时空分布特征.结果 表明,四种天...  相似文献   

17.
福建省不同短历时暴雨时空分布特征   总被引:4,自引:0,他引:4  
利用福建省20个气象站1963—2012年降水资料,分析短历时(1 h、3 h、6 h)及24 h降水强度达暴雨和大暴雨频次的时空分布特征以及暴雨极值的空间分布。结果表明:对于暴雨级别,不同历时暴雨频次的空间分布特点基本相同,表现为全省3个暴雨的高发区,分别位于南部的漳州至龙岩西南部、东北部的宁德沿海以及西北部的南平西部;对于大暴雨,6 h、24 h历时的大暴雨高频区位于沿海,内陆较少。年代际变化趋势为,1 h、3 h、6 h短历时暴雨频次大多数台站以自然变动为主,或略为增加的趋势,24 h长历时暴雨频次增加的趋势强于短历时。大暴雨各历时大多数台站有略增加趋势,1 h、3 h历时的增加趋势强于6 h。内陆暴雨的月际分布呈单峰型,6月为峰值,6 h以上历时暴雨频率为全年最大;沿海暴雨月际分布呈双峰型,峰值在6月和8月,雨季1 h、3 h历时暴雨频率占全年的比例最大,夏季6 h、24 h历时暴雨频率最大。  相似文献   

18.
基于山西省2011—2016年汛期290个自动气象站逐时降水资料,结合本地强降水预警业务规定,按照致灾风险程度将短历时强降水分为四级,并分析了各级短时强降水的时空变化特征.结果表明:短时强降水主要受地形影响,山西各级强降水的累计降水量和降水时数大值区一般沿太行山脉和吕梁山脉分布;短时强降水主要集中在7—8月,15—18...  相似文献   

19.
利用潍坊各区县2008—2017年的气象观测资料、地理空间数据和社会经济数据,基于GIS技术和自然灾害风险指数模型,考虑短时强降雨对潍坊市城市内涝造成的影响,对潍坊市强降雨洪涝风险的致灾因子危险性、孕灾环境敏感性、承灾体易损性、防灾减灾能力多个因子定量分析,构建了潍坊市强降雨洪涝灾害风险评价模型,并编制了潍坊市强降雨洪涝灾害风险区划。结果表明:灾害发生的高风险区主要位于高密、诸城等地区,潍坊北部地区孕灾环境敏感性指数较大,市中心区域则因人口、经济地位显著而易损性风险较大。该风险区划结果基本反映了潍坊市强降雨洪涝灾害的潜在风险,为潍坊市的洪涝灾害防灾减灾提供技术支持和决策依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号