首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
新疆地区土壤湿度遥感监测初探   总被引:1,自引:0,他引:1  
通过对2005年6—8月新疆地区的MODIS影像数据的处理,在考虑到植被影响的条件下,利用植被指数订正的热惯量法进行土壤湿度的计算,对新疆地区土壤湿度的监测进行了一些初步的探究,结果表明,该方法所反映的情况与实际情况基本一致。  相似文献   

2.
基于1992~2010年全国778个农业气象站土壤湿度观测资料、ERA-Interim、JRA55、NCEP-DOE R2和20CR土壤湿度再分析资料,通过平均差值、相关系数、差值标准差、标准差比四个参数,利用Brunke排名方法和EOF(Empirical Orthogonal Function)分析,对四套土壤湿度再分析资料在中国西北东部—华北—江淮区域的适用性进行了分析。主要结论如下:不同季节的平均偏差空间分布上,JRA55资料同观测数据的平均偏差在±0.08m~3 m~(-3)之间,春、夏季西北东部JRA55土壤湿度偏小,ERA-Interim、NCEP-DOE R2、20CR资料较观测数据偏湿,华北南部、江淮地区平均偏差小于西北东部、华北北部。在年际变化上,各个季节ERA-Interim资料同观测资料最为接近,能稳定地再现西北东部、华北、江淮地区土壤湿度干湿变化趋势,反映出重要的旱涝年。整体而言,四套再分析资料中ERA-Interim资料同观测资料接近,JRA55、NCEP-DOE R2资料次之,20CR资料最差。  相似文献   

3.
分析了欧洲空间局最近基于多颗卫星微波资料研发的ECV土壤湿度产品的季节性干湿变化,并与国家气象局提供的站点资料做了对比验证。研究发现:主动与被动遥感土壤湿度的干湿季节变化在中国东部季风区有显著的不一致性。在中国东部季风区,被动遥感土壤湿度的干湿季变化和站点观测一致,均表现出夏季是干季、冬季是湿季的特征;而主动遥感的数据则存在较大的空间差异,华北地区与被动遥感数据较为一致,华南地区则呈现夏季为湿季、冬季为干季的反位相特征。两者的不一致性说明,针对欧洲空间局开发ECV土壤湿度产品的过程,融合主动遥感和被动遥感资料,研制长序列土壤湿度产品的思路在中国东部季风区不可行。  相似文献   

4.
利用江苏省2010—2015年的60个站点土壤湿度观测资料,对欧洲中心ERA-Interim再分析资料(ERA)和美国宇航局再分析资料(MERRA)的两套土壤湿度数据在江苏地区的可靠性进行了评估。结果表明:相比于ERA再分析资料,MERRA较好地再现出江苏省次表层年平均土壤湿度的空间分布特征,但是两种资料的次表层和深层土壤湿度的数值均小于观测。ERA和MERRA基本都能揭示出江苏省次表层土壤湿度的季节变化特征,但是深层土壤湿度与观测仍有较大差距。在时间演变方面,ERA次表层土壤湿度与站点观测在研究时段内较为接近,EOF分析揭示出1979—2016年江苏省次表层土壤湿度存在区域一致型与南北偶极型两个主要的年代际变率模态。但是对于深层土壤湿度时间演变而言,两种再分析资料都与观测有较大的差距。总体而言,再分析资料的次表层土壤湿度与站点观测较为接近,但是由于再分析资料陆面模式中地下水等影响深层土壤湿度的关键过程刻画较为简单,使得深层土壤湿度与观测有较大的差距。  相似文献   

5.
1981—2010年黑龙江省夏季土壤湿度演变特征   总被引:1,自引:0,他引:1  
利用1981—2010年黑龙江省土壤湿度数据,以富锦县、龙江县、双城县、黑河市、海伦县和宁安县为代表站点,分析黑龙江省东、西、南、北部和中部及牡丹江半山区各区域夏季(7—8月)0—50 cm土层土壤湿度的趋势变化和干湿变化,并采用Mann-Kendall法对土壤湿度变化趋势进行显著性和突变点检验。结果表明:夏季0—50 cm土层,黑河市、海伦县和龙江县土壤湿度在30 a间均有不同程度下降,尤其是西部的龙江县土壤湿度下降剧烈;而东部富锦县、南部的双城县和牡丹江半山区的宁安县土壤湿度无明显下降趋势。Mann-Kendall检验结果:近30 a中,黑龙江省夏季0—50 cm土层北部、西部和中部的黑河市、龙江县及海伦县土壤湿度下降趋势显著,并出现了突变区域,表明黑河地区、松嫩平原的西部和北部夏季土壤湿度的干旱化趋势和程度均越来越明显。黑龙江省中西部夏季土壤湿度年际间的下降可能与气候条件及土壤理化性质的改变等因素密切相关。  相似文献   

6.
多种土壤湿度资料在中国地区的对比分析   总被引:1,自引:0,他引:1  
利用1992—2012年中国区域土壤湿度观测资料对目前使用较为广泛的5套土壤湿度资料(ERA-Interim、NCEP再分析资料、GLDAS同化资料、CPC模式资料和AMSR-E卫星反演资料)的适用性进行检验,分析5套资料对中国区域土壤湿度的时空分布特征和变化趋势的描述能力。结果表明:5套资料都能大体反映暖季中国区域土壤湿度东南湿、西北干,自东南向西北递减的分布格局以及西北干旱区和半干旱区变湿、长江流域部分地方变干的变化趋势,其中CPC资料最接近观测事实,并能较好地表现局地特征;在描述土壤湿度的季节变化和年际变化方面,GLDAS和NCEP资料与观测数据的相关性较好,能较好反映土壤湿度的时间演变特征。进一步利用检验效果较好的GLDAS、NCEP和CPC资料分别对中国区域土壤湿度时间和空间的长期变化趋势分析发现:中国区域标准化年平均土壤湿度在1948—1996年处在相对湿润期,而1996—2012年处在相对干旱期;中国区域年平均土壤湿度的空间变化特征是东部变干、西部变湿,自东北、华北至西南呈现一个干旱化带。  相似文献   

7.
本文利用中国西南喀斯特区域内该区域内全部31个农业气候站点1991~2013年50cm层土壤湿度(体积含水量)旬资料,应用线性趋势分析、EOF空间分解方法,详细分析其时空演变特征,进一步认识中国西南喀斯特地区土壤湿度的时空演变特征,结果表明:(1)西南喀斯特地区中层土壤湿度多年平均的空间大小及分布具有明显的区域性差异。(2)1991~2013年季节平均中,中层秋季的土壤湿度整体最高,夏季土壤湿度的低值区范围最大,反映了西南喀斯特地区土壤的独特性。(3)中层土壤湿度年际变化有明显的“南升北降”空间分布特征,相应线性趋势分析和EOF的结果也同样印证了这一主要特征。(4)50cm的年际变化较稳定且波动趋势较小;整体的土壤湿度以夏、秋季最高,春、冬季较低。   相似文献   

8.
夏季青藏高原不同层次土壤湿度时空变化特征   总被引:1,自引:0,他引:1  
孙夏  范广洲  张永莉  赖欣 《干旱气象》2019,37(2):252-261
基于1950—2009年GLDAS Noah 2.0逐月平均土壤湿度资料,分析了夏季青藏高原各层土壤湿度的时空变化特征。结果表明:(1)夏季青藏高原各层土壤湿度整体上呈自南向北递减的空间分布,但在高原中部地区中层、深层土壤湿度均有一个极值中心。(2)夏季高原中东部地区表层、浅层、中层、深层土壤湿度之间的差值(深层与中层除外)均表现为"上湿下干"的垂直分布,而中部偏西地区各层土壤湿度差值则表现为"下湿上干"的垂直分布。(3)夏季高原各层土壤湿度第一模态均呈现西南—东北反向型分布,且随着深度的增加,零线向东北移。(4)夏季高原主体各层土壤湿度的年际变化特征明显,除深层(呈现不显著增加趋势)外整体均呈现显著下降趋势,前期土壤湿度较高,后期较低。从空间趋势分布来看,除深层土壤湿度在高原中部有增大趋势外,各层土壤湿度变化趋势在高原上均以减小为主。(5)去趋势后,除深层外其他各层土壤湿度最大年际变化幅度在高原中部随着土层的增加而减小,而高原中东部则随土层的增加而增大。  相似文献   

9.
两套土壤湿度再分析资料在黑河流域的对比分析   总被引:5,自引:1,他引:4       下载免费PDF全文
崔文瑞  高艳红  彭雯 《高原气象》2009,28(6):1274-1281
利用黑河流域少量观测台站的实测降水和土壤湿度资料, 对比分析了欧洲中心ERA40及美国NCEP R-1两套常用的土壤湿度再分析资料在黑河流域的空间分布、 年际变化和季节循环特征, 结果表明:两套资料在黑河流域均能表现出“南湿北干”的分布格局, 湿度高值中心位于祁连山区东南部.以此为中心, 土壤湿度从上游山区向中下游递减。ERA40土壤湿度在祁连山区年际变化明显, 与降水的响应关系要好于NCEP资料, 在中下游站点, NCEP 10 cm层土壤湿度对降水的响应好于ERA40。祁连站ERA40土壤湿度在6~8月接近观测值, 在额济纳站两套资料对于土壤湿度的描述都不理想。  相似文献   

10.
雨后麦田土壤湿度变化的诊断分析   总被引:2,自引:0,他引:2  
任鹤麒  金龙 《气象科学》1996,16(3):264-271
通过分析研究冬小麦生育期,影响雨后麦田土壤湿度变化的主要因子,建立了雨后小水分渗透深度及不同土层的土壤湿度变化诊断模式。利用1991-1994年冬小麦不同时段的实测资料进行的对比分析表明,各模式的计算结果是较为满意的。  相似文献   

11.
中国区域多种微波遥感土壤湿度产品质量评估   总被引:4,自引:0,他引:4  
以自动土壤水分观测站土壤湿度作为验证数据, 对2012年中国区域ASCAT、WINDSAT、FY3B、SMOS 4种微波遥感土壤湿度产品按省份进行了评估研究。结果表明:ASCAT质量最优, 在中国大多数地区与观测数据的相关系数较高, 归一化标准偏差较小。WINDSAT其次, 质量优于FY3B, 而SMOS在中国大部分地区质量差, 受无线电频率干扰严重。4种产品在中国西北地区表现均略好, 如山西、陕西、宁夏等省区。研究还发现, 同一卫星土壤湿度产品在同一季节, 不同地区评估质量不同, 这可能与不同地区的地表植被覆盖类型有关。  相似文献   

12.
土壤湿度是地球系统模拟的重要参数之一,准确获得其时空分布和变化特征是研究陆-气相互作用的基础。再分析资料和陆面数据同化资料均可提供全球或区域高分辨率土壤湿度产品,但在使用前需要对其进行评估分析。利用土壤湿度观测数据,计算ERA5、ERA5-Land、NCEP-DOE R2、CRA40再分析资料和GLDAS-Noah、GLDAS-CLSM、CLDAS陆面数据同化资料土壤湿度产品与观测数据的中位数、模拟偏差、相关系数等统计指标,并分季节和气候区讨论不同土壤湿度产品在中国北方地区的模拟效果。结果表明:整体来看,CRA40与观测值的相关性最好,ERA5和ERA5-Land分别对干中心、湿中心模拟效果更好,GLDAS-Noah对于较干土壤地区模拟略偏湿,CLDAS对较湿土壤地区模拟结果以系统性偏干为主,NCEP-DOE R2和GLDAS-CLSM模拟效果较差;ERA5、ERA5-Land、NCEP-DOE R2、GLDAS-Noah和CLDAS在所有季节均为模拟正偏差,春季模拟效果较好的是CRA40、ERA5-Land,夏季和秋季ERA5-Land、ERA5和CRA40与观测值相关性较好,不同产...  相似文献   

13.
利用MODIS产品数据MOD11A2和MOD13A2获取地表温度(TS)、昼夜温差(DST)、归一化植被指数(NDVI)、增强植被指数(EVI),构建宁夏区域2005年4、7、10月逢8、18、28日TS-NDVI、TS-EVI、DST-NDVI、DST-EVI特征空间,根据TS-NDVI、TS-EVI、DST-NDVI、DST-EVI特征空间建立了温度植被干旱指数(TVDI)、温度增强植被指数型干旱指数(TEDI)、温差植被干旱指数(DTVDI)、温差增强植被指数型干旱指数(DTEDI),并以这些干旱指数作为土壤水分监测指标,反演了宁夏区域2005年4、7、10月的土壤水分.利用实测10 cm土壤水分进行相关分析,结果表明DTEDI在宁夏土壤水分反演中表现较好,DTVDI表现略好.  相似文献   

14.
利用1993年和2004年长三角地区的卫星遥感资料,分析了该地区的3个主要区域南京、上海、苏锡常及其周边的土地利用类型变化,定量地评价城市用地扩展程度.结合2004年地表温度(LST)卫星资料,揭示了城乡LST空间分布特征及其差异.结果表明:上海、苏锡常和南京11a期间城市建设用地动态度K分别为204.0%、354.3%和99.2%,苏锡常城市扩展程度最快;不同土地覆盖类型的LST不同,城市用地LST最高,其次作物地,林地最低;城乡之间平均地表温差具有季节变化,冬季最大,而秋季最小.  相似文献   

15.
Trends and scales of observed soil moisture variations in China   总被引:3,自引:0,他引:3  
A new soil moisture dataset from direct gravimetric measurements within the top 50-cm soil layers at 178 soil moisture stations in China covering the period 1981-1998 are used to study the long-term and seasonal trends of soil moisture variations, as well as estimate the temporal and spatial scales of soil moisture for different soil layers. Additional datasets of precipitation and temperature difference between land surface and air (TDSA) are analyzed to gain further insight into the changes of soil moisture. There are increasing trends for the top 10 cm, but decreasing trends for the top 50 cm of soil layers in most regions. Trends in precipitation appear to dominantly influence trends in soil moisture in both cases. Seasonal variation of soil moisture is mainly controlled by precipitation and evaporation, and in some regions can be affected by snow cover in winter. Timescales of soil moisture variation are roughly 1-3 months and increase with soil depth. Further influences of TDSA and precipitation on soil moisture in surface layers, rather than in deeper layers, cause this phenomenon. Seasonal variations of temporal scales for soil moisture are region-dependent and consistent in both layer depths. Spatial scales of soil moisture range from 200-600 km, with topography also having an affect on these. Spatial scales of soil moisture in plains are larger than in mountainous areas. In the former, the spatial scale of soil moisture follows the spatial patterns of precipitation and evaporation, whereas in the latter, the spatial scale is controlled by topography.  相似文献   

16.
利用中国1981—2007年土壤湿度资料、地面气象观测旬资料及东亚夏季风强度指数、NCEPⅡ再分析资料,通过诊断分析探讨了土壤湿度变化的敏感区——渭河流域土壤湿度异常与我国若干气候背景的联系。合成分析显示,渭河流域土壤湿度异常干年,中国北方中东部大部分地区土壤偏干,降水量偏少,蒸发皿蒸发偏强,空气相对湿度偏小,湿年反之;大气环流也呈完全相反的形势,干年亚洲中高纬位势高度距平分布西正东负,湿年反之。滞后相关分析表明,土壤湿度的变化可引起500 h Pa大气高度场的变化,从而使定常波的位置和强度发生变化,进而导致降水场的变化;渭河流域13—16旬土壤湿度与17—20旬500 h Pa大气环流表现出欧亚—太平洋遥相关(EUP)型,表明土壤湿度对大气的影响可通过大气遥相关的作用传播到其他区域;土壤湿度蒸发对低层大气水汽通量有正贡献,但这种贡献对产生降水所需的水汽而言是次要的,在我国中东部,前期土壤湿度对夏季降水的影响小,对秋季降水则有明显影响;渭河流域前一年秋季和当年春季土壤湿度与东亚夏季风强度指数显著正相关,表明秋季和春季陆面土壤湿度状况对东亚夏季风的强弱有正反馈的作用。  相似文献   

17.
以西班牙萨拉曼卡地区为研究区域,联合Sentinel-1后向散射系数和入射角信息、Sentinel-2光学数据提取的植被指数以及地面实测数据,构建了BP神经网络土壤湿度反演模型,并将该模型应用于试验区土壤湿度反演.结果 表明:1)基于Sentinel-1卫星VV和VH极化雷达后向散射系数、雷达入射角和Sentinel-...  相似文献   

18.
AnalysisoftheAbilityofInfraredWaterVaporChannelforMoistureRemoteSensingintheLowerAtmosphereZhaoGaoxiang(赵高祥)InstituteofAtmosp...  相似文献   

19.
富裕县农田土壤湿度变化及其对玉米发育期和产量的影响   总被引:1,自引:0,他引:1  
本文旨在分析黑龙江省富裕县农田土壤相对湿度对玉米发育期和产量的影响,以期为松嫩平原西部玉米生产提供科学参考。以黑龙江省富裕县为研究区域,利用1982—2017年土壤相对湿度资料、1995—2017年玉米发育期资料、玉米产量资料,采用对比分析、相关分析、Mann-Kendall突变检验法,分析土壤相对湿度变化特征,研究土壤相对湿度对玉米发育期和产量的影响。结果表明:富裕县近36 a土壤相对湿度呈增加—减小—增加的趋势。播种期—出苗期、拔节期—抽雄期、乳熟期—成熟期土壤干旱平均每4—6 a一遇,抽雄期—乳熟期每2—3 a一遇,出苗期—拔节期土壤基本无旱。各发育期土壤相对湿度减小的突变年在1987年前后,增加的突变年在2013年前后。20世纪80年代土壤较适宜,干旱轻,90年代土壤相对湿度迅速下降,干旱最重,之后随着年代的推移土壤干旱逐渐减轻。玉米主要发育期中播种期—出苗期、出苗期—拔节期土壤干旱对产量影响较小,拔节期—成熟期是土壤干旱影响产量的主要时期。  相似文献   

20.
韩桂荣  何金海  梅伟 《气象科学》2008,28(6):649-654
本文对2003年7月4日-5日江淮梅雨期间的一次特大暴雨过程进行了多尺度的详细分析.环流背景、中尺度对流云团和水汽条件分析表明,这次特大暴雨是在典型梅雨的有利环境背景形势下,由梅雨锋上的中尺度对流系统造成的,地面低压、低层切变线及西南低空急流与这次特大暴雨过程有着密切的关系.强降水中心与中尺度对流云团的关系十分密切,中β尺度云团的生成合并增强,和其中中γ降水系统的存在,导致了降水强度的局地性差异.江淮流域主要表现为经向水汽通量的辐合区,强水汽通量舌与低层高θse的舌区一致,暴雨过程中水汽的快速集中主要是通过风场散度项造成的,局地风场的辐合在水汽快速集中起主要作用.低层充沛的水汽则通过气旋性涡度柱中的强上升气流输送到对流层的中高层.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号