首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the first data on the petrology of the mantle lithosphereof the Southeastern (SE) Slave craton, Canada. These are basedon petrographic, mineralogical and geochemical studies of mantlexenoliths in Pipe 5034 of the Cambrian Gahcho Kué kimberlitecluster. Major types of mantle xenoliths include altered eclogite,coarse garnet or spinel peridotite, and deformed garnet peridotite.The peridotites belong to the low-temperature suite and formedat T=600–1300°C and P= 25–80 kbar in a thick(at least 220–250 km), cool lithosphere. The SE Slavemantle is cooler than the mantle of other Archaean cratons andthat below other terranes of the Slave craton. The thick lithosphereand the relatively cool thermal regime provide favourable conditionsfor formation and preservation of diamonds beneath the SE Slaveterrane. Similar to average Archaean mantle worldwide, the SESlave peridotite is depleted in magmaphile major elements andcontains olivine with forsterite content of 91–93·5.With respect to olivine composition and mode, all terranes ofthe Slave mantle show broadly similar compositions and are relativelyorthopyroxene-poor compared with those of the Kaapvaal and Siberiancratons. The SE Slave spinel peridotite is poorer in Al, Caand Fe, and richer in Mg than deeper garnet peridotite. Thegreater chemical depletion of the shallow upper mantle is typicalof all terranes of the Slave craton and may be common for thesubcontinental lithospheric peridotitic mantle in general. Peridotiticxenoliths of the SE Slave craton were impregnated by kimberliticfluids that caused late-stage recrystallization of primary clinopyroxene,spinel, olivine and spinel-facies orthopyroxene, and formationof interstitial clinopyroxene. This kimberlite-related recrystallizationdepleted primary pyroxenes and spinel in Al. The kimberliticfluid was oxidizing, Ti-, Fe- and K-rich, and Na-poor, and introducedserpentine, chlorite, phlogopite and spinel into peridotitesat P < 35 kbar. KEY WORDS: kimberlite xenolith; lithosphere; mantle terrane; chemical zoning; thermobarometry; Slave craton  相似文献   

2.
A suite of large and fresh peridotite xenoliths from a picritetuff deposit in the Cenozoic Vitim volcanic field, {small tilde}200km east of Lake Baikal, shows a continuous gradation from protogranularspinel through garnet–spinel to very abundant garnet peridotites.This includes composite nodules in which all these lithologiescoexist on the scale of a few centimeters. Garnet and many spinellherzolites are remarkably fertile in terms of their ‘basaltic’major element contents (CaO 30–37%, MgO 37–40%,Ca/Al=11, Cr/Al<013), whereas some garnet–spineland spinel peridotites are moderately depleted (Cr/Al 014–045).T estimates are 850–880C for the fertile spinel lherzolitesapparently brought up from shallow depths of 40–50 km.This contrasts with 980–1030C for depleted spinel peridotitesand 1000–1150C for the garnet-bearing peridotites forwhich equilibration pressures between 16 and 23 kbar are inferred.The data suggest that garnet and spinel peridotites coexistin the sub-Vitim mantle at a pressure of {small tilde}18 kbarover an interval of {small tilde}2 kbar, with the appearanceof garnet, and with the garnetto-spinel ratio in this transitionalzone primarily being controlled by bulk rock contents of Ca,Al, Cr, and Cr/Al ratios, in addition to P–T conditions. The Vitim peridotites show little evidence for metasomatic enrichment:they commonly show depletion of LREE compared with intermediateREE; this includes also rare amphibole-bearing veins. The fertilespinel and garnet lherzolites have very similar bulk rock majoroxide contents and REE distribution patterns; these featuresindicate a lack of significant chemical vertical mantle stratificationin that region. Garnet peridotites from Vitim show large differencesin modal and chemical composition from garnet peridotite xenolithsfrom Yakutian and South African kimberlites, suggesting distinctlithospheric mantle structure and composition in Archean cratonsand post-Archean mobile belts. * Present address: School of Earth Sciences, Macquarie University, N.S.W. 2109, Australia  相似文献   

3.
Mineralogical, isotopic, geochemical and geochronological evidencedemonstrates that the Friningen body, a garnet peridotite bodycontaining garnet pyroxenite layers in the Seve Nappe Complex(SNC) of Northern Jämtland, Sweden, represents old, certainlyProterozoic and possibly Archean, lithosphere that became incorporatedinto the Caledonian tectonic edifice during crustal subductioninto the mantle at c. 450 Ma. Both garnet peridotite and pyroxenitecontain two (M1 and M2) generations of garnet-bearing assemblagesseparated by the formation of two-pyroxene, spinel symplectitearound the M1 garnet and the crystallization of low-Cr spinel1Cin the matrix. These textures suggest initial high-pressure(HP) crystallization of garnet peridotite and pyroxenite succeededby decompression into the spinel stability field, followed byrecompression into the garnet peridotite facies. Some pyroxenitelayers appear to be characterized solely by M2 assemblages withstretched garnet as large as several centimeters. Laser ablationmicroprobe–inductively coupled plasma mass spectrometryRe–Os analyses of single sulfide grains generally definemeaningless model ages suggesting more than one episode of Reand/or Os addition and/or loss to the body. Pentlandite grainsfrom a single polished slab of one garnet peridotite, however,define a linear array on an Re–Os isochron diagram that,if interpreted as an errorchron, suggests an Archean melt extractionevent that left behind the depleted dunite and harzburgite bodiesthat characterize the SNC. Refertilization of this mantle bymelts associated with the development of the pyroxenite layersis indicated by enriched clinopyroxene Sr–Nd isotope ratios,and by parallel large ion lithophile-enriched trace elementpatterns in clinopyroxene from pyroxenite and the immediatelyadjacent peridotite. Clinopyroxene and whole-rock model Sm–Ndages (TDM = 1·1–2·2 Ga) indicate that fertilizationtook place in Proterozoic times. Sm–Nd garnet2–clinopyroxene2–wholerock ± orthopyroxene2 mineral isochrons from three pyroxenitelayers define overlapping ages of 452·1 ± 7·5and 448 ± 13 Ma and 451 ± 43 Ma (2  相似文献   

4.
The basanite tuffs of Bullenmerri and Gnotuk maars, Victoria,enclose abundant xenoliths of spinel lherzolites, many of whichcontain amphibole ± apatite ± phlogopite. Thexenolith suite also includes cumulate wehrlites, spinel metapyroxenitesand garnet metapyroxenites. All xenolith types contain abundantlarge CO2-rich fluid inclusions. Microstructural evidence forthe exsolution of spinel, orthopyroxene, garnet and rare plagioclasefrom complex clinopyroxenes suggests that all of the metapyroxeniteshave formed from clinopyroxene (± spinel ± orthopyroxene)cumulates by exsolution and recrystallization during coolingto the ambient geotherm. Pyroxene chemistry implies that a rangeof parental magma types was involved. Garnet pyroxenites showa series of reactions to successively finer-grained, lower-Pmineral assemblages, which imply a relatively slow initial upwardtransport of the xenoliths in the magma, prior to explosiveeruption. The same process has allowed crystallization of phenocrystsfrom small patches of interstitial melt within xenoliths oflherzolite, wehrlite and metapyroxenite. Critically selected P-T estimates for 16 garnet websteritesare consistent with published experimental studies of the spinel/garnetpyroxenite transition, and define a geotherm from 900 °C,11 kb to 1100 °C, 16 kb. Other published data extend thecurve down to c. 7 kb and up to 25 kb. This elevated geothermsuggests that the high regional heat flow is related to convectiveheat transfer by dike injection accompanying the vulcanism.T estimates for the lherzolites range from 850–1050 °C;comparison with the derived geotherm implies that the spinellherzolites are derived from depths of 30–55 km. Thiszone has low seismic velocities (Vp = 6.8–7.8 km/sec)and has thus previously been regarded as a thick, largely maficlower crust. The xenolith data show that this Mower crust' isdominantly ultramafic, with layers, dikes and some large bodiesof pyroxenites and mafic granulites. The anomalously low Vpmay be due to the high T, the high proportion of fluid-filledpore volume, and the magnesian composition of the lherzolites.The seismically defined Moho (Vp >8.0 km/sec) coincides withthe experimentally determined position of the spinel lherzolite-garnetlherzolite transition.  相似文献   

5.
Geological and geophysical evidence indicates that at least100 km of Archaean to Proterozoic lithospheric mantle has beenremoved from beneath large areas of eastern and southeasternChina during late Mesozoic to Cenozoic time. Mantle-derivedxenoliths in Tertiary basalts from several localities acrossthis region have been studied by X-ray fluorescence, electronmicroprobe and laser ablation microprobe–inductively coupledplasma-mass spectrometry to characterize this thinner lithosphere.Trace element patterns of clinopyroxenes in the peridotitesfrom southeastern China can be divided into four groups: fertilegarnet lherzolites, fertile spinel (± garnet) lherzolites,and depleted and enriched peridotites. The addition of Nb, Sr,light rare earth elements, but not of Ti and Zr, suggests ametasomatizing agent containing both H2O and CO2. This studyalso demonstrates that the negative Ti anomaly commonly observedin clinopyroxene from mantle peridotites cannot be balancedby the Ti in coexisting orthopyroxene, but can be explainedby small degrees of partial melting, using appropriate distributioncoefficients. Most of the peridotites from southeastern China,whether spinel or garnet facies, are highly fertile in termsof Al2O3 and CaO contents and mg-number; many resemble commonlyused primitive mantle compositions. Modelling of trace elementpatterns in clinopyroxene indicates that most spinel and garnetperidotites from the Nushan, Mingxi and Niutoushan localitiesexperienced less than 5%, and many less than 2%, partial melting.A few depleted spinel peridotites from Nushan, and all spinelperidotites from Mingxi, require 10–25% fractional partialmelting; almost all spinel peridotites from the Qilin localityshow evidence of higher degrees (6–25%) of fractionalpartial melting. At both Nushan and Mingxi, the more depletedcompositions occur in the upper part of the lithospheric mantle,which now is  相似文献   

6.
The approximately 150 km2 Jijal complex occupies a deep-levelsection of the Cretaceous Kohistan are obducted along the Indussuture. The complex consists of mafic garnet granulites, anda > 10 km ? 4 km slab of pyroxenites (diopsidite > websterite;? olivine), dunite, and subordinate peridotite, all of whichare devoid of plagioclase. These contain chromite either inlenses, layers, and veins or as disseminated grains. The chromiteis mostly medium grained, subhedral to euhedral, shows pull-aparttexture, and may contain inclusions of associated silicates.Chromite grains within thin sections of chromitite are generallyhomogeneous in composition, but dunite and pyroxenite samplescommonly contain chromite grains of variable composition. Thesegregated chromite has higher Cr2O3 wt%, cr-number, and mg-number,and lower fe'-number than the accessory chromite. These variationsare mainly attributed to subsolidus exchange of Mg and Fe betweenchromite and associated olivine or pyroxene, and to inheritancefrom a magmatic source, but other factors may also be responsible.In general, the chromite grains are altered along margins andfractures to ferritchromit that is enriched in cr-number (andgenerally Fe3+, Mn, and Ti) and impoverished in mg-number comparedwith the parent grains. Chromian chlorite (clinochlore, penninite,with up to 7?3 wt.% Cr2O3) is commonly associated with the alteration,as is serpentine in most silicate rocks and some chromitites.The chlorite shows considerable compositional variation fromgrain to grain and in some cases within a single grain. Clinopyroxene is low-Al, -Na and high-Ca diopside. Orthopyroxeneranges from En91 to En82 and olivine from Fo98 to Fo84 (ignoringone analysis each). The mg-number of these minerals is higherin chromitites than in dunites and pyroxenites. Several aspectsof the petrogenesis of the ultramafic rocks (e.g., the abundanceof diopsidite) are not clear, but they seem to have passed througha complex history. The high cr-numbers (>60) in the chromiteindicate that the rocks may have originated from some form ofoceanic lithosphere-island are interaction. Petrography andmineral compositional data suggest that the rocks are ultramaficcumulates derived from an are-related (?primitive) high-Mg tholeiiticmagma, possibly at pressures in excess of 8 kb.There also aresmall ultramafic bodies in the form of conformable layers andemplaced masses within the garnet granulites. These containmagnetite and pleonaste with < 10 wt.% Cr2O3, and less magnesianolivine and pyroxene than the principal ultramafic mass. Thesealso have the characteristics of island are plutonic rocks,but it is not clear whether the garnet granulites constitutea continuous sequence of are cumulates with the principal ultramaficmass or the two are produced from different source magmas.  相似文献   

7.
Petrology and Geochemistry of Mantle Peridotite Xenoliths from SE China   总被引:11,自引:2,他引:9  
Geochemical data on Type I spinel peridotite and garnet peridotitexenoliths in Cenozoic basalts from SE China demonstrate thatthe lithospheric mantle under this region is heterogeneous.The depletion and enrichment shown by these peridotite xenolithsare not related to their locations as suggested earlier. Samplesfrom individual localities, at the continental margin or thecontinental interior, show large variational ranges from depletedharzburgite to fertile Iherzolite. The measured Nd and Sr isotopiccompositions of clinopyroxene separates range from Nd 49 to160 and from 87Sr/86Sr 070256 to 070407, respectively. Thedepleted signatures of Sr and Nd isotopic compositions and major-elementcontents (low CaO and Al2O3 in most xenoliths require an olddepletion event, probably mid-Proterozftic, and the enrichmentof LREE in the depleted peridotites implies a young metasomaticevent shortly before Cenozoic magmatism. Major-element compositionsof the peridotite xenoliths are controlled largely by the degreeof partial melting, and the extra fertile peridotites (highCaO and Al2O3) are probably the products of interaction betweenperidotites and a basaltic component. The equilibrium P–Tconditions, determined from coexisting mineral phases, indicatethat these xenoliths equilibrated over a wide P–T range,from 770 to 1250 C and from 10 to 27 kbar. Calculated oxygenfugacities for most spinel peridotites range from near the FMQbuffer to 25 log units below. The late-stage metasomatism didnot change the redox state in the upper mantle. *Corraponding author  相似文献   

8.
Tertiary to Recent continental rifting and sea floor spreadingformed the Red Sea. Mantle xenoliths from the Saudi ArabianRed Sea margin provide an opportunity to study the mantle beneaththe flanks of this young ocean basin. The Harrat al Kishb mantlexenolith suite consists of Cr-diopside group spinel harzburgiteand lherzolite mantle wall rock, and a variety of pyroxenitesproduced by crystallization from mafic magmas within the mantle.The pyroxenites include two texturally distinct varieties ofCr-diopside group spinel websterites, and Al-augite group spinelpyroxenite, garnet-spinel websterite, and garnet-bearing spinelclinopyroxenite. All Harrat al Kishb xenoliths are deformedto some degree and many are recrystallized. Mineral exsolutionand zoning textures indicate reequilibration to decreasing temperatureconditions. Several xenoliths provide evidence for metasomaticprocesses in the mantle beneath western Saudi Arabia. Estimates of peridotite temperatures are 900–980?C withpressure bracketed between 13 and 19 kb. Al-augite spinel pyroxenitesyield temperatures of 1050–1070?C. Garnet-spinel websteritesyield temperatures and pressures in the range 1000–1030?C,13.8–16.5 kb. These P-T estimates show that mantle temperatures are elevatedwell above those predicted by low surface heat flow measurements.Mantle heating associated with rifting is young enough thatsurface heat flow has not yet equilibrated. The xenolith dataare consistent with a model of asthenosphere upwelling beneaththe Red Sea rift. Comparison of xenolith data with existingseismic refraction data reveals a coherent picture of the compositionof the western Saudi Arabian lithosphere.  相似文献   

9.
Subsolidus phase relationships have been determined to pressuresof 15–27 kb for a garnet clinopyroxenite, a garnet-plagioclaseclinopyroxenite, a spinel-garnet websterite, and a two-pyroxenegranulite occurring as xenoliths in the Delegate basaltic brecciapipes. Assuming all the garnet pyroxenite suite xenoliths formedtogether or last equilibrated together, the experimental dataconstrain the P-T conditions of their formation to 13–17kb and 1050–1100 °C; for the pyroxene granulites,pressures of formation of 6–10 kb at temperatures around1100 °C are indicated. In the case of the spinel-garnetwebsterite, the texturally implied exsolution of garnet andorthopyroxene from clinopyroxene, and reaction of spinel withclinopyroxene to yield garnet, are shown to be explicable interms of approximately isobaric cooling of a pre-existing aluminousclinopyroxene+spinel aggregate. The garnet of the garnet andgarnet—plagioclase clinopyroxenites cannot, however, havebeen derived wholly by exsolution processes. New chemical data are presented for the xenoliths studied experimentallyand for several similar examples from Delegate and other easternAustralian localities. Consideration of available major andtrace element and isotopic data for garnet pyroxenite suitexenoliths from Delegate and elsewhere in the world stronglysuggests genetic relationships with their host basaltic rocks.The Delegate examples are interpreted as a series of accumulatesfrom local pockets of alkaline basaltic magma within the Earth'supper mantle, and which have subsequently undergone exsolutionand/or recrystallization in response to subsolidus cooling.A similar origin is suggested for the analogous garnet pyroxenitesfound as layers within western Mediterranean peridotite massifs.The Delegate two-pyroxene granulite xenoliths are consideredto be accidental fragments of metamorphic rocks from the deepcrust beneath eastern Australia.  相似文献   

10.
Neogene basanite lavas of Kozákov volcano, located alongthe Lusatian fault in the northeastern Czech Republic, containabundant anhydrous spinel lherzolite xenoliths that providean exceptionally continuous sampling of the upper two-thirdsof central European lithospheric mantle. The xenoliths yielda range of two-pyroxene equilibration temperatures from 680°Cto 1070°C, and are estimated to originate from depths of32–70 km, based on a tectonothermal model for basalticunderplating associated with Neogene rifting. The sub-Kozákovmantle is layered, consisting of an equigranular upper layer(32–43 km), a protogranular intermediate layer that containsspinel–pyroxene symplectites after garnet (43–67km), and an equigranular lower layer (67–70 km). Negativecorrelations of wt % TiO2, Al2O3, and CaO with MgO and clinopyroxenemode with Cr-number in the lherzolites record the effects ofpartial fusion and melt extraction; Y and Yb contents of clinopyroxeneand the Cr-number in spinel indicate 5 to 15% partial melting.Subsequent metasomatism of a depleted lherzolite protolith,probably by a silicate melt, produced enrichments in the largeion lithophile elements, light rare earth elements and highfield strength elements, and positive anomalies in primitivemantle normalized trace element patterns for P, Zr, and Hf.Although there are slight geochemical discontinuities at theboundaries between the three textural layers of mantle, theretends to be an overall decrease in the degree of depletion withdepth, accompanied by a decrease in the magnitude of metasomatism.Clinopyroxene separates from the intermediate protogranularlayer and the lower equigranular layer yield 143Nd/144Nd valuesof 0·51287–0·51307 (Nd = +4·6 to+8·4) and 87Sr/86Sr values of 0·70328–0·70339.Such values are intermediate with respect to the Nd–Srisotopic array defined by anhydrous spinel peridotite xenolithsfrom central Europe and are similar to those associated withthe present-day low-velocity anomaly in the upper mantle beneathEurope. The geochemical characteristics of the central Europeanlithospheric mantle reflect a complex evolution related to Devonianto Early Carboniferous plate convergence, accretion, and crustalthickening, Late Carboniferous to Permian extension and gravitationalcollapse, and Neogene rifting, lithospheric thinning, and magmatism. KEY WORDS: xenoliths; lithospheric mantle; REE–LILE–HFSE; Sr–Nd isotopes; Bohemian Massif  相似文献   

11.
Major- and trace-element data on the constituent minerals ofgarnet peridotite xenoliths hosted in early Paleozoic (457–500Ma) kimberlites and Neogene (16–18 Ma) volcanic rockswithin the North China Craton are compared with those from thepre-pilot hole of the Chinese Continental Scientific DrillingProject (CCSD-PP1) in the tectonically exhumed Triassic (220Ma) Sulu ultrahigh-pressure (UHP) terrane along its southernmargin. P–T estimates for the Paleozoic and Neogene peridotitexenoliths reflect different model geotherms corresponding tosurface heat flows of 40 mW/m2 (Paleozoic) and 80 mW/m2 (Neogene).Garnet peridotite xenoliths or xenocrysts from the Paleozoickimberlites are strongly depleted, similar to peridotites fromother areas of cratonic mantle, with magnesium olivine (meanFo92.7), Cr-rich garnet and clinopyroxene with high La/Yb. Garnet(and spinel) peridotite xenoliths hosted in Neogene basaltsare derived from fertile mantle; they have high Al2O3 and TiO2contents, low-Mg-number olivine (mean Fo89.5), low-Cr garnetand diopside with flat rare earth element (REE) patterns. Thedifferences between the Paleozoic and Neogene xenoliths suggestthat a buoyant refractory lithospheric keel present beneaththe eastern North China Craton in Paleozoic times was at leastpartly replaced by younger, hotter and more fertile lithosphericmantle during Mesozoic–Cenozoic times. Garnet peridotitesfrom the Sulu UHP terrane have less magnesian olivine (Fo91.5),and lower-Cr garnet than the Paleozoic xenoliths. The diopsideshave low heavy REE (HREE) contents and sinusoidal to light REE(LREE)-enriched REE patterns. These features, and their highMg/Si and low CaO and Al2O3 contents, indicate that the CCSD-PP1peridotites represent a moderately refractory mantle protolith.Details of mineral chemistry indicate that this protolith experiencedcomplex metasomatism by asthenosphere-derived melts or fluidsin Mesoproterozoic, and subsolidus re-equilibration involvingfluids/melts derived from the subducted Yangtze continentalcrust during UHP metamorphism in the early Mesozoic. Tectonicextension of the subcontinental lithospheric mantle of the NorthChina Craton and exhumation of the Sulu UHP rocks in the earlyMesozoic induced upwelling of the asthenosphere. Peridotitessampled by the Neogene basalts represent newly formed lithospherederived by cooling of the upwelling asthenospheric mantle inJurassic–Cretaceous and Paleogene time. KEY WORDS: garnet peridotite xenoliths; North China Craton; lithospheric thinning; Sulu UHP terrane; UHP lithosphere evolution; mantle replacement  相似文献   

12.
BARSDELL  M. 《Journal of Petrology》1988,29(5):927-964
The mineralogy, petrography and geochemistry of a suite of clinopyroxene-richolivine tholenite lavas from Merelava island, Vanuatu are described.Located at the southern end of the Northern Trough back-arcbasin, this suite displays all the characteristics of primitiveisland arc lavas: flat REE patterns, depleted HFSE, enrichmentin K-group elements relative to LREE, highly calcic plagioclase(to An9 3 and Cr-rich spinels (cr-number80) Analysis of groundmasscompositions demonstrates that the variation in MgO within thelava suite (from 13?7 to 4?3% MgO) represents only a small departurefrom a liquid line of descent. Some of the more primitive lavas contain low-Al2O3 clinopyroxenemegacrysts (mg-number = 100Mg/(Mg+Fe2 + and ultramafic xenoliths,the latter ranging from fine-grained, tectonite wehrlites andchnopyroxene-bearing harzburgites, to coarse-grained cumulatewehrlites. The cumulate nodules, megacrysts and phenocrysts are shown tobe co-magmatic, and an empirical compositional relationshipis demonstrated for equilibrium olivine-clinopyroxene pairs,covering the observed fractionation range (mg-numberCpx=0?6375mg-numberO1 + 35?3). On the basis that the most primitive olivine(mg-number 91 7) is close to the liquidus composition, thiscompositional relationship demonstrates that clinopyroxene (mg-number=94,and containing no Fe3+) was also a liquidus phase. Clinopyroxeneswith mg-number>94 are the product of local oxidation duringmixing of primitive, relatively reduced magmas, and more evolved,oxidized magmas. This mixing also gave rise to relatively narrow,reversely zoned, internal rims on many clinopyroxene and olivinephenocrysts, cumulus crystals, and clinopyroxene megacrysts. Fractionation modelling demonstrates that the most differentiatedsample with 19 wt.% Al2O3 can be derived from the most primitivesample with 10?3% Al2O3 by removal of 48% crystals of clinopyroxeneand olivine in the proportions 73:27 Plagioclase is a late crystallizingphase and has an insignificant role in the fractionation process. The parent melt composition (mg-number=77) is deduced from themost primitive olivine composition and the liquid line of descent,and is shown to contain equal amounts of MgO and CaO (137 wt.%),a high CaO/Al2O3 ratio of 1?3 and an unusually low Ni contentof 137 ppm. Data from published high pressure (8–20 kb)experiments on melting of peridotite and pyrolite do not providean explanati in for the large normative diopside component inthis parent melt (38 mol.%), and a hypothesis is proposed wherebyhigh degrees of melting of refractory Iherzolite or harzburgite+acomponent of lower crustal pyroxenite and/or wehrlite takesplace at the base of the crust (5–55 kb). At this depth,and initially under hydrous conditions, high degrees of meltingwould progressively eliminate orthopyroxene and then clinopyroxeneto produce a dunite residue. The liquid produced near the pointof clinopyroxene elimination would be compatible with the highCaO and Sc contents, and high Sc/Ni, Cr/Ni and D1/Hy ratiosof the lavas, and the refractory nature of the phenocrysts.  相似文献   

13.
Fe–Mg exchange is the most important solid solution involvedin partial melting of spinel lherzolite, and the system CaO–MgO–Al2O3–SiO2–FeO(CMASF) is ideally suited to explore this type of exchange duringmantle melting. Also, if primary mid-ocean ridge basalts arelargely generated in the spinel lherzolite stability field bynear-fractional fusion, then Na and other highly incompatibleelements will early on become depleted in the source, and themelting behaviour of mantle lherzolite should resemble the meltingbehaviour of simplified lherzolite in the CMASF system. We havedetermined the isobarically univariant melting relations ofthe lherzolite phase assemblage in the CMASF system in the 0·7–2·8GPa pressure range. Isobarically, for every 1 wt % increasein the FeO content of the melt in equilibrium with the lherzolitephase assemblage, the equilibrium temperature is lower by about3–5°C. Relative to the solidus of model lherzolitein the CaO–MgO–Al2O3–SiO2 system, melt compositionsin the CMASF system are displaced slightly towards the alkalicside of the basalt tetrahedron. The transition on the solidusfrom spinel to plagioclase lherzolite has a positive Clapeyronslope with the spinel lherzolite assemblage on the high-temperatureside, and has an almost identical position in P–T spaceto the comparable transition in the CaO–MgO–Al2O3–SiO2–Na2O(CMASN) system. When the compositions of all phases are describedmathematically and used to model the generation of primary basalts,temperature and melt composition changes are small as percentmelting increases. More specifically, 10% melting takes placeover 1·5–2°C, melt compositions are relativelyinsensitive to the degree of melting and bulk composition, andequilibrium and near-fractional melting yield similar melt compositions.FeO and MgO are the oxides that exhibit the greatest changein the melt with degree of melting and bulk composition. Theamount of FeO decreases with increasing degree of melting, whereasthe amount of MgO increases. The coefficients for Fe–Mgexchange between the coexisting crystalline phases and melt,KdFe–Mgxl–liq, show a relatively simple and predictablebehaviour with pressure and temperature: the coefficients forolivine and spinel do not show significant dependence on temperature,whereas the coefficients for orthopyroxene and clinopyroxeneincrease with pressure and temperature. When melting of lherzoliteis modeled in the CMASF system, a strong linear correlationis observed between the mg-number of the lherzolite and themg-number of the near-solidus melts. Comparison with meltingin the CMASN system indicates that Na2O has a strong effecton lherzolite melting behaviour only at small degrees of melting. KEY WORDS: CMASF; lherzolite solidus; mantle melting  相似文献   

14.
A varied suite of mantle xenoliths from Malaita, Solomon Islands,was investigated to constrain the evolution of the mantle beneaththe Ontong Java Plateau. Comprehensive petrological and thermobarometricstudies make it possible to identify the dominant processesthat produced the compositional diversity and to reconstructthe lithospheric stratigraphy in the context of a paleogeotherm.PT estimates show that both peridotites and pyroxenitescan be assigned to a shallower or deeper origin, separated bya garnet-poor zone of 10 km between 90 and 100 km. This zoneis dominated by refractory spinel harzburgites (Fo91–92),indicating the occurrence of an intra-lithospheric depletedzone. Shallower mantle (  相似文献   

15.
The petrography, mineralogy, and geochemistry of a suite oflavas from the northwestern part of Epi Island in the VanuatuArc, southwest Pacific Ocean, are described. The more primitivemembers of this suite are rich in clinopyroxene phenocrystsand are strikingly similar to primitive lavas from MerelavaIs. in the same arc. These primitive, clinopyroxene-rich lavasare designated arc ankaramites to differentiate them from primitive,olivine-rich arc picrites which also occur in this arc system.The primitive Epi lavas are shown to have evolved from low-Kprimary melts which were saturated in both olivine and clinopyroxene.The most Mg-rich olivine (mg-number 92?2) and clinopyroxene(mg-number 94?4) in the ankaramites represent cotectic crystallizationwith Cr-rich spinels. Initial plagioclase (An94) crystallizedin equilibrium with olivine (mg-number 78–80) and theplagioclase-olivine cotectic path extends to mg-number 50 andAn58. The ankaramitic parent magma composition is calculated fromthe most primitive olivine phenocryst composition and the liquidline of descent, and has 14?5% MgO, 11% A12O3, 14?8%CaO, 0?29%K2O, and flat REE patterns. The origin of this parent magmahas been modelled with Ghiorso & Carmichael's (1985) programSILMIN. An assimilation model involving a clinopyroxenite orwehrlite assimilate and a low-K picrite host requires ca. 90%assimilate to match the phase chemistry and bulk-rock chemistryof the parental ankaramite. The required degree of superheatingnecessary to achieve this, and the apparent restriction of low-Kpicrites to Anatom Island in the far south of the arc, rendersthis model unsatisfactory. Partial melting models involvingtypical upper mantle lherzolite also fail to give satisfactoryresults, but partial melting of a wehrlite source (mg-number87-88) with < 10% normative (mol.) orthopyroxene, at 5?10kband 1325?C, closely matches the parental ankaramite composition.These results can be reconciled with melting of lower crustalcumulates by an ascending peridotite diapir, a hypothesis whichaccounts for the very low Ni contents of the parental meltsand primitive phenocrysts. The more evolved lavas define two distinct assemblages: a relativelytight grouping of high-K andesites straddling the high-K-‘shoshonite’boundary, characterized by low Zr/Rb (2?2) and high K2O/Na2Oratios (1?3–0?9), and a relatively coherent fractionationpathway to dacites straddling the ‘calc-alkaline’-high-Kboundary, with Zr/Rb = 2?9 and K2O/Na2O=0?6. Numerical modellingdemonstrates that the dacite trend is compatible with fractionationfrom an ankaramite parent, whereas the high-K andesites areincompatible with open- or closed-system fractionation fromankaramitic or picritic sources and may represent fractionated,hybrid magmas, largely derived from melting of lower crustalgabbros.  相似文献   

16.
ULTRAMAFIC XENOLITHS FROM A KAMAFUGITE LAVA IN CENOZOIC VOLCANIC FIELD OF WEST QINLING, CHINA AND ITS GEOLOGICAL IMPLICATION  相似文献   

17.
A mantle xenolith suite from two Late Tertiary necks on SalIsland (Cape Verde Archipelago) consists of nearly equivalentamounts of anhydrous spinel-bearing lherzolites and harzburgites,in which secondary metasomatic textural domains are superimposedon the original protogranular textures. Detailed petrographicstudies, coupled with in situ major and trace element analysesof the constituent minerals and interstitial glasses, revealthe complex evolutionary history of the Cape Verde lithosphericmantle, from depletion in the garnet facies to re-equilibrationand re-enrichment in the spinel stability field. Low CaO (16·4–18·0wt %) and heavy rare earth element (HREE; Ybn = 2·4–4·8),and high Cr2O3 (1·06–1·84 wt %) contentsin the clinopyroxenes of the lherzolites can be quantitativelyaccounted for by (1) low-degree (4%) partial melting of a PrimitiveMantle-like garnet lherzolite followed by (2) partial re-equilibrationof the melting residuum from the garnet to the spinel stabilityfield. This model is further supported by thermobarometric estimates(T = 975–1210°C; P = 1·3–2·1 GPa),which cluster around the spinel–garnet boundary in theperidotite system. Secondary parageneses, regardless of theprimary lithologies, are characterized by (1) two clinopyroxenes,cpx2-O and cpx2-C, respectively related to orthopyroxene andclinopyroxene destabilization after reaction with metasomaticfluids, and (2) glasses with anomalously high, even for continentalsettings, K2O contents (up to 8·78 wt %), together withK-feldspar. Major and trace element mass balance calculationsbetween the primary and secondary parageneses suggest infiltrationof a kimberlite-like metasomatizing agent (on volatile-freebasis, MgO 17–27 wt %; K2O/Na2O 1·6–3·2molar; (K2O + Na2O)/Al2O3 1·1–3·0 molar;Rb 91–165 ppm; Zr 194–238 ppm). The kimberlite-likemetasomatism in the Cape Verde lithospheric mantle, togetherwith the presence of lherzolitic domains, partially re-equilibratedfrom the garnet to the spinel stability field, may suggest thepresence of subcontinental mantle lithosphere relicts left behindby drifting of the African Plate during the opening of the CentralAtlantic Ocean. KEY WORDS: Cape Verde; mantle metasomatism; garnet signatures; clinopyroxenes; kimberlites  相似文献   

18.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2 = 43.7–45.7 wt.per cent, A12O3 = 1.6O–8.21 wt. per cent, CaO = 0.70–8.12wt. per cent, alk = 0.10–0.90 wt. per cent and Mg/(Mg+Fe2+)= 0.94–0.85) have been investigated in the hypersolidusregion from 800? to 1250?C with variable activities of H2O,CO2, and H2. The vapor-saturated peridotite solidi are 50–200?Cbelow those previously published. The temperature of the beginningof melting of peridotite decreases markedly with decreasingMg/(Mg+SFe) of the starting material at constant CaO/Al2O3.Conversely, lowering CaO/Al2O3 reduces the temperature at constantMg/(Mg+Fe) of the starting material. Temperature differencesbetween the solidi up to 200?C are observed. All solidi displaya temperature minimum reflecting the appearance of garnet. Thisminimum shifts to lower pressure with decreasing Mg/(Mg + Fe)of the starting material. The temperature of the beginning ofmelting decreases isobarically as approximately a linear functionof the mol fraction of H2O in the vapor (XH2Ov). The data alsoshow that some CO2 may dissolve in silicate melts formed bypartial melting of peridotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or co-exist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aHjo conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. Itis suggested that komatiite in Precambrian terrane could formby direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of XH2Ov = 0.5–0.25 (XCO2v= 0.5–0.75). Such activities of H2O result in meltingat depths ranging between 125 and 175 km in the mantle. Thisrange is within the minimum depth generally accepted for theformation of kimberlite.  相似文献   

19.
IONOV  DMITRI 《Journal of Petrology》2004,45(2):343-367
Peridotite xenoliths in a Miocene picrite tuff from the Vitimvolcanic province east of Lake Baikal, Siberia, are samplesof the off-craton lithospheric mantle that span a depth rangefrom the spinel to garnet facies in a mainly fertile domain.Their major and trace element compositions show some scatter(unrelated to sampling or analytical problems), which is notconsistent with different degrees of partial melting or metasomatism.Some spinel peridotites and, to a lesser degree, garnet-bearingperidotites are depleted in heavy rare earth elements (HREE)relative to middle REE (MREE), whereas some garnet peridotitesare enriched in HREE relative to MREE, with Lu abundances muchhigher than in primitive mantle estimates. Clinopyroxenes fromseveral spinel peridotites have HREE-depleted patterns, whichare normally seen only in clinopyroxenes coexisting with garnet.Garnets in peridotites with similar modal and major elementcompositions have a broad range of Lu and Yb abundances. Overall,HREE are decoupled from MREE and Hf and are poorly correlatedwith partial melting indices. It appears that elements withhigh affinity to garnet were partially redistributed in theVitim peridotite series following partial melting, with feweffects for other elements. The Lu–Hf decoupling may disturbHf-isotope depletion ages and their correlations with meltingindices. KEY WORDS: garnet peridotite; lithospheric mantle; Lu–Hf isotope system; Siberia; trace elements  相似文献   

20.
Several spinel peridotite xenoliths from Spitsbergen have Sr–Ndisotopic compositions that plot to the right of the ‘mantlearray’ defined by oceanic basalts and the DM end-member(depleted mantle, with low 87Sr/86Sr and high 143Nd/144Nd).These xenoliths also show strong fractionation of elements withsimilar compatibility (e.g. high La/Ce), which cannot be producedby simple mixing of light rare earth element-depleted peridotiteswith ocean island basalt-type or other enriched mantle melts.Numerical simulations of porous melt flow in spinel peridotitesapplied to Sr–Nd isotope compositions indicate that thesefeatures of the Spitsbergen peridotites can be explained bychemical fractionation during metasomatism in the mantle. ‘Chromatographic’effects of melt percolation create a transient zone where thehost depleted peridotites have experienced enrichment in Sr(with a radiogenic isotope composition) but not in Nd, thusproducing Sr–Nd decoupling mainly controlled by partitioncoefficients and abundances of Sr and Nd in the melt and theperidotite. Therefore, Sr–Nd isotope decoupling, earlierreported for some other mantle peridotites worldwide, may bea signature of metasomatic processes rather than a source-relatedcharacteristic, contrary to models that invoke mixing with hypotheticalSr-rich fluids derived from subducted oceanic lithosphere. Pbisotope compositions of the Spitsbergen xenoliths do not appearto be consistently affected by the metasomatism. KEY WORDS: Spitsbergen; lithospheric mantle; metasomatism; radiogenic isotopes; theoretical modelling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号