首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A baroclinic shallow-water model is developed to investigate the effect of the orientation of the eastern ocean boundary on the behavior of equatorial Kelvin waves. The model is formulated in a spherical polar coordinate system and includes dissipation and non-linear terms, effects which have not been previously included in analytical approaches to the problem. Both equatorial and middle latitude response are considered given the large latitudinal extent used in the model. Baroclinic equatorial Kelvin waves of intraseasonal, seasonal and annual periods are introduced into the domain as pulses of finite width. Their subsequent reflection, transmission and dissipation are investigated. It is found that dissipation is very important for the transmission of wave energy along the boundary and for reflections from the boundary. The dissipation was found to be dependent not only on the presence of the coastal Kelvin waves in the domain, but also on the period of these coastal waves. In particular the dissipation increases with wave period. It is also shown that the equatorial β-plane approximation can allow an anomalous generation of Rossby waves at higher latitudes. Nonlinearities generally have a small effect on the solutions, within the confines of this model.  相似文献   

2.
The equatorial ionosphere responses over Brazil to two intense magnetic storms that occurred during 2001 are investigated. The equatorial ionization anomaly (EIA) and variations in the zonal electric field and meridional winds at different storms phases are studied using data collected by digisondes and GPS receivers. The difference between the F layer peak density (foF2) at an equatorial and a low latitude sites was used to quantify the EIA; while the difference between the true heights (hF) at the equatorial and an off-equatorial site was used to calculate the magnetic meridional winds. The vertical drift was calculated as dhF/dt. The results show prompt penetration electric fields causing unusual early morning development of the EIA, and disturbed dynamo electric field producing significant modification in the F region parameters. Variations to different degrees in the vertical drift, the thermospheric meridional winds and the EIA developments were observed depending on the storm phases.  相似文献   

3.
The present paper investigates the asymmetrical variability of the location of the north and the south equatorial ionization anomaly (EIA) crests in the East-Asian sector, along with their association with simultaneous observations of equatorial electrojet (EEJ) strength, geomagnetic activity index, and solar flux index during the 2002–2003 sudden stratospheric warming (SSW) event. Analysis of these observations indicates the existence of a large-scale quasi 16-day periodic meridional movement in both EIA crests, and also reveals a strong correlation between the quasi 16-day oscillation in geomagnetic latitudes of the EIA crest and EEJ strength. The latitude of the northern/southern EIA crest and the EEJ strength indicate that obvious synchronous periodic oscillations were in-phase in the northern and southern hemisphere when the SSW occurred. In addition, it is also found that both the EIA crest location and amplitude of the periodic movement of the EIA locations exhibit hemispheric asymmetry. The amplitude of the periodic movement of the EIA location in the southern hemisphere is larger than that of the northern hemisphere, and the southern EIA crest is further off from the equator than the north one. Understanding these asymmetries requires a combination of mechanisms that involve at least trans-equator meridional winds and the position of a sub-solar point; however, potential disturbances in neutral winds associated with the SSW may additionally complicate the equatorial ionospheric dynamics.  相似文献   

4.
The Equator-S magnetometer is very sensitive and has a sampling rate normally of 128 Hz. The high sampling rate for the first time allows detection of ELF waves between the ion cyclotron and the lower hybrid frequencies in the equatorial dawnside magnetosphere. The characteristics of these waves are virtually identical to the lion roars typically seen at the bottom of the magnetic troughs of magnetosheath mirror waves. The magnetospheric lion roars are near-monochromatic packets of electron whistler waves lasting for a few wave cycles only, typically 0.2 s. They are right-hand circularly polarized waves with typical amplitudes of 0.5 nT at around one tenth of the electron gyrofrequency. The cone angle between wave vector and ambient field is nearly always smaller than 1°.  相似文献   

5.
The Equator-S magnetometer is very sensitive and has a sampling rate of normally 128 Hz. The high sampling rate allows for the first time fluxgate magnetometer measurements of ELF waves between the ion cyclotron and the lower hybrid frequencies in the equatorial dayside magnetosheath. The so-called lion roars, typically seen by the Equator-S magnetometer at the bottom of the magnetic troughs of magnetosheath mirror waves, are near-monochromatic packets of electron whistler waves lasting for a few wave cycles only, typically 0.25 s. They are right-hand circularly polarized waves with typical amplitudes of 0.5–1 nT at around one tenth of the electron gyrofrequency. The cone angle between wave vector and ambient field is usually smaller than 1.5°.  相似文献   

6.
Measurements from ground-based receiver chains of the global positioning system (GPS) and magnetometers of the Circum-pan Pacific Magnetometer Network (CPMN) in the west Pacific region during 1999–2003 are examined. The ionospheric total electron content (TEC) derived from the GPS receivers is used to observe the strength, location, and occurrence time of the equatorial ionization anomaly (EIA) crests, which resulted from the equatorial plasma E×B drift fountain. The magnetic field strength of CPMN is employed to monitor the equatorial electrojet (EEJ), and to further estimate the effectiveness of the E×B drift to the EIA crests. Results show that the strength and location of the EIA crests are proportional to the EEJ strength.  相似文献   

7.
基于国际全球定位服务中心(International GPS Service,IGS)提供的120°E 上空1999-2009年IONEX格式电离层电子浓度总含量(TEC)资料,分析赤道电离异常驼峰区TEC峰值Inc和Isc的年变化和季节变化以及与太阳、地磁活动的相关性.在11年时间尺度上,Inc和Isc与太阳辐射P指数的日均值有较好的相关性(r=0.90和r=0.84),而与地磁活动指数Dst、Kp和Ap日均值的相关性均不好.驼峰区TEC峰值Inc和Isc都是在北半球春、秋季出现极大值,而且冬季值大于夏季值,即Inc呈现"半年异常"和"冬季异常"现象,我们认为Inc和Isc相似的半年变化特征是与赤道上空电离层电急流相关的东向电场半年变化导致的.利用支持向量回归方法构建了EIA指数的预报模型,预报试验结果表明,该预报模型能较准确地描述Inc和Isc的变化,对南北驼峰TEC峰值预报的平均相对误差分别为22.96%和10.2%.基于支持向量机回归的预测方法为赤道电离异常特征指数预报的实现提供一条有效方法途径和好的应用前景.  相似文献   

8.
切变基本纬向流中非线性赤道Rossby长波   总被引:5,自引:1,他引:4  
为了解决观测和理论研究中的一些问题以及更好地了解热带大气动力学 ,有必要进一步研究基本气流的变化对大气中赤道Rossby波动的影响 .本文研究分析基本气流对赤道Rossby长波的影响 ,利用一个简单赤道 β平面浅水模式和摄动法 ,研究纬向基本气流切变中非线性赤道Rossby波 ,推导出在切变基本纬向流中赤道Rossby长波振幅演变所满足的非线性KdV方程并得到其孤立波解 .分析表明 ,孤立波存在的必要条件是基本气流有切变 ,而且基流切变不能太强 ,否则将产生正压不稳定 .  相似文献   

9.
The unique geometry of the geomagnetic field lines over the equatorial ionosphere coupled with the E–W electric field causes the equatorial ionization anomaly (EIA) and equatorial spread-F (ESF). lonosonde data obtained at a chain of four stations covering equator to anomaly crest region (0.3 to 33 °N dip) in the Indian sector are used to study the role of EIA and the associated processes on the occurrence of ESF. The study period pertains to the equinoctial months (March, April, September and October) of 1991. The ratios of critical frequency of F-layer (f0F2) and electron densities at an altitude of 270 km between Ahmedabad (33 °N dip) and Waltair (20 °N dip) are found to shoot up in the afternoon hours on spread-F days showing strengthening of the EIA in the afternoon hours. The study confirms the earlier conclusions made by Raghava Rao et al. and Alex et al. that a well-developed EIA is one of the conditions conducive for the generation of ESF. This study also shows that the location of the crest is also important in addition to the strength of the anomaly.  相似文献   

10.
A meridional scanning OI 630.0-nm dayglow photometer was operated from Ahmedabad (17.2°N dip lat.) scanning a region towards the south in the upper atmosphere extending over \sim5° in latitude from 10.2°N to 15.2°N dip latitude. From the spatial and temporal variabilities of the dayglow intensity in the scanning region we show for the first time, evidence for the passage of the crest of the equatorial ionization anomaly (EIA) in the daytime by means of a ground-based optical technique. The relationship between the daytime eastward electric field over the dip equator in the same longitude zone as inferred from the equatorial electrojet strength and the evolutionary pattern of EIA is clearly demonstrated. The latter as inferred from the dayglow measurements is shown to be consistent with our present understanding of the electrodynamical processes in the equatorial region. The present results reveal the potential of this ground-based optical technique for the investigation of ionospheric/thermospheric phenomena with unprecedented spatial and temporal resolution.  相似文献   

11.
Geomagnetic storm effects at low latitudes   总被引:1,自引:0,他引:1  
The geomagnetic horizontal (H) field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday hours over and above the usual dawn-maximum and dusk-minimum seen at any mid-latitude stations around the world. These slow and persistent additional decreases of H of disturbance daily variation at equatorial latitudes could be the effect of a westward electric field due to the Disturbance Ionospheric dynamo coupled with abnormally large electrical conductivities in the E region over the equator.  相似文献   

12.
We consider an electrically conducting fluid in rotating cylindrical coordinates in which the Elsasser and magnetic Reynolds numbers are assumed to be large while the Rossby number is assumed to vanish in an appropriate limit. This may be taken as a simple model for the Earth's outer core. Fully nonlinear waves dominated by the nonlinear Lorentz forces are studied using the method of geometric optics (essentially WKB). These waves are assumed to be of the form of an asymptotic series expanded about ambient magnetic and velocity fields which vanish on the equatorial plane. They take the form of short wave, slowly varying wave trains. The first-order approximation is sinusoidal and basically the same as in the linear problem, with a dispersion relation modified by the appearance of mean terms. These mean terms, as well the undetermined amplitude functions, are found by suppressing secular terms in a “fast” variable in the second-order approximation. The interaction of the mean terms with the dispersion relation is the primary cause of behaviors which differ from the linear case. In particular, new singularities appear in the wave amplitude functions and an initial value problem results in a singularity in one of the mean terms which propagates through the fluid. The singularities corresponding to the linear ones are shown to develop when the corresponding waves propagate toward the equatorial plane.  相似文献   

13.
大气重力波产生的大尺度赤道电离层扰动   总被引:2,自引:0,他引:2       下载免费PDF全文
本文研究了大气重力波产生的大尺度赤道电离层扰动的性质.当重力波的传播方向与磁场方向倾斜相交时,重力波在F区产生行进电离层扰动.当重力波垂直于磁场传播时,能触发等离子体Rayleigh-Taylor不稳定性,形成大尺度赤道扩展F不均匀体.重力波引起的扩展F主要出现于晚上,行进电离层扰动则可能出现于任何时间.本文建立了行进电离层扰动和大尺度赤道扩展F的统一理论模型,深入全面地揭示了电离层扰动的性质.  相似文献   

14.
《Journal of Atmospheric and Solar》2002,64(12-14):1371-1381
We review the observational evidence for describing the characteristics of the equatorial temperature and zonal wind anomaly (ETWA) in the low-latitude thermosphere in solar maximum and minimum periods. In spite of some new results on ETWA in the last decade, including its discovery, there is no satisfactory explanation in our understanding of the phenomenon. The two suggested mechanisms for heating at the crests of the equatorial ionization anomaly (EIA) to form the equatorial temperature anomaly (ETA) are due to (1) the ion-drag on the zonal winds resulting in the transfer of kinetic energy into heat energy and (2) the exothermic chemical reactions involved in the dominant O+ion re-combinations. To verify which of the two suggested mechanisms is the most effective in causing ETA, it is necessary to measure simultaneously a few parameters in situ by the satellite-borne instruments. They are (1) the electron density (Ne) and temperature (Te), (2) the molecular and atomic ion densities (Nij) and ion temperatures (Ti), (3) the gas temperatures (T) and densities of the gas constituents, (4) the vector winds or at least the zonal (Z) and vertical (V) wind components and (5) the drift velocities of the ionization. These together with the simultaneous ground-based measurements, will resolve identifying not only the dominant mechanism(s) for ETWA, but also the processes responsible for the enigmatic phenomena, such as the equatorial spread-F (ESF), the midnight temperature maximum (MTM) and the possible role of the EIA in their occurrences.  相似文献   

15.
A numerical simulation of secondary waves generated by nonlinear interaction has been used to interpret the behaviour of planetary waves observed by a meteor radar in the UK (53°27′N, 1°35′W) during the summer of 1992. A new explanation is proposed for the long-period variability of the (3,0) mode quasi-two-day wave in the mesosphere and lower-thermosphere, involving the (2,0) Rossby-gravity mode and pseudo-two-day secondary waves with the same zonal wavenumbers as those of the primary (2,0) and (3,0) modes. These pseudo-two-day secondary waves arise from the nonlinear interaction of the Rossby-gravity modes with long-period oscillations of the zonally averaged flow in the equatorial stratosphere, which can be generated by the interaction between the 10 and 16 day planetary waves. Other maxima existing in the neutral wind power spectra can be identified with various secondary waves originating from nonlinear interaction between the quasi-two-day and long-period planetary waves.  相似文献   

16.
Systematic westerly biases in the southern hemisphere wintertime flow and easterly equatorial biases are experienced in the Météo-France climate model. These biases are found to be much reduced when a simple parameterization is introduced to take into account the vertical momentum transfer through the gravity waves excited by deep convection. These waves are quasi-stationary in the frame of reference moving with convection and they propagate vertically to higher levels in the atmosphere, where they may exert a significant deceleration of the mean flow at levels where dissipation occurs. Sixty-day experiments have been performed from a multiyear simulation with the standard 31 levels for a summer and a winter month, and with a T42 horizontal resolution. The impact of this parameterization on the integration of the model is found to be generally positive, with a significant deceleration in the westerly stratospheric jet and with a reduction of the easterly equatorial bias. The sensitivity of the Météo-France climate model to vertical resolution is also investigated by increasing the number of vertical levels, without moving the top of the model. The vertical resolution is increased up to 41 levels, using two kinds of level distribution. For the first, the increase in vertical resolution concerns especially the troposphere (with 22 levels in the troposphere), and the second treats the whole atmosphere in a homogeneous way (with 15 levels in the troposphere); the standard version of 31 levels has 10 levels in the troposphere. A comparison is made between the dynamical aspects of the simulations. The zonal wind and precipitation are presented and compared for each resolution. A positive impact is found with the finer tropospheric resolution on the precipitation in the mid-latitudes and on the westerly stratospheric jet, but the general impact on the model climate is weak, the physical parameterizations used appear to be mostly independent to the vertical resolution.  相似文献   

17.
Lee and mountain waves are dominant dynamic processes in the atmosphere above mountain areas. ST VHF radars had been intensively used to investigate these wave processes. These studies are summarized in this work. After discussing features of long-period quasi-stationary lee waves, attention is drawn to the frequent occurrence of freely propagating waves of shorter periods, which seem to be more common and characteristic for wave processes generated over mountainous areas. Characteristics of these waves such as their relation to the topography and background winds, the possibility of trapping by and breaking in the tropopause region and their propagation into the stratosphere is investigated. These orographically produced waves transport energy and momentum into the troposphere and stratosphere, which is considered an important contribution to the kinetic energy of the lower atmosphere. The occurrence of inertia-gravity waves in the stratosphere had been confused with lee waves, which is discussed in conclusion. Finally further questions on mountain and lee waves are drawn up, which remain to be solved and where investigations with ST radars could play a fundamental role.  相似文献   

18.
电离层赤道异常两日振荡的数值模拟   总被引:1,自引:0,他引:1  
近20年来,国外学者对电离层赤道异常问题的数值模拟研究未考虑到大气行星波对潮汐发电机电场的调制效应,因而不能解释赤道异常峰值的逐日变化.本文结果表明二日波对F_2区电子浓度的输运有很大影响.这一方法可以推广到赤道异常各种长周期行星波振荡的数值研究. 本文从非定常等离子体连续方程出发,建立包含行星波振荡对E×B漂移的调制效应的方程,并给出数值模拟的方法以及可与实际观测进行比较的结果.文中取二日波漂移振幅为U_p=0 m/s、5m/s、10m/s,而初位相分别为φ=0°、90°共四种情形进行了模拟,结果表明,二日波的调制可使赤道异常的时空分布以及异常峰值产生明显的逐日变化.在所选取的模型中,取U_p=5m/s,φ=0°所得到的f_0F_2t的二日分布特征与观测较吻合.而u_p约5m/s的变化能引起异常峰值f_0F_2约1-2MHz的起伏,而二天之内f_0F_2的二个峰值表现出约2-4MHz的起伏.  相似文献   

19.
Observations of the horizontal wind field over the South Pole were made during 1995 using a meteor radar. These data have revealed the presence of a rich spectrum of waves over the South Pole with a distinct annual occurrence. Included in this spectrum are long-period waves, whose periods are greater than one solar day, which are propagating eastward. These waves exhibit a distinct seasonal occurrence where the envelope of wave periods decreases from a period of 10 days near the fall equinox to a minimum of 2 days near the winter solstice and then progresses towards a period near 10 days at the spring equinox. Computation of the meridional gradient of quasi-geostrophic potential vorticity has revealed a region in the high-latitude upper mesosphere which could support an instability and serve as a source for these waves. Estimation of the wave periods which would be generated from an instability in this region closely resembles the observed seasonal variation in wave periods over the South Pole. These results are consistent with the hypothesis that the observed eastward propagating long-period waves over the South Pole are generated by an instability in the polar upper mesosphere. However, given our limited data set we cannot rule out a stratospheric source. Embedded in this spectrum of eastward propagating waves during the austral winter are a number of distinct wave events. Eight such wave events have been identified and localized using a constant-Q filter bank. The periods of these wave events ranges from 1.7 to 9.8 days and all exist for at least 3 wave periods. Least squares analysis has revealed that a number of these events are inconsistent with a wave propagating zonally around the geographic pole and could be related to waves propagating around a dynamical pole which is offset from the geographic pole. Additionally, one event which was observed appears to be a standing oscillation.  相似文献   

20.
Planetary equatorial waves are studied with the shallow water equations in the presence of a mean zonal thermocline gradient. The interactions between this gradient and waves are represented by three non-linear terms in the equations: one in the wind-forcing formulation in the x-momentum equation, and two for the advection of mass and divergence of the velocity field in the continuity equation. When the mean gradient is imposed but small, these three (linearized) terms will perturb the behavior of the equatorial waves. This paper gives a simple analytic treatment of this problem.The equatorial Kelvin mode is first solved with all three contributions, using a Wentzel-Kramers-Brillouin method. The Kelvin mode shows a spatial or/and temporal growth when the thermocline gradient is negative which is the usual situation in the equatorial Pacific ocean (deep thermocline in the west and shallow in the east). The more robust and efficient contribution comes from the advection term.The single effect of the advection of the mean zonal thermocline gradient is then studied for the Kelvin and planetary Rossby modes. The Kelvin mode remains unstable (damped), while the Rossby modes appear damped (unstable) for a negative (positive) thermocline gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号