首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 288 毫秒
1.
青藏高原地表感热与华北夏季降水的相关分析   总被引:5,自引:4,他引:1  
唐瑜  余锦华 《气象科学》2008,28(2):201-204
利用1956-2002年青藏高原地表感热状况,1957-2002年我国华北地区104站月降水资料,分析了青藏高原地表感热与华北夏季(7、8月)降水的可能联系.结果表明,青藏高原4月感热与华北地区夏季降水具有较显著的负相关,高关键区位于高原的北部.于是,进一步计算了高原关键区与华北各地区夏季降水的相关系数,影响最显著的地区主要位于内蒙古的东南部以及山东南部.最后通过计算得出华北南部与青藏高原北部地区有较好的相关性.  相似文献   

2.
青藏高原感热通量的变化及与江淮流域降水异常的关系   总被引:1,自引:0,他引:1  
利用1979—2010年NCEP-R2再分析资料和全国586站降水资料, 对青藏高原感热通量进行小波变换和EOF分析, 并研究了它与江淮流域降水的关系。结果发现:高原感热通量具有2 a和8 a的变化周期。空间分布上主要有东、西反相变化和南、北反相变化以及全区一致性变化3种形态。高原感热通量与江淮流域降水异常的同期相关中, 1998年以来, 春季高原东部的感热通量偏小, 其他地区偏大, 与此同期江淮流域降水偏少;夏季西藏西部的感热通量偏小, 其他地区偏大, 与此同期江淮流域降水偏多。两者超前相关中, 江淮流域降水对春季的感热通量变化最敏感。1998年以来, 当春季高原东南部的感热通量偏小, 其他地区偏大时, 江淮流域的夏季降水偏多, 秋季降水偏少;当春季高原感热通量东部偏小, 西部偏大时, 江淮流域的冬季降水以长江为界南多北少, 次年春季降水偏少。  相似文献   

3.
基于1970—2015年青藏高原地区78个站点的观测资料,应用物理方法计算了高原中东部地区的感热通量。利用小波分析、相关性分析等研究了高原中东部感热通量的时空特征和影响因子。结果表明,高原年平均和春夏季节,感热通量周期为3~4 a,而秋冬季节为2~3 a;感热通量的变化趋势为,1970—1980年和2001—2015年感热通量呈增加趋势,而1981—2000年呈减小趋势;高原年平均和各季节的最强感热加热中心均位于高原南坡E区(除冬季外),最弱加热区域位于高原西北部A区(夏季除外);高原春秋季节感热通量的空间分布均匀,冬夏季节有明显的梯度分布且梯度相反,夏季呈现自东到西的梯度;春季、夏季及秋季,高原感热通量和降水呈负相关;高原10 m风速的极值中心随季节北上南撤变化与地气温差的强弱变化共同决定了感热通量的季节变化。  相似文献   

4.
于琳琳  陈海山 《高原气象》2012,31(5):1173-1182
利用1981—2002年GIMMS-NDVI资料、中国西部数据中心提供的雪深长时间序列数据集、中国753个测站降水资料及ECMWF再分析地表通量资料,通过相关和合成分析等统计方法,探讨了青藏高原(下称高原)4月植被覆盖、积雪异常与地表加热异常和与后期中国夏季降水之间的联系。结果表明,高原4月的陆面状况与同期的地表加热存在密切的联系,植被覆盖和积雪深度的变化具有较好的一致性;高原植被覆盖(积雪)主要影响地表感热(潜热)通量,从而改变高原地区的地表加热;高原地表加热和中国夏季降水存在较为密切的关系。就年际异常而言,前期高原地表加热异常与长江以南地区6月降水存在明显的负相关,与7月降水的显著负相关区域主要位于华北、东北地区,与8月降水的显著负相关区主要位于长江中上游及淮河一带。相比之下,前期高原地表加热与夏季降水的年际增幅异常之间存在更为密切的联系,即前期高原地表加热年际增幅异常与长江以南及西南部分地区6月降水年际增幅异常为负相关,而与7、8月降水年际增幅异常主要呈南正北负的分布特征。  相似文献   

5.
本文利用1961~2012年夏季西北地区东部(32~40°N,100~110°E)156个站点逐日降水资料,以及1982~2012年青藏高原70个站点的地面感热观测资料,采用EOF、相关分析等方法分析了西北地区东部夏季降水、青藏高原冬末春初(2~4月)地面感热的时空变化特征,讨论了西北地区东部夏季降水对于青藏高原冬末春初地面感热异常的响应,通过环流场分析高原感热异常对西北东部夏季降水的影响成因。结果表明:高原东部冬末春初地面感热偏强时,西北东部地区北部降水偏少,东南部和西南部降水偏多;反之,西北东部北部降水偏多,东南部和西南部降水偏少。  相似文献   

6.
6种地表热通量资料在伊朗—青藏高原地区的对比分析   总被引:1,自引:1,他引:1  
刘超  刘屹岷  刘伯奇 《气象科学》2015,35(4):398-404
基于JRA25、ERA40、ERA-Interim、NCEP1、NCEP2和20CR,对比了不同资料中气候平均(1979—2008年)伊朗—青藏高原感热通量和波文比的季节演变,以及夏季高原感热的年际变率和线性趋势。6套资料均表明,由春到夏亚洲大地形区域地表热状况的季节演变存在明显差异,青藏高原东南部低空气旋生成,一方面增多了局地降水,减弱了地表西风,造成潜热加强,感热减弱,波文比减小;另一方面加强了伊朗高原的东北风,抑制了当地降水,令感热加强,波文比增加,构成了青藏—伊朗高原感热通量季节演变的纬向非对称分布。虽然近30 a来伊朗高原(青藏高原)夏季感热线性增加(减小)的趋势一致,但不同资料所反映的伊朗—青藏高原夏季感热通量的年际变化差别明显。  相似文献   

7.
利用欧洲中心1979-2010年ERA-interim青藏高原地面感热资料与西南地区干湿指数,应用SVD方法与EOF分解对青藏高原地面感热在近32a的时空分布特征和高原地面感热与西南旱涝之间的相关关系进行分析,结果得出:青藏高原西部地面感热通量在近年来是显著增加的,而高原东部感热通量在减少,有明显的年际变化;西南地区夏季、秋季全区基本偏干,特别是秋季。前期高原东、西感热异常对春季、夏季和秋季西南全区特别是西南南部地区旱涝异常有很好的相关关系:当青藏高原中部地区和高原北部的春季地面感热增加(减少)而西部、高原主体北部地面感热减少(增加)时,春季西南地区东北部是偏湿(偏干)的趋势,西南部是偏干(偏湿)的趋势;当高原东部春季感热增强(减弱)时,夏季西南地区的四川北部、重庆市与云南南部异常偏湿(偏干);高原东部春季感热增加(减少),高原西部感热减少(增加)时,秋季西南地区主要偏湿(偏干)。青藏高原西部(78°E-81°E,30°N-36°N)、高原中部偏南的位置(88°E-95°E,28°N-35°N),为感热影响西南旱涝的关键区。这些研究对西南地区旱涝趋势有很好的预测作用。  相似文献   

8.
亚非感热异常时空特征及其与我国降水异常的关系   总被引:3,自引:2,他引:3  
运用多年全球感热通量数据进行经验正交函数(EOF)分析,得到感热异常关键区。运用小波分析等方法发现,全球地表感热异常存在振荡现象,东半球在年际、年代际尺度上,地表感热异常主要以青藏高原东、西部的反相以及高原西部和北非的反相为热力异常振荡的主要分布形态。再运用中国月平均降水资料进行EOF分析,得到各个感热异常关键区与中国华北、江淮和华南地区汛期降水异常的相关关系,其中北非、青藏高原西北部和马来半岛这3个区域的感热距平之间有较大的相关关系,且感热异常季节变化较小,对我国东部地区降水的影响比较稳定,持续性较好。  相似文献   

9.
李黎  吕世华  范广洲 《高原气象》2019,38(6):1172-1180
利用1986-2015年夏季一日4次的ERA-Interim再分析资料,统计分析了近30年来夏季青藏高原地表感热、潜热通量以及高原低涡的时空分布特征,同时选取夏季高原低涡生成的关键区,利用相关性分析,合成分析等方法探讨了夏季高原地表感热、潜热通量与高原低涡生成频数之间的可能联系。结果表明,从时间变化特征来看,1986-2015年夏季高原低涡共出现915次,其中关键区内共出现697次,占总数的76. 18%,且其出现次数呈明显的下降趋势,在关键区内,30年间地表感热通量总体呈下降趋势,而潜热通量则呈较弱的上升趋势;从空间变化特征来看,低涡生成的关键地区恰好对应于地表感热通量平均值的较大值区以及地表潜热通量平均值的较小值区。当处于夏季高原低涡偏多年和偏少年时,关键区内地表能量的分布有明显差异:当关键区内地表感热通量偏强时,容易产生高原低涡;而当关键区内地表潜热通量偏强时,则不易产生高原低涡。  相似文献   

10.
文章利用1979 2005年Nino3区海温时间序列资料和中国雪深时间序列资料,分析了Nino3区海温与青藏高原积雪之间的关系,两者对我国夏季降水的影响以及两者共同作用下对我国夏季降水的影响。分析结果表明:当前期冬春季Nino3区SST为强暖(强冷)事件与高原积雪显著偏多(显著偏少)共同作用的配置下,我国东部夏季雨带往往偏南(偏北)。从月时间尺度方面,揭示了前期冬春季ENSO和冬春季青藏高原积雪对我国长江以南地区降水异常的影响在夏季各月是不一致的,前期冬春季逐月Nino3区SST和冬春季逐月高原积雪对长江以南地区6月的降水都为正相关,而对8月的降水都为反相关,并且春季逐月Nino3区SST和冬春季逐月高原积雪对长江以南地区7月的降水也都为正相关,另外,春季Nino3区SST和春季高原积雪对长江以南地区6月和7月降水更为重要。  相似文献   

11.
春季青藏高原感热对中国东部夏季降水的影响和预测作用   总被引:1,自引:0,他引:1  
利用1980-2012年青藏高原中、东部71个站点观测资料、全中国756站的月降水资料、哈得来中心提供的HadISST v1.1海温资料以及ERA-Interim再分析资料,综合青藏高原的感热加热以及全球海温,研究了春季青藏高原感热对中国东部夏季降水的影响,并建立预报方程,探讨了青藏高原春季感热对中国降水的预报作用。结果表明,青藏高原春季感热与中国东部降水关系密切,青藏高原春季感热异常增强伴随着长江流域中下游同期降水增多,后期夏季长江流域整流域降水也持续偏多,华南东部降水偏少。春季青藏高原感热的增强与环北半球中高纬度的罗斯贝波列密切相关,扰动在北太平洋形成的反气旋环流向西南方向延伸至西北太平洋,为长江流域输送大量的水汽,有利于降水的发生。夏季,伴随着前期青藏高原感热的增强,南亚高压位置偏东,西北太平洋副热带高压(西太副高)位置偏西偏南,西太副高北侧为气旋式环流异常。在西太副高的控制下,华南东部降水减少;西太副高西侧的偏南气流为长江流域带来大量水汽,并与来自北部气旋式环流异常西侧的偏北风发生辐合,降水增多。青藏高原春季感热异常是华南和长江流域夏季降水异常的重要前兆信号。加入青藏高原春季感热后,利用海温预报的华南、长江流域夏季降水量与观测值的相关系数有所提高,预报方程对区域降水的解释方差提高约15%。   相似文献   

12.
利用国家气候中心提供的中国区域753站降水观测资料、ECMWF逐月地表感热通量再分析资料和NECP/NCAR再分析资料,讨论了欧亚大陆中高纬春季地表感热异常与长江中下游夏季降水之间的联系及其相关的物理机制。分析发现欧亚大陆中高纬春季地表感热异常与长江中下游地区夏季降水存在显著的正相关:感热偏强期,长江中下游夏季降水偏多;感热偏弱期,长江中下游夏季降水偏少。春季感热异常偏强时,夏季东亚副热带西风急流主体位置偏东、强度偏强、范围偏大,长江中下游地区主要受辐合上升气流控制,水汽输送条件好,降水异常偏多。而春季感热偏弱时,情况大致相反,则夏季降水异常偏少。研究表明欧亚大陆中高纬春季地表感热通量异常变化对我国长江中下游夏季降水预测具有一定的指示意义。  相似文献   

13.
丁洁  褚涛 《气象科学》2019,39(3):396-404
使用区域气候模式RegCM4.4.5.7,通过改变春季欧亚大陆中高纬地区的陆面感热通量,对欧亚中高纬感热异常影响中国夏季气候进行模拟分析,并探讨其影响机制。试验结果表明:当春季欧亚中高纬陆面感热通量加强时,我国长江流域和东北东部夏季气温降低,降水偏多;华北地区气温升高,降水偏少。春季陆面感热增强引起近地面和对流层低层大气热力状况异常,进而导致高度场和环流场的异常,长江流域和东北地区有气旋环流,对流运动旺盛,结合充足的水汽条件,对应降水偏多,而华北地区则相反,有反气旋环流和微弱的气流辐合,对应降水偏少。研究表明欧亚中高纬陆面感热异常是影响我国夏季气候的一个不可忽视的因子。  相似文献   

14.
王瑞  李伟平  刘新  王兰宁 《高原气象》2009,28(6):1233-1241
利用耦合的全球海气模式(NCAR CCSM3), 对青藏高原春季土壤湿度异常影响我国夏季7月降水的机制进行了数值模拟。结果表明, 高原6~62 cm深度的中层土壤湿度异常与表层土壤湿度异常有很好的一致性, 相对而言, 中层土壤湿度异常的持续性较好。若5月高原中层土壤偏湿, 则春末至夏初高原地面蒸发、 潜热通量增加, 而感热通量、 地面温度降低, 高原表面的加热作用减弱, 使得印度高压西撤偏晚, 环流系统的季节性转换偏晚, 东亚地区形成有利于我国夏季出现第I类雨型的环流分布形势, 使我国东部雨带偏北, 华北地区多雨, 江淮地区降水偏少, 华南地区降水偏多; 反之亦然。  相似文献   

15.
ABSTRACT

Because of the high elevation and complex topography of the Tibetan Plateau (TP), the role of lakes in the climate system over the Tibetan Plateau is not well understood. For this study, we investigated the impact of lake processes on local and regional climate using the Weather Research and Forecasting (WRF) model, which includes a one-dimensional physically based lake model. The first simulation with the WRF model was performed for the TP over the 2000–2010 period, and the second was carried out during the same period but with the lakes filled with nearby land-use types. Results with the lake simulation show that the model captures the spatial and temporal patterns of annual mean precipitation and temperature well over the TP. Through comparison of the two simulations, we found that the TP lakes mainly cool the near-surface air, inducing a decreasing sensible heat flux for the entire year. Meanwhile, stronger evaporation produced by the lakes is found in the fall. During the summer, the cooling effect of the lakes decreases precipitation in the surrounding area and generates anomalous circulation patterns. In conclusion, the TP lakes cool the near-surface atmosphere most of the time, weaken the sensible heat flux, and strengthen the latent heat flux, resulting in changes in mesoscale precipitation and regional-scale circulation.  相似文献   

16.
Snow cover on the Tibetan Plateau (TP) has been shown to be essential for the East Asian summer monsoon. In this paper, we demonstrate that tropical cyclone (TC) 04B (1999) in the northern Indian Ocean, which made landfall during the autumn of 1999, may have contributed to climate anomalies over East Asia during the following spring and summer by increasing snow cover on the TP. Observations indicate that snow cover on the TP increased markedly after TC 04B (1999) made landfall in October of 1999. Sensitivity experiments, in which the TC was removed from a numerical model simulation of the initial field, verified that TC 04B (1999) affected the distribution as well as increased the amount of snow on the TP. In addition, the short-term numerical modeling of the climate over the region showed that the positive snow cover anomaly induced negative surface temperature, negative sensible heat flux, positive latent heat flux, and positive soil temperature anomalies over the central and southern TP during the following spring and summer. These climate anomalies over the TP were associated with positive (negative) summer precipitation anomalies over the Yangtze River valley (along the southeastern coast of China).  相似文献   

17.
黄青兰  刘伯奇  李菲 《大气科学》2017,41(5):1010-1026
本文基于多套卫星观测数据和ERA-Interim再分析资料,分析了由冬至夏北半球副热带地区大气热源的季节转换特征及其原因。结果表明,北半球副热带大陆东部以对流凝结潜热为主的夏季型大气热源首先于4月初在我国南方地区建立,该过程与江南雨季的形成发展联系紧密。2~3月,江南地区的大气热源以感热加热为主,这时降水以大尺度层云降水为主;而在4月初之后,江南地区降水以对流性降水为主,相应地对流凝结潜热成为大气热源的主要成分。动力和热力诊断分析说明,青藏高原南部热力状况的季节变化是导致4月初江南地区降水性质和大气热源首先发生季节转换的重要原因。2~3月,随着太阳辐射逐渐增强,青藏高原地面感热随之加强,此时对流层中部的纬向西风令江南地区的对流层中部暖平流加强,引起上升运动并加强局地大尺度层云降水,令土壤湿度加大,为随后局地对流性降水的快速发展提供了有利条件。之后,青藏高原地面感热在4~5月期间继续加强,这时高原南坡的"感热气泵"令其四周的低空水汽向北辐合,从而加强了江南地区的低空南风,使大量水汽自南海-西太平洋向北输送,令江南地区的对流性降水快速发展,地面感热迅速减小,对流凝结潜热进而成为江南地区大气热源的主要成分。  相似文献   

18.
The evident effects of the thermal anomalies over the Tibetan Plateau (TP) and its vicinities are summarized and discussed in this paper. By the singular value decomposition (SVD) technique and numerical simulations of the effect of the snow depth anomaly over the TP, it is shown that the snow depth anomaly, especially in winter, is one of the factors influencing precipitation in China, and the winter snow anomaly is more important than the spring one. The relations between the sensible heat anomaly over the TP and the intensity of the South China Sea summer monsoon (SCSSM) are studied, too, and two key areas of the sensible heat anomaly over the TP are found. The relationships between the South Asia High (SAH). and the precipitation in the years with typical droughts or floods in the mid to lower valleys of the Yangtze River (MLVYR) and North China are investigated in some detail. It is found that not only the intensity of the SAH over the TP, but also the 100-hPa height in a large area influences the precipitation in the above two regions. The effects of the SAH on the onsets of the tropical Asian summer monsoon (TASM) including the SCSSM and the tropical Indian summer monsoon (TISM) are studied as well. It is found that the onset times of both the SCSSM and the TISM are highly dependent upon the latitudinal position of the SAH center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号