首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change is one of the main factors that affect runoff changes. In the upstream of Minjiang River, the temperature increased significantly in the last 50 years, while the precipitation decreased on the contrary. In order to analyze the effect of climate change on site runoff, watershed runoff depth and evaporation, nine climate scenarios are assumed based on rainfall and temperature indicators. A SWAT model of Minjiang River is constructed, and runoff simulation is carried out with the nine scenarios. The results show that if precipitation increases or decreases 20 %, the change rate of runoff depth will increase or decrease 28–32 %; if temperature increases or decreases 2 °C, the change rate of runoff depth will decrease or increase 1–6 %; if temperature increases or decreases 2 °C, the change rate of the potential evaporation will increase or decrease 5–16 %, and the actual evaporation rate of variation will increase or decrease 1–6 %. Overall, precipitation variation has greater effect on simulated runoff than temperature variation dose. In addition, temperature variation has more obvious effect on the runoff simulation results in dry years than in wet years. The actual evaporation of watershed depends on evaporation capacity and precipitation and increases with the increasing of the potential evaporation and precipitation. The study also shows that the climate change scenarios analysis technology, combined with SWAT hydrological model, can effectively simulate the effect of climate change on runoff.  相似文献   

2.
Huang  Shifeng  Zang  Wenbin  Xu  Mei  Li  Xiaotao  Xie  Xuecheng  Li  Zhongmin  Zhu  Jisheng 《Natural Hazards》2014,75(2):139-154

Climate change is one of the main factors that affect runoff changes. In the upstream of Minjiang River, the temperature increased significantly in the last 50 years, while the precipitation decreased on the contrary. In order to analyze the effect of climate change on site runoff, watershed runoff depth and evaporation, nine climate scenarios are assumed based on rainfall and temperature indicators. A SWAT model of Minjiang River is constructed, and runoff simulation is carried out with the nine scenarios. The results show that if precipitation increases or decreases 20 %, the change rate of runoff depth will increase or decrease 28–32 %; if temperature increases or decreases 2 °C, the change rate of runoff depth will decrease or increase 1–6 %; if temperature increases or decreases 2 °C, the change rate of the potential evaporation will increase or decrease 5–16 %, and the actual evaporation rate of variation will increase or decrease 1–6 %. Overall, precipitation variation has greater effect on simulated runoff than temperature variation dose. In addition, temperature variation has more obvious effect on the runoff simulation results in dry years than in wet years. The actual evaporation of watershed depends on evaporation capacity and precipitation and increases with the increasing of the potential evaporation and precipitation. The study also shows that the climate change scenarios analysis technology, combined with SWAT hydrological model, can effectively simulate the effect of climate change on runoff.

  相似文献   

3.
太湖流域营养盐产量演变和趋势的数值模拟研究   总被引:4,自引:4,他引:0       下载免费PDF全文
于革  沈华东 《第四纪研究》2008,28(4):667-673
认识流域湖泊水体富营养化的演变和趋势是湖泊污染控制和治理中的重要研究课题。本文将在分析和论证太湖流域营养盐自然本底、人类活动作用急剧增加的近50年来太湖流域营养盐的变化情况、以及全球气候变化和流域经济发展未来30年太湖流域营养盐变化趋势等三方面的基础上,对太湖流域营养盐产量变化做出评估和预测。研究表明,在未来气候变化概率分析和区域经济发展规划基础上,太湖流域未来30年营养盐流域产量将比现代(2000s)增加25%~33%,这将增大太湖水体污染的压力。  相似文献   

4.
The present study focuses on an assessment of the impact of future water demand on the hydrological regime under land use/land cover (LULC) and climate change scenarios. The impact has been quantified in terms of streamflow and groundwater recharge in the Gandherswari River basin, West Bengal, India. dynamic conversion of land use and its effects (Dyna-CLUE) and statistical downscaling model (SDSM) are used for quantifying the future LULC and climate change scenarios, respectively. Physical-based semi-distributed model Soil and Water Assessment Tool (SWAT) is used for estimating future streamflow and spatiotemporally distributed groundwater recharge. Model calibration and validation have been performed using discharge data (1990–2016). The impacts of LULC and climate change on hydrological variables are evaluated with three scenarios (for the years 2030, 2050 and 2080). Temperature Vegetation Dyrness Index (TVDI) and evapotranspiration (ET) are considered for estimation of water-deficit conditions in the river basin. Exceedance probability and recurrence interval representation are considered for uncertainty analysis. The results show increased discharge in case of monsoon season and decreased discharge in case of the non-monsoon season for the years 2030 and 2050. However, a reverse trend is obtained for the year 2080. The overall increase in groundwater recharge is visible for all the years. This analysis provides valuable information for the irrigation water management framework.  相似文献   

5.
Urbanisation and climate change can have adverse effects on the streamflow and water balance components in river basins. This study focuses on the understanding of different hydrologic responses to climate change between urban and rural basins. The comprehensive semi-distributed hydrologic model, SWAT (Soil and Water Assessment Tool), is used to evaluate how the streamflow and water balance components vary under future climate change on Bharalu (urban basin) and Basistha (rural basin) River basins near the Brahmaputra River in India based on precipitation, temperature and geospatial data. Based on data collected in 1990–2012, it is found that 98.78% of the water yield generated for the urban Bharalu River basin is by surface runoff, comparing to 75% of that for the rural Basistha basin. Comparison of various hydrologic processes (e.g. precipitation, discharge, water yield, surface runoff, actual evapotranspiration and potential evapotranspiration) based on predicted climate change scenarios is evaluated. The urban Bharalu basin shows a decrease in streamflow, water yield, surface runoff, actual evapotranspiration in contrast to the rural Basistha basin, for the 2050s and 2090s decades. The average annual discharge will increase a maximum 1.43 and 2.20 m3/s from the base period for representative concentration pathways (RCPs) such as 2.6 and 8.5 pathways in Basistha River and it will decrease a maximum 0.67 and 0.46 m3/s for Bharalu River, respectively. This paper also discusses the influence of sensitive parameters on hydrologic processes, future issues and challenges in the rural and urban basins.  相似文献   

6.
土地利用与气候变化对密云水库来水量变化的影响研究   总被引:1,自引:0,他引:1  
黄俊雄  刘兆飞  张航  韩丽 《水文》2021,41(1):1-6
综合应用多种方法,评估了土地利用与气候变化对密云水库来水量变化的影响.应用Mann-Kendall全时段趋势检验方法检验不同时段降水与径流的变化趋势;结合水量平衡方法分析气候与土地利用变化对流域径流的影响;利用双累积曲线方法检测了流域降水-径流关系的突变点,并探讨其原因.结果表明,1960~2016年,密云水库来水量整...  相似文献   

7.
Nitrogen and phosphorus are the major nutrients to cause eutrophication to degrade water quality of the Miyun Reservoir,a very important drinking water source of Bijing,China,and they are mainly from non-point sources.The watershed in Miyun County was selected as the study region with a totoal area of 1400km^2.Four typical monitoring catchments and two experimental units were used to monitor the precipitation,runoff,sediment yield and pollutant loading related to various land uses in the meantime.The results show that the total nutrient loss amounts of TN and TP are 898.07t/a,and 40.70t/a,respectively,in which nutrients N and P carried by runoff are 91.3% and 77.3%,respectively.There is relatively heavier soil eroson in the northern mountain area whereas the main nutrient loss occurs near the northeast edge of the reservoir.Different land uses would influence the loss amounts of non-point source pollutants.The amount of nutrient loss from the agricultural land per unit is highest,that from forestry comes next that from grassland is lowest.However,due to the variability of land use areas,agricultural land contributes a lot to TP and forestry lands to TN.  相似文献   

8.
This paper proposes a decision support system for Yamchi reservoir operation in semi-arid region of Iran. The paper consists of the following steps: Firstly, the potential impacts of climate change on the streamflow are predicted. The study then presents the projections of future changes in temperature and precipitation under A2 scenario using the LARS-WG downscaling model and under RCP2.6, RCP4.5, and RCP8.5 using the statistical downscaling model (SDSM) in the northwestern of Iran. To do so, a general circulation model of HadCM3 is downscaled by using the LARS-WG model. As a result, the average temperature, for the horizon 2030 (2011–2030), will increase by 0.77 °C and precipitation will decrease by 11 mm. Secondly, the downscaled variables are used as input to the artificial neural network to investigate the possible impact of climate change on the runoffs. Thirdly, the system dynamics model is employed to model different scenarios for reservoir operation using the Vensim software. System dynamics is an effective approach for understanding the behavior of complex systems. Simulation results demonstrate that the water shortage in different sectors (including agriculture, domestic, industry, and environmental users) will be enormously increased in the case of business-as-usual strategy. In this research, by providing innovative management strategies, including deficit irrigation, the vulnerability of reservoir operation is reduced. The methodology is evaluated by using different modeling tests which then motivates using the methodology for other arid/semi-arid regions.  相似文献   

9.
The study on the stream-flow change associated with future climate change scenarios has a practical significance for local socio-economic development and eco-environmental protection. A study on the Jianzhuangcuan catchments was carried out to quantify the expected impact of climate change on the stream-flow using a multi-model ensemble approach. Climate change scenarios were developed by ensemble four Global Climate Models, which showed good performance for Jianzhuangcuan catchment. Soil and Water Assessment Tool (SWAT), a physically based distributed hydrological model, was used to investigate the impacts on stream-flow under climate change scenarios. The model was calibrated and validated using daily stream-flow records. The calibration and validation results showed that the SWAT model was able to simulate the daily stream-flow well, with Nash–Sutcliffe efficiency >0.83 for Yaoping Long station, for calibration and validation at daily and monthly scales. Their difference in simulating the stream-flow under future climate scenarios was also investigated. The results indicate a 0.6–0.9 °C increase in annual temperature and changes of 12.6–18.9 mm in seasonal precipitation corresponded to a change in stream-flow of about 0.62–3.67 for 2020 and 2030 scenarios. The impact of the climate change increased in both scenarios.  相似文献   

10.
预估喀斯特生态脆弱区的未来气候变化对于区域资源的合理开发利用及生态环境保护具有重要参考价值,而目前应用降尺度方法模拟喀斯特地区的未来气候情景仍存在较大的探讨空间。本文依据珠江流域红柳江区13个气象站1961-2001年的实测日气温、日降水量资料和全球大气NCEP再分析资料,采用SDSM模型预测流域在HadCM3模式SRES A2和B2两种排放情景下未来年份气温和降水的变化趋势。结果表明:(1)SDSM模型可以较为准确地模拟研究区的气温和降水变化,确定性系数分别可达99%和65%左右;(2)A2、B2两种情景下,21世纪气温和降水均表现出明显的上升趋势,且随时间推移增幅逐渐增大。截至21世纪末,A2、B2两种情景下的年平均气温变化分别为+3.39 ℃和+2.49 ℃,日均降水将分别增加117.30 %和80.90 %;(3)未来的气温上升以秋季和春季变化最为明显,降水则表现为夏季降水增幅最大。分析成果可为喀斯特区的气候变化影响评价与应对决策提供数据基础和理论依据。   相似文献   

11.
Human activities in the karst Ozark Plateaus can impact water quality of springs where surface water is rapidly transferred to subsurface conduits. Bennett Spring, in southern Missouri, is the fourth largest spring in the state and supports local tourism activities. Questions regarding poorly functioning on-site wastewater systems (OWS) have raised concerns over the long-term water quality of the spring. This study reports the results of a surface water quality monitoring program in the recharge area where monthly samples were collected at base flow to identify potential pollution sources to the spring. Base flow hydrology of the recharge area was highly variable over the study period, which was drier than normal, causing an incomplete sampling record due to no flow conditions at some sites. For most of the year, nutrient levels were less than the eutrophic threshold (ET) of 0.075 mg/l total phosphorus (TP) and 1.5 mg/l total nitrogen (TN). Sites that consistently displayed concentrations of TP and TN higher than the ET were influenced by wastewater treatment plants (WTP) or OWS. Sites with nutrient concentrations above the ET were likely influenced by the re-release of nonpoint source related TP and TN delivered to streams during storm events. Water quality and discharge at the spring outlet remained consistent over the sampling period suggesting diffuse recharge from a deep aquifer source is able to dilute shallow ground water sources carrying nonpoint pollutants at base flow. Historical and regional data comparisons show these trends have been consistent over at least the last two decades.  相似文献   

12.
青藏高原多年冻土区典型高寒草地生物量对气候变化的响应   总被引:15,自引:3,他引:12  
多年冻土区冻土生态系统对气候变化极其敏感,利用在长江黄河源区实测的高寒草甸和高寒草原植被生物量数据以及青藏高原降水、气温以及地温等的空间分布规律,建立了长江黄河源区高寒草甸与高寒草原等主要高寒生态系统地上与地下现存生物量对气候要素变化的多元回归模型.预测分析表明:如果未来10 a气温增加0.44℃·(10a)-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量分别递减2.7%和2.4%,如果同时降水量小幅度增加8 mm·(10a)-1,则地上生物量可基本保持现状水平略有减少;在气温增加2.2℃·(10a)-1,在降水量不变的情况下,高寒草甸和高寒草原地上生物量年分别平均减少达6.8%和4.6%,如果同期降水量增加12 mm·(10a)-1,高寒草甸地上生物量可基本维持现状水平略有增加,而高寒草原地上生物量则递增5.2%.高寒草原植被地上生物量对气候增暖的响应幅度显著小于高寒草甸,而对降水增加的响应程度大于高寒草甸.明确高寒草地植被生物量随气候变化的演变趋势,对于青藏高原生态环境保护和研究气候变化对青藏高原生态系统碳循环和河源区水循环的影响具有重要意义.  相似文献   

13.
Based on the characteristics of land use and drainage network of the upper watershed of the Miyun Res-ervoir, Beijing, 26 monitoring and sampling sites were selected in different sub-catchments. Temporal and spatial variations in nutrient loss were dealt with in this paper in terms of the monitoring data on the water quality of the main tributaries flowing into the Miyun Reservoir. In combination with the monitoring data on water quality, the impacts of watershed characteristics including land-use type, landscape pattern, and drainage density were assessed, The concentrations of nutrients in the rainy season are higher than those in other seasons, and the concentrations of NO3--N are linearly related to those of total N which is the main form of nitrogen present in the fiver water. The concentrations of nitrogen become higher toward the reservoir along the main rivers. The seasonal variation of ni-trogen in the watershed affected by intensive human activities is very obvious; in the watershed with steady or low water flow, the seasonal variation of nitrogen is less obvious. Forest land and grassland can trap and filter nitrogen effectively. Land-use pattern also has important impacts on the loss of nitrogen. The concentrations of nitrogen and phosphorus in the water bodies show great temporal and spatial variations. On a temporal scale, the concentrations of TN and TP in the rainy reason are higher than those in other seasons. On a spatial scale, the concentrations of TN and NO3--N in the Qingshui River and Chaohe River are highest all the time. The spatial variation of TP is distinct, being obvious at sampling sites near villages. The form of nitrogen and phosphorus loss varies in different hydrological seasons. Dissolved nitrogen and phosphorus are the main forms in streams in non-rainy seasons, the dissolved nitro-gen and total nitrogen decrease in percentage in the rainy season. Particulate nitrogen and phosphorus are the main forms in some rivers. The concentrations of TN and NO3--N from orchards and villages are high whereas those from forest land are lowest. Land-use pattern has impacts on TN and NO3--N losses, at the sampling sites near the source landscape, the concentrations are higher than those at the sampling sites near the sink landscape. Water quality of the rivers which flow into the Miyuan Reservior is influenced by the composition of adjacent soils.  相似文献   

14.
In this study, a semi-distributed hydrologic model Soil and Water Assessment Tool (SWAT) has been employed for the Karnali River basin, Nepal to test its applicability for hydrological simulation. Further, model was evaluated to carry out the water balance study of the basin and to determine the snowmelt contribution in the river flow. Snowmelt Runoff Model (SRM) was also used to compare the snowmelt runoff simulated from the SWAT model. The statistical results show that performance of the SWAT model in the Karnali River basin is quite good (p-factor = 0.88 and 0.88, for daily calibration and validation, respectively; r-factor = 0.76 and 0.71, for daily calibration and validation, respectively). Baseflow alpha factor (ALPHA_BF) was found most sensitive parameter for the flow simulation. The study revealed that the average annual runoff volume available at the basin outlet is about 47.16 billion cubic metre out of which about 12% of runoff volume is contributed by the snowmelt runoff. About 25% of annual precipitation seems to be lost as evapotranspiration. The results revealed that both the models, SWAT and SRM, can be efficiently applied in the mountainous river basins of Nepal for planning and management of water resources.  相似文献   

15.
Pathogenic bacteria are a serious public health concern. Exposure to these microorganisms can result in illnesses or even death. Therefore, it is important to control pathogenic bacteria sources, transport mechanisms and fate. Best management practices proved to be very effective in the control of non-point source pollution. In this study, the soil and water assessment tool (SWAT) was modified and used to simulate the fecal coliform in Chao River of Miyun Reservoir watershed, China. The model was then used to explore the effectiveness of vegetative filter strips (VFS) in reducing fecal coliform abundance throughout the watershed. The water temperature equation within the SWAT was modified to align the model more closely with the characteristics of the study area and generate a more accurate simulation. The DAFSratio (20, 50, 80, 120 and 150) and DFcon (0.25, 0.4, 0.6 and 0.75) parameters were considered for VFS to see their effects on removal efficiency. The results show that calibration and validation results for fecal coliform and flow can be accepted. Different values for DAFSratio and DFcon have great influence on VFS. Increasing values resulted in a decrease in the removal efficiency of VFS.  相似文献   

16.
粮食产量对气候变化驱动水资源变化的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
水资源是支撑粮食生产的重要因素之一,气候变化驱动下的水资源变化及对粮食产量的影响是当前研究的国际前沿和热点问题。以汾河流域冬小麦和夏玉米2种主要粮食作物为研究对象,利用线性回归、人工神经网络、支持向量机、随机森林、径向基网络、极限学习机等6种机器学习算法构建粮食产量模拟模型,基于气候弹性系数法分析水资源量对气候变化响应关系,在流域尺度上研究粮食产量对气候变化驱动水资源变化的综合响应。结果表明:①机器学习算法能够较好地模拟汾河流域的冬小麦和夏玉米产量;②降水增加10%导致汾河流域水资源量增加19.4%,气温升高1℃导致水资源量减少4.3%;③当降水减少10%~30%时,冬小麦产量减少6.4%~19.3%,夏玉米产量减少4.0%~15.0%;④当气温升高0.5~3.0℃时,冬小麦产量预计增加1.8%~17.1%,夏玉米产量预计增加1.2%~7.9%;⑤汾河流域冬小麦产量对降水和气温变化的敏感性大于夏玉米。相关成果对于区域水资源管理和农业生产策略制定具有重要的科学意义和实用价值。  相似文献   

17.
1990年以来天山乌鲁木齐河上游水资源研究进展   总被引:2,自引:2,他引:0  
乌鲁木齐河是我国西北地区典型的降水、冰川和地下水综合补给的内陆河,对其水资源的研究不仅是西北寒区旱区水环境和水资源研究的热点,而且对区域生态环境改善和经济可持续发展具有重要意义。乌鲁木齐河水文水资源的研究内容十分广泛,并取得了很多高水平的学术成果。从高山区气候变化与冰冻圈的相互影响,山区降水变化与径流的相互影响,出山口径流对气候变化的响应以及洪灾、致灾因子分析,流域内同位素、树轮气候和水环境研究等四个方面总结了相关研究。结果表明:(1)乌鲁木齐河上游气候趋于暖湿。气温的升高很大程度上受冬季气温大幅度升高影响,气温对高山区冰川积雪的影响要大于降水;冬季负积温也加快了冻土的消融;气温和降水的变化导致乌鲁木齐河上游河段冰川后退加速,积雪融化、雪线上升,冻土活动层增厚。(2)乌鲁木齐河流域降水量和降水变化速率具有明显的垂直特征,在中高山地区降水量和降水变率较大;山区降水还具有年代际特征,20世纪90年代以来,山区降水量呈现增加趋势并促进了山区径流量的增加。(3)降水量和冰川融雪量的增加,很大程度上加大了乌鲁木齐河流域山区的径流量,使得出山口区域洪水灾害的发生频率增加。(4)同位素分析的运用对探索径流形成和转化的机理具有重要意义。树轮研究为乌鲁木齐河流域气候变化序列的重建提供了技术手段。今后,乌鲁木齐河水资源承载力、水循环过程和水污染问题,是区域实现生态环境建设和可持续发展的重要研究内容。  相似文献   

18.
This article aims at proposing an improved statistical model for statistical downscaling of monthly precipitation using multiple linear regression (MLR). The proposed model, namely Monthly Statistical DownScaling Model (MSDSM), has been developed based on the general structure of Statistical DownScaling Model (SDSM). In order to improve the performance of the model, some statistical modifications have been incorporated including bias correction using variance correction factor (VCF) to improve the computed variance pattern. We illustrate the effectiveness of the proposed model through its application to 288 rain gauge stations scattered in different climatic zones of Iran. Comparison between the results of SDSM and the proposed MSDSM has indicated superiority of the proposed model in reproducing long-term mean and variance of monthly precipitation. We found that the weakness of MLR method in estimating variance has been considerably improved by applying VCF. We showed that the proposed model provides a promising alternative for statistical downscaling of precipitation at monthly time scale. An investigation of the effects of climate change in different climatic zones of Iran by the use of Representative Concentration Pathways (RCPs) has shown that the most significant change is an increase in precipitation in fall and that the largest share of this increase belongs to arid climate.  相似文献   

19.
Soils play significant roles in global carbon cycle. The increase in atmospheric CO2 due to climate change may have a significant impact on both soil organic carbon storage and management practices to sequester organic carbon in agricultural areas. The aim of the study was to simulate climate change impact on soil carbon sequestration using CENTURY model. The statistical downscaling model (SDSM) was used to downscale the climate variables (temperature and rainfall) under two scenarios A2 and B2 for three periods: 2020 (2011–2040), 2050 (2041–2070) and 2080 (2071–2099). Downscaling was better in case of temperature than precipitation, which was evident from coefficient of correlation for temperature (r 2 = 0.91–0.99) and precipitation (r 2 = 0.71–0.80). Downscaling of climate data revealed that the temperature may increase for the years 2020, 2050 and 2080 periods, whereas precipitation may increase till 2020 and then it may reduce in 2050 and 2080 as compared to 2020 in the study area. For CENTURY model, the input parameters were obtained through soil sampling and interviewing the farmers as well, whereas the climatic variables (maximum temperature, minimum temperature and precipitation) were taken from the SDSM output. The historical data of soils were collected from the literature, and six agricultural sites were selected for estimating soil carbon sequestration. After soil sampling of the same sites, it was found that the organic carbon had increased two times than historical data might be due to the addition of high organic matter in the form of farm yard manure. Therefore, the model was calibrated, considering more organic carbon in the area, and was validated using random points in the study area. Determination coefficient (r 2 = 0.95) and RMSE (538 g c/m2) were computed to assess the accuracy of the model. The organic carbon was predicted from 2011 to 2099 and was compared with the 2011 predicted data. The study revealed that the amount of soil organic carbon in Bhaitan, Kanatal, Kotdwar, Malas, Pata and Thangdhar sites may reduce by 11.6, 15.8, 17.19, 13.54, 19.2 and 12.7%, respectively, for A2 scenario and by 9.62, 15.6, 15.72, 11.45, 16.96 and 13.36% for B2 scenario up to 2099. The study provides comprehensive possible future scenarios of soil carbon sequestration in the mid-Himalaya for scientists and policy makers.  相似文献   

20.
以甘肃省陇东黄土董志塬为研究区,采用SWAT模型和遥感方法,就黄土台塬区地下水库均衡进行综合研究. 结果表明:黄土台塬区土壤水分负均衡常出现在5、6月份,该期水分亏缺不利于植被的健康稳定生长,是灌溉调节的主要时段. 1981-2010年间,气温升高使陆表蒸散需求增加,降水减少使土壤水库补给减少,二者共同导致台塬区土壤水库负衡态势的加重. 气候变化背景下,积极寻求外调水源是解决黄土台塬区水资源短缺问题的重要手段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号