首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
20世纪后期青藏高原积雪和冻土变化及其与气候变化的关系   总被引:38,自引:11,他引:38  
利用1981—1999年青海和西藏72个气象台站的常规观测资料。分析了青藏高原冬春积雪日数和冻结日数的变化及其与气候变化的关系。结果表明:高原冬春积雪日数在20世纪80年代是增加的,在20世纪90年代则是减少的;而此20年间高原季节性冻土冻结日数呈递减趋势;多年平均的高原冬春积雪日数由南向北是减小的,多年平均的冻结日数由高原中部向四周是递减的。高原冬春积累日数、冻结日数均以2~6年周期变化,气温以准3年周期变化,西藏降水以准8年、准3年周期变化。而青海降水以3~5年周期变化。高原冬春积雪日数、冻结日数和冬春气温振荡变化从20世纪80年代到90年代都呈现加快趋势。冬春积累日数的变化与冬春气温的变化呈负相关。与冬春降水的变化呈正相关;冻结日数的变化与冬春气温和冬春降水的变化均呈负相关。  相似文献   

2.
利用青藏高原(下称高原)1961-2014年地面110个气象站积雪深度、积雪日数、气温和降水逐日资料,系统地分析了高原积雪深度和积雪日数时空特征,并进一步探究了高原积雪深度和积雪日数与气候因子和地理因子之间的关系。研究发现:1961-2014年高原年平均积雪深度和积雪日数分别为0.26 cm和23.78 d,空间和季节尺度上分布不均匀,且积雪深度和积雪日数大值并不完全重合;在整体变化趋势上,积雪深度和积雪日数均呈缓慢下降趋势,分别为-0.0080±0.0086 cm·(10a)^-1(p=0.36)和-0.64±0.47 d·(10a)^-1(p=0.17),但在数理统计上不显著,且各站点差异性大;积雪深度和积雪日数在春季、冬季和年表现为“减-增-减”的年代际变化特征,而在秋季为“增-减”的变化特征;气温与积雪深度和积雪日数均有较好的相关性,冬季的降水与积雪深度和积雪日数高度相关;积雪深度和积雪日数随海拔呈增加趋势,积雪日数与纬度也高度相关,但积雪深度与纬度的相关性不明显。  相似文献   

3.
应用1961~1997年青藏高原68个站点的积雪日数资料,计算出1月积雪日数与5月积雪日数的差值并将其作为积雪融化指数,然后将这个指数与华南52个站点降水量进行相关计算,结果发现积雪融化指数与我国东南汛期降水之间存在良好的正相关性,特别是与长江中下游及华南地区的6~7月份降水量之间的正相关关系非常显著。由此判定,以高原积雪资料作为基础研究与华南汛期降水的相关性对定性预测华南降水具有很好的应用前景。  相似文献   

4.
青藏高原积雪日数与高原季风的关系   总被引:3,自引:1,他引:3       下载免费PDF全文
徐丽娇  李栋梁  胡泽勇 《高原气象》2010,29(5):1093-1101
利用青藏高原50个气象台站1960-2004年的积雪日数、NCEP/NCAR再分析资料、青藏高原地面加热场强度距平指数和高原季风指数资料,采用EOF、滑动t检验以及相关分析等方法分析了近60年来青藏高原季风的变化特征和近45年来青藏高原积雪日数的变化特征以及二者之间的关系;分析了青藏高原季风与青藏高原高度场和青藏高原地面加热场之间的相关性。结果表明:当初冬(11月)青藏高原地面加热场强度强时,隆冬(12月~1月)的青藏高原冬季风弱,次年春季(4~6月)的青藏高原地面加热场强度弱;当青藏高原夏季风强(弱)时,有利于唐古拉山地区积雪日数的增加(减少),班戈地区和青海东北部积雪日数的减少(增加);当青藏高原冬季风强(弱)时,有利于青海北部和西藏南部积雪日数的减少(增加),喜马拉雅山和唐古拉山积雪日数的增加(减少)。  相似文献   

5.
青藏高原区域性积雪增量序列及其变化特征   总被引:1,自引:0,他引:1  
臧海佳  周自江 《气象》2009,35(6):77-81
利用青藏高原83个气象台站的逐日积雪观测资料,充分考虑每次降雪过程所引起的积雪变化,建立了该地区1960-2007年度的区域性积雪增量序列,并讨论了其长期变化特征.结果表明:(1)积雪增量序列具有其他积雪参数指标的代表性,又较其他积雪参数指标序列有明显的统计学优点.(2)在48个年度里,1960-1966年度青藏高原区域性积雪增量处于负位相,1967-1998年度为多雪的正位相,1999-2007年度又为少雪的负位相,其中1998年度是个具有显著性的突变点.  相似文献   

6.
青藏高原冬季积雪时空变化特征EOF分析   总被引:2,自引:0,他引:2  
通过对青藏高原冬季积雪的EOF分析.揭示了青藏高原冬季积雪的时间变化和空间分布特征,分析出高原冬季积雪的突变现象.对青藏高原冬季积雪时空变化规律提出了自己的观点。  相似文献   

7.
通过对青藏高原冬季积雪的EOF分析,揭示了青藏高原冬季积雪的时间变化和空间分布特征,分析出高原冬季积雪的突变现象,对青藏高原冬季积雪时空变化规律提出了自己的观点.  相似文献   

8.
本文通过对NCEP/NCAR和SMM/I两种积雪资料的对比分析,表明两种积雪资料反映出青藏高原的积雪变化特征比较一致,NCEP/NCAR积雪资料具有一定的可信度。  相似文献   

9.
选取青藏高原东部地区1967~2010年61个测站的积雪数据,分析比较了整年和不同季节高原积雪的年代际变化特征及其与降雪和气温的关系,结果表明:除了秋季以外,高原东部积雪表现出“少雪-多雪-少雪“的显著年代际变化特征,80年代末发生的由少到多突变仅在冬季积雪中表现显著,20世纪末发生的由多到少突变在冬春两季积雪中均表现显著;降雪和气温的变化是影响高原东部积雪的重要因素,降雪变化的影响更加显著,尤其是秋季降雪;在冬春季降雪偏多时段,降雪的变化主导着积雪的变化;在冬春季降雪偏少时段,气温变化的影响增大,某些时段会超过降雪,甚至达到主导积雪变化的程度。  相似文献   

10.
青藏高原东部积雪日数特征的分析   总被引:4,自引:1,他引:4  
本文利用青藏高原曲麻来、托托河和玉树三站的32年逐日积雪实测资料,进行了统计分析,得出了它们的时间变化特征,并对Elnino现象的发生作了简单的联系。  相似文献   

11.
回顾了青藏高原雪盖的季节内变化及其影响研究的新进展。高原大部分地区雪盖不稳定且持续时间短,导致高原雪盖具有显著的季节内快速变化特征。局地气温和降水的季节内变化是控制高原雪盖季节内变化的直接原因,这种直接关系是区域大气环流季节内活动的结果。高原雪盖季节内变化还与大尺度大气环流的季节内活动有关,热带季节内振荡、北极涛动和北大西洋涛动引起的大气季节内过程可解释部分高原雪盖季节内变率。高原雪盖季节内变化通过雪-反照率效应迅速对大气施加影响,雪盖造成的冷异常通过大气平流过程影响高原及其下游地区,造成东亚高空急流和东亚大槽增强。由于高原雪盖季节内变化的重要影响,数值预报中高原雪盖的初始场和预报场会影响次季节预报技巧。  相似文献   

12.
The summer snow anomalies over the Tibetan Plateau (TP) and their effects on climate variability are often overlooked,possibly due to the fact that some datasets cannot properly capture summer snow cover over high terrain.The satellite-derived Equal-Area Scalable Earth grid (EASE-grid) dataset shows that snow still exists in summer in the western part and along the southem flank of the TP.Analysis demonstrates that the summer snow cover area proportion (SCAP) over the TP has a significant positive correlation with simultaneous precipitation over the mei-yu-baiu (MB) region on the interannual time scale.The close relationship between the summer SCAP and summer precipitation over the MB region could not be simply considered as a simultaneous response to the Silk Road pattern and the SST anomalies in the tropical Indian Ocean and tropical central-eastern Pacific.The SCAP anomaly has an independent effect and may directly modulate the land surface heating and,consequently,vertical motion over the western TP,and concurrently induce anomalous vertical motion over the North Indian Ocean via a meridional vertical circulation.Through a zonal vertical circulation over the tropics and a Kelvin wave-type response,anomalous vertical motion over the North Indian Ocean may result in an anomalous high over the western North Pacific and modulate the convective activity in the western Pacific warm pool,which stimulates the East Asia-Pacific (EAP) pattern and eventually affects summer precipitation over the MB region.  相似文献   

13.
青藏高原积雪异常对高原地面加热的影响   总被引:7,自引:0,他引:7  
On the basis of snow data and AWS (Automatic Weather Station) data obtained from the Tibetan Plateau in recent years (1993 to 1999), the features of sensible heat, latent heat and net long-wave radiations are estimated, and their variations in more-snow year (1997/1998) and less-snow year (1996/1997) are analyzed comparatively. The relationships between snow cover of the Tibetan Plateau and plateau's surface heating to the atmospheric heating are also discussed. The difference between more-snow and less-snow year in spring is remarkably larger than that in winter. Therefore, the effect of anomalous snow cover of the Tibetan Plateau in winter on the plateau heating appears more clearly in the following spring of anomalous snow cover.  相似文献   

14.
冬季积雪对我国夏季降水预测的评估分析   总被引:7,自引:2,他引:7  
孙林海  宋文玲 《气象》2001,27(8):24-27
根据高原积雪和高纬积雪与我国夏季降水相关分析的结果,将高原积雪和高纬积雪作为独立因子分别对我国夏季降水预测做了检验,结果表明:高原积雪较高纬积雪效果要好,冬季高原积雪异常偏多时,长江流域夏季易发生洪涝,这也是预测汛期降水的一个重要信号。  相似文献   

15.
青藏高原积雪与亚洲季风环流年代际变化的关系   总被引:12,自引:1,他引:12  
利用高原测站的月平均雪深资料和NCEP/NCAR再分析资料,分析了20世纪70年代末以来,青藏高原积雪的显著增多与亚洲季风环流转变的联系。研究表明,高原南侧冬春季西风的增强及西风扰动的活跃是造成青藏高原冬春积雪显著增多的主要原因,高原积雪的增多与亚洲夏季风的减弱均是亚洲季风环流转变的结果;20世纪70年代末以来,夏季华东降水的增多、华南降水的减少及华北的干旱化与青藏高原冬春积雪增多及东亚夏季风的减弱是基本同步的,高原冬春积雪与华东夏季降水的正相关、与华北及华南夏季降水的负相关主要是建立在年代际时间尺度上,因此,高原积雪与我国夏季降水关系的研究应以亚洲季风环流的年代际变化为背景。  相似文献   

16.
李文杰  袁潮霞  赵平 《气象科学》2018,38(6):719-729
为了探究青藏高原积雪不同观测资料间的差异,本文通过定义积雪覆盖率(Snow Cover Percentage,SCP)对比了NOAA-CDR卫星可见光遥感积雪资料、卫星被动微波遥感积雪资料和我国146个台站观测的积雪资料在高原地区的气候态及年际变动特征。从年平均气候态看,微波与可见光资料的SCP分布较为接近,高值区均位于念青唐古拉山与喜马拉雅山南缘之间的山区。而台站资料SCP的高值区范围则相对较小,在高原东部的巴颜喀拉山及南部的念青唐古拉山。3种资料的积雪低值区均位于高原中南部沿雅鲁藏布江一带、阿尔金山北侧以及东边界的内陆省份。从季节平均场看,不同资料的积雪分布在冬季及秋季,无论是气候态还是年际变动均较为类似。在春季时,微波和台站资料间较为一致。而在夏季,资料间差异很大,不同资料间的两两相关接近于零,甚至为负数。本文同时选取了青藏高原地区4个典型台站(索县、清水河、康定、甘孜),将卫星资料插值于台站上,对比3种资料间的异同,以及与地表气温异常间的关系。结果表明,在这4个典型站上,台站SCP在过去36 a中为线性减少的趋势,而卫星SCP主要为线性增加的趋势,且台站年平均SCP与地表气温异常的协同性最好。  相似文献   

17.
吴滨 《气象》2000,26(12):20-23
应用青藏高原东部17个测站1957~1988年秋冬季(11~2月)平均积雪深度及积雪日数资料,分析了积雪深度及积雪日数异常年夏季500hPa高度场的不同分布形态,同时对照登陆及影响福建的热带气旋偏多年及偏少年500hPa高度场的分布特征,得出青藏高原秋冬季积雪深度偏小(大)年夏季热气旋频数偏多(少),而积雪日数偏多年,夏季热带气旋频数偏少。  相似文献   

18.
利用1979—2018年青藏高原(简称高原,下同)卫星积雪数据集、华南地区261站逐日降水及ERA5再分析资料,探讨了高原冬季积雪与华南前汛期降水的联系。结果表明:1)高原西部积雪与华南前汛期降水的正相关关系最为稳定,其主要影响前汛期的锋面降水,对夏季风降水的影响较小;2)华南前汛期在高原西部积雪偏多年比偏少年偏早20 d,使得前汛期降雨日数偏多,持续时间偏长,总降水量偏多,而降水强度受积雪的影响较小;3)高原积雪偏多年,积雪的冷却作用形成了低层异常反气旋环流,而东亚沿岸为“+-+”的位势高度异常,中纬度“西高东低”的环流配置有利于中高纬冷空气南侵,使得华南上空温度偏低,同时偏强偏南的西太平洋副热带高压加强了低纬地区偏南气流和水汽输送。3—4月锋面在华南北部南北摆动,4月初偏北干冷空气南侵和偏南暖湿气流的持续北推使得锋面加强,触发了前汛期的较早建立;积雪偏少年冷空气和偏南暖湿气流均较弱,华南北部锋面在4月初中断,4月中下旬华南北部锋面在偏北弱冷空气和偏南暖湿气流的共同作用下重新建立,从而华南前汛期开始偏晚。  相似文献   

19.
利用青藏高原气象站降雪日数观测资料,分析1981-2010年青藏高原降雪日数的时空变化特点和主要影响因素。结果表明:降雪日数总体上呈青藏高原中东部高寒地区、喜马拉雅山脉南麓和祁连山脉流域降雪日数多,南部河谷和北部湖盆区降雪日数少的空间分布格局;春季降雪日数占全年的45%,其次是冬季(28%)和秋季(22%),夏季最少(5%);30年内青藏高原平均年降雪日数呈明显减少趋势,降幅达10.5 d/(10 a),其中,春季降幅最大(4.8 d/(10 a)),夏季最小(1.2 d/(10 a));年降雪日数在1997年发生了由多到少的气候突变;降雪日数年内分布呈双峰型,峰值出现在冬夏大气环流的转换季节,青藏高原大气环流的转换期与上升运动相联系的低值天气系统和高空温湿条件均有利于降雪出现;青藏高原降雪日数的明显减少与气温的显著上升呈线性关系。  相似文献   

20.
The current work examines the impact of the snow cover extent (SCE) of the Tibetan Plateau (TP) on the interannual variation in the summer (June?July?August) surface air temperature (SAT) over Central Asia (CA) (SAT_CA) during the 1979?2019 period. The leading mode of the summer SAT_CA features a same-sign temperature anomalies in CA and explains 62% of the total variance in SAT_CA. The atmospheric circulation associated with a warming SAT_CA is characterized by a pronounced high-pressure system dominating CA. The high-pressure system is accompanied by warm advection as well as descending motion over CA, favoring the warming of the SAT_CA. Analysis shows that the interannual variation in the summer SAT_CA is significantly positively correlated with the April SCE over the central-eastern TP. In April, higher than normal SCE over the central-eastern TP has a pronounced cooling effect on the column of the atmosphere above the TP and can persist until the following early summer. Negative and positive height anomalies appear above and to the west of the TP. In the following months, the perturbation forcing generated by the TP SCE anomalies lies near the western center of the Asian subtropical westerly jet (SWJ), which promotes atmospheric waves in the zonal direction guided by the Asian SWJ. Associated with this atmospheric wave, in the following summer, a significant high-pressure system dominates CA, which is a favorable condition for a warm summer SAT_CA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号