首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predictive nutrient criteria method, combined with expert elicitation and structural equation model (SEM), was proposed in this study for establishing lake nutrient standard in Chinese lakes (Yungui Plateau ecoregion and Eastern Plain ecoregion). Expert elicitation was involved to quantify the probability of attainment of the designated-use (drinking water source) based on monitoring data. The experts scoring results were introduced to SEM to assess predictive relationships between candidate standard variables and the designated-use attainment. In Yungui ecoregion, the standardized effects of chlorophyll-a (Chl-a), chemical oxygen demand and total phosphorus (TP) on designated-use attainment were ?0.41, ?0.14, and ?0.43, respectively. These result demonstrated that the two most predictive indicators for designated-use attainment were TP and Chl-a. In Eastern ecoregion, the standardized effects of TP, total nitrogen (TN), dissolved oxygen and water temperature (T) on designated-use attainment were 0.77, ?0.12, 0.13 and ?0.02, respectively. The most predictive indicator was TP. The model was further used for estimating the designated-use attainment associated with various levels of candidate standards. TP, TN, Chl-a and Secchi depth (SD) were selected as standard indicators in Yungui ecoregion. TP, TN, and Chl-a were selected in Eastern ecoregion. In order to achieve the 85 % designated-use attainment, standard values of TP, TN, Chl-a and SD in Yungui ecoregion would be 0.02 mg/L, 0.2 mg/L, 1.4 μg/L, and 0.581 m; and standards of TP, TN, and Chl-a in Eastern ecoregion would be 0.039 mg/L, 0.95 mg/L, and 1.75 μg/L, respectively. Finally, the differences between standards in these two ecoregions were also analyzed.  相似文献   

2.
The Changjiang Estuary is one of the largest estuaries in the world, where hypoxia frequently occurs during the summer season. Recent routine surveys in the observed area found that the low dissolved oxygen (DO) in the summer bottom water was not rapidly expanding with increasing nutrient loads in Changjiang diluted waters. Based on the remote sensing data and in situ data, we examined the historic seasonal hypoxia observations for the bottom waters of the Changjiang Estuary and investigated the short- and long-term effects that runoff had on variations in DO and chlorophyll-a (Chl-a). Our analysis indicated that the recent areal variation in hypoxia was due to the changing Chl-a distribution and stratification conditions. The correspondence between hypoxia and surface Chl-a concentration showed that remotely sensed Chl-a larger than 3.0 mg L?1 was an essential condition for the formation of hypoxia off the Changjiang Estuary. The trend of Chl-a concentration was significantly impacted by the Three Gorges Dam (TGD), and the inter-annual variation of Chl-a was weakly affected by global-scale climate variability. After the TGD impoundment, the sediment loading in the Changjiang runoff and suspended sediments in Changjiang Estuary in August decreased, and the high Chl-a concentration moved landward. These shifted the hypoxia from its optimal forming conditions.  相似文献   

3.
Nutrient inputs have degraded estuaries worldwide. We investigated the sources and effects of nutrient inputs by comparing water quality at shallow (< 2m deep) nearshore (within 200 m) locations in a total of 49 Chesapeake subestuaries and Mid-Atlantic coastal bays with differing local watershed land use. During July–October, concentrations of total nitrogen (TN), dissolved ammonium, dissolved inorganic N (DIN), and chlorophyll a were positively correlated with the percentages of cropland and developed land in the local watersheds. TN, DIN, and nitrate were positively correlated with the ratio of watershed area to subestuary area. Total phosphorus (TP) and dissolved phosphate increased with cropland but were not affected by developed land. The relationships among N, P, chlorophyll a, and land use suggest N limitation of chlorophyll a production from July–October. We compared our measurements inside the subestuaries to measurements by the Chesapeake Bay Program in adjacent estuarine waters outside the subestuaries. TP and dissolved inorganic P concentrations inside the subestuaries correlated with concentrations outside the subestuaries. However, water quality inside the subestuaries generally differed from that in adjacent estuarine waters. The concentration of nitrate was lower inside the subestuaries, while the concentrations of other forms of N, TP, and chlorophyll a were higher. This suggests that shallow nearshore waters inside the subestuaries import nitrate while exporting other forms of N as well as TP and chlorophyll a. The importance of local land use and the distinct biogeochemistry of shallow waters should be considered in managing coastal systems.  相似文献   

4.
We developed a synthesis using diverse monitoring and modeling data for Mattawoman Creek, Maryland, USA to examine responses of this tidal freshwater tributary of the Potomac River estuary to a sharp reduction in point-source nutrient loading rate. Oligotrophication of these systems is not well understood; questions concerning recovery pathways, threshold responses, and lag times remain to be clarified and eventually generalized for application to other systems. Prior to load reductions Mattawoman Creek was eutrophic with poor water clarity (Secchi depth <0.5 m), no submerged aquatic vegetation (SAV), and large algal stocks (50–100 μg L?1 chlorophyll-a). A substantial modification to a wastewater treatment plant reduced annual average nitrogen (N) loads from 30 to 12 g N m?2 year?1 and phosphorus (P) loads from 3.7 to 1.6 g P m?2 year?1. Load reductions for both N and P were initiated in 1991 and completed by 1995. There was no trend in diffuse N and P loads between 1985 and 2010. Following nutrient load reduction, NO2?+?NO3 and chlorophyll-a decreased and Secchi depth and SAV coverage and density increased with initial response lag times of one, four, three, one, and one year, respectively. A preliminary N budget was developed and indicated the following: diffuse sources currently dominate N inputs, estimates of long-term burial and denitrification were not large enough to balance the budget, sediment recycling of NH4 was the single largest term in the budget, SAV uptake of N from sediments and water provided a modest seasonal-scale N sink, and the creek system acted as an N sink for imported Potomac River nitrogen. Finally, using a comparative approach utilizing data from other shallow, low-salinity Chesapeake Bay ecosystems, strong relationships were found between N loading and algal biomass and between algal biomass and water clarity, two key water quality variables used as indices of restoration in Chesapeake Bay.  相似文献   

5.
The brackish Bafa Lake located in the southwestern part of Turkey is under stress because of both natural and untreated wastewater effluents. The purpose of this research is to determine spatiotemporal distributions of some physicochemical variables in water column (temperature, salinity, pH, conductivity, dissolved oxygen, NH4–N, NO2–N, NO3–N, oPO4–P, TPO4–P, chlorophyll-a, total suspended solids) and sediment (TN, TC, TOC, TP) and their relationships at coastal stations. In the water column, nitrate and phosphate concentrations showed seasonal variations with high values recorded in winter period. Ammonium was determined as a main source of TIN component. During summer period, a large amount of total phosphorus was found as dissolved organic form. However, in the winter period, inorganic phosphate levels increased at sampling stations. N limitation was a common feature throughout the lake where P-limitation was only observed in summer period. The total phosphorus levels which showed hypereutrophic condition at the western part of the lake changed between 1.55 and 4.99 μM and did not remain in the range for uncontaminated condition. In the lake sediment, a strong relationship was found between TOC and TC levels. Generally, the mean TOC concentrations constitute small amount of TC values in the sampling stations. The results also indicated that a strong correlation exists between TOC and TN values, and TN was greatly regulated by organic sources. In the lake, TOC:TN ratios changed between 5 and 13; the ratio greater than 10 could be an indicator of algal and land plant sources mixing as an organic matter.  相似文献   

6.
Based on previous research, muriatic modification parameters (including the volume of hydrochloric acid, modification temperature and reaction time) were optimized by L9 (33) orthogonal design using the removal efficiency of unicellular M. aeruginosa as an index. The results showed that the optimized modification conditions consisted of a hydrochloric acid volume of 4 mL, a modification temperature of 200 °C and a reaction time of 3 h. Under the above conditions, the removal rate for unicellular and colonial M. aeruginosa was 89.26 and 75.53%, respectively. In addition, the flocculation process caused no cell damage, and the cells remained intact after use of the modified water treatment residuals (WTRs) flocculant. TP and TN in water were reduced by 63.37 and 19.03%, respectively. Therefore, the modified WTR flocculant was a technically viable method to remove unicellular and colonial M. aeruginosa.  相似文献   

7.
8.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

9.
In the present study, the performance of three moving bed biofilm reactors (MBBRs) has been evaluated in series with anaerobic/anoxic/oxic (A2O) units for simultaneous removal of organic matter and nutrients (nitrogen and phosphorous) from a synthetic wastewater with characteristics similar to those of a typical municipal wastewater. Response surface methodology based on central composite design was used to investigate the effects of nitrate recycle ratio, hydraulic retention time (HRT), and influent chemical oxygen demand (COD) on the organic and nutrient removal and optimization process. The optimized values of influent COD, HRT, and R were 462 mg/L, 10 h, and 3.52, respectively. The predicted and observed values at optimized conditions were 92.8% and 93 ± 1.3%, 84.3% and 84 ± 1.3%, 71.7% and 68 ± 1.6% for COD, TN, and TP removals and 100 and 97 ± 1.2 mL/g for sludge volume index, respectively. After that, the influent COD, TN, and TP were increased to 550, 48, and 12 mg/L, respectively, to partly simulate the organics and nutrient variations of real wastewater treatment plants. The COD, TN, and TP removals were 91 ± 1.3, 82 ± 1.1, and 71 ± 0.8%, respectively. The influent COD, TN, and TP were increased again to 650, 56, and 14 mg/L, respectively. After this phase, the COD, TN, and TP removals were 90 ± 0.8, 80 ± 1.2, and 70 ± 1.0%, respectively. Obtained results indicated the good stability of the optimized system and the ability of MBBRs to remain stable at influent organics and nutrient variations. The ratio of attached volatile solids to mixed liquor volatile suspended solids was 1.90 ± 0.10, 2.07 ± 0.09, and 2.25 ± 0.14 in phases 1, 2, and 3, respectively. These high ratios indicate that the microorganisms had favored the attached growth to the suspended growth within the whole operation time.  相似文献   

10.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

11.
The present study investigated the prevalence of pathogenic organisms (Salmonella spp, Vibrio cholerae, and Shigella spp) and their correlation to the abundance of faecal indicator organisms in water and riverbed sediments in the Apies River, South Africa. In all, 558 water and sediment samples were collected from 10 sites in the river (May 2013–February 2014) and analysed through culture and molecular (real-time PCR) techniques. Concentrations of faecal indicator organisms in sediments reached 1.39 × 105 (±standard deviation) CFU/100 mL. All three pathogens were detected in water and sediments. Pathogens were mostly detected in sediments at sites influenced either by wastewater treatment works or by informal settlements. During the wet and dry seasons (water column), a strong positive correlation was observed between E. coli and all pathogens; C. perfringens only correlated with V. cholerae. Within sediments, strong positive correlations were only observed between E. coli and Salmonella spp, E. coli and V. cholerae (dry season); E. coli and V. cholerae and E. coli and Shigella spp (wet season). No correlation was observed between sediments C. perfringens counts and all the pathogens. Thus, sediments of the Apies River harbour pathogenic organisms. Correlation between E. coli and pathogenic organisms in the sediments suggests that E. coli could also be an indicator of pathogens’ presence. However, the lack of a correlation between E. coli and some pathogens in sediments and between C. perfringens and all the pathogens highlights the need to investigate for more indicators of pathogens’ presence in this complex matrix.  相似文献   

12.
In this paper, a study on the performance of surface irrigation of date palms in a Tunisian arid area (Douz oasis) is presented. The study is conducted in 16 plots with various sizes and soil textures over a 4-year period (2012–2015). In the first step, an assessment of total water requirements of the date palms is carried out. Then, the surface irrigation performance is analyzed using three indicators, i.e., the relative water supply (RWS) indicator, the uniformity index of water distribution (D U ), and the water application efficiency (E a ). Finally, the irrigation management problems are identified. The results indicate that in the arid Tunisian Saharan oases, the soil texture, plot size, and farmers’ practices (especially irrigation duration) have significant effects on surface irrigation performance. The average annual net irrigation requirements of date palms are about 2400 mm. The RWS increases from 1.8 in the smaller plots (0.5 ha) to 3.6 in the largest plots (2.5 ha), implying that the increase in the plot size requires an excessive water supply. D U decreases from 80.7 in the 0.5 ha plots to 65.4 in the 2.5 ha plots; however, no significant difference in the E a is observed. The results show that the soil texture has no influence on the RWS and D U , but the E a is significantly higher in the loamy-sand soils (46.7%) compared to the sandy soils (36.3%). Overall, RWS indicator is higher than 1 (RWS?=?2.6) implying excessive irrigation supply to the system. Although D U is relatively uniform (>?60%), E a is relatively low (<?50%) indicating that the current irrigation management is inefficient. These findings have a paramount importance for improving irrigation water management in the Tunisian Saharan oases.  相似文献   

13.
High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m  = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m  = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m  = 33.66(1) cm3/mol (Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite.  相似文献   

14.
Tibetan Plateau (TP) is the highest and most extensive plateau in the world and has been known as the roof of the world, and it is sensitive to climate change. The researches of CO2 fluxes (F C) in the TP region play a significant role in understanding regional and global carbon balance and climate change. Eddy covariance flux measurements were conducted at three sites of south-eastern TP comprising Dali (DL, cropland ecosystem), LinZhi (LZ, alpine meadow ecosystem) and Wenjiang (WJ, cropland ecosystem); amongst those DL and LZ are located in plateau region, while WJ is in plain region. Dynamics of F C and influences of vegetation, meteorological (air temperature, photosynthetically active radiation, soil temperature and soil water content) and terrain factors (altitude) were analysed on the basis of data taken during 2008. The results showed that, in the cool sub-season (March, April, October and December), carbon sink appeared even in December with fluxes of (?0.021 to ?0.05) mg CO2 m?2 s?1 and carbon source only in October (0.03 ± 0.0048) mg CO2 m?2 s?1 in DL and WJ site. In LZ site, carbon sink was observed in April: (?0.036 ± 0.0023) mg COm?2 s?1 and carbon sources in December and March (0.008–0.010 mg CO2 m?2 s?1). In the hot sub-season (May–August), carbon source was observed only in May with (0.011 ± 0.0022), (0.104 ± 0.0029) and (0.036 ± 0.0017) fluxes in LZ, DL and WJ site, respectively, while carbon sinks with (?0.021 ± 0.0041), (?0.213 ± 0.0007) and (?0.110 ± 0.0015) mg CO2 m?2 s?1 fluxes in LZ, DL, and WJ, respectively. Comparing with plain region (WJ), carbon sinks in plateau region (DL and LZ) lasted for a longer time, and the absorption sum was large and up to (–357.718 ± 0.0054) and (?371.111 ± 0.0039) g C m?2 year?1, respectively. The LZ site had the weakest carbon sink with (?178.547 ± 0.0070) g C m?2 year?1. Multivariate analysis of covariance showed that altitude (AL) as an independent factor explained 39.5 % of F C (P < 0.026). F C had a quadratic relationship with Normalized difference vegetation index (NDVI) (R 2 ranges from 0.485 to 0.640 for three sites), an exponential relationship with soil temperature at 5-cm depth (ST 5) at night time and a quadratic relationship with air temperature (T a) at day time. Path analysis indicated that photosynthetically active radiation (PAR), sensible heat fluxes (H) and other factors all had direct or indirect effects on F C in all of the three tested sites around the south-eastern TP.  相似文献   

15.
In shallow estuaries with strong river influence, the short residence time and pronounced gradients generate an environment for plankton that differs substantially in its dynamics from that of the open ocean, and the question arises “How is phytoplankton biomass affected?” This study assesses the small-scale spatial and temporal distribution of phytoplankton in Apalachicola Bay, a shallow bar-built estuary in the Florida Panhandle. Phytoplankton peaks were characterized to gain insights into the processes affecting spatial heterogeneity in biomass. Chlorophyll a (Chl a) distribution at 50-m spatial resolution was mapped using a flow-through sensor array, Dataflow©, operated from a boat that sampled four transects across the bay every 2 weeks for 16 months. Chl a peaks exceeding background concentrations had an average width of 1.3?±?0.7 km delineated by an average gradient of 3.0?±?6.0 μg Chl a L?1 km?1. Magnitude of E-W wind, velocity of N-S wind, tidal stage, and temperature affected peak characteristics. Phytoplankton contained in the peaks contributed 7.7?±?2.7% of the total integrated biomass observed along the transects during the study period. The river plume front was frequently a location of elevated Chl a, which shifted in response to river discharge. The results demonstrate that despite the shallow water column, river flushing, and strong wind and tidal mixing, distinct patchiness develops that should be taken into consideration in ecological studies and when assessing productivity of such ecosystems.  相似文献   

16.
The thermal evolution of 10-Å phase Mg3Si4O10(OH)2·H2O, a phyllosilicate which may have an important role in the storage/release of water in subducting slabs, was studied by X-ray single-crystal diffraction in the temperature range 116–293 K. The lattice parameters were measured at several intervals both on cooling and heating. The structural model was refined with intensity data collected at 116 K and compared to the model refined at room temperature. As expected for a layer silicate on cooling in this temperature range, the a and b lattice parameters undergo a small linear decrease, α a  = 1.7(4) 10?6 K?1 and α b  = 1.9(4) 10?6 K?1, where α is the linear thermal expansion coefficient. The greater variation is along the c axis and can be modeled with the second order polynomial c T  = c 293(1 + 6.7(4)10?5 K?1ΔT + 9.5(2.5)10?8 K?2T)2) where ΔT = T ? 293 K; the monoclinic angle β slightly increased. The cell volume thermal expansion can be modeled with the polynomial V T  V 293 (1 + 8.0 10?5 K?1 ΔT + 1.4 10?7 K?2T)2) where ΔT = T ? 293 is in K and V in Å3. These variations were similar to those expected for a pressure increase, indicating that T and P effects are approximately inverse. The least-squares refinement with intensity data measured at 116 K shows that the volume of the SiO4 tetrahedra does not change significantly, whereas the volume of the Mg octahedra slightly decreases. To adjust for the increased misfit between the tetrahedral and octahedral sheets, the tetrahedral rotation angle α changes from 0.58° to 1.38°, increasing the ditrigonalization of the silicate sheet. This deformation has implications on the H-bonds between the water molecule and the basal oxygen atoms. Furthermore, the highly anisotropic thermal ellipsoid of the H2O oxygen indicates positional disorder, similar to the disorder observed at room temperature. The low-temperature results support the hypothesis that the disorder is static. It can be modeled with a splitting of the interlayer oxygen site with a statistical distribution of the H2O molecules into two positions, 0.6 Å apart. The resulting shortest Obas–OW distances are 2.97 Å, with a significant shortening with respect to the value at room temperature. The low-temperature behavior of the H-bond system is consistent with that hypothesized at high pressure on the basis of the Raman spectra evolution with P.  相似文献   

17.
Lake Qinghai in the Qinghai-Tibet plateau is the largest lake in China. This study firstly reported the geochemistry of Cd in the lake. Water samples were collected from Lake Qinghai (n = 69) and Buha River (n = 12), while sediment (n = 22) and topsoil (n = 45) samples were collected from the lake and around the lake area, respectively. In addition, pore water samples (n = 20) were separated from sediment samples. Water samples were analyzed for pH, K, Na, Ca, Mg, Cl, S, and Cd, while sediment and topsoil samples were analyzed for K, Na, Ca, Mg, Al, Fe, Mn, S, Sc, and Cd. The average concentration of Cd was 0.014 μg L?1 in the water of Lake Qinghai and 0.007 μg L?1 in the water of Buha River. However, the average concentration of Cd was 0.320 μg L?1 in the sediment pore water, much higher than that in the lake water and river water. Cadmium concentration in the lake water might be mainly controlled by salinity, while it in the pore water might be mainly controlled by carbonate minerals. Cadmium concentration in the river water might be controlled by alkalinity and pH. The average concentration of Cd in the sediment was 0.284 mg kg?1. The enrichment of Cd in the lake sediment was significantly higher than that in the topsoil around the lake. Anthropogenic atmospheric deposition of Cd did not led to the increase in dissolved Cd level in the lake water, but led to its enrichment in the lake sediment.  相似文献   

18.
A high-pressure single-crystal X-ray diffraction study has been carried out on a P21/c natural Mg-rich pigeonite sample with composition ca. Wo6En76Fs18 using a diamond anvil-cell. The unit-cell parameters were determined at 14 different pressures to 7.14 GPa. The sudden disappearance of the b-type reflections (h + k = odd) and a strong discontinuity (about 2.8%) in the unit-cell volume indicated a first-order P21/cC2/c phase transition between 4.66 and 4.88 GPa. The P(V) data of the P21/c phase were fitted to 4.66 GPa by a third-order Birch–Murnaghan equation of state (BM3 EoS), whereas the limited number of experimental data collected within the C2/c phase between 4.88 and 7.14 GPa were fitted using the same equation of state but with K′ constrained to the value obtained for the P21/c fitting. The equation of state coefficients are V 0 = 424.66(6) Å3, K T0 = 104(2) GPa and K′ = 8(1) for the P21/c phase, and V 0 = 423.6(1) Å3, K T0 = 112.4(8) GPa, and K′ fixed to 8(1) for the C2/c phase. The axial moduli for a, b, and c for the P21/c phase were obtained using also a BM3-EoS, while for the C2/c phase only a linear calculation could be performed, and therefore the same approach was applied for comparison also to the P21/c phase. In general the C2/c phase exhibits axial compressibilities (β c > β a >> β b) lower than those of the P21/c phase (β b > β c ≈ β a; similar to those found in previous studies in clinopyroxenes and orthopyroxenes). The lower compressibility of the C2/c phase compared with that of the P21/c could be ascribed to the greater stiffness along the b direction. A previously published relationship between P c and M2 average cation radius (i.r.) has been updated using all the literature data on P21/c clinopyroxene containing large cations at M2 site and our new data. The following weighted regression was obtained: P c (GPa) = 26(4) ? 28(5) ×  i.r (Å), R 2 = 0.97. This improved equation can be used to predict the critical pressure of natural P21/c clinopyroxene samples just knowing the composition at M2 site.  相似文献   

19.
High pressure in situ synchrotron X-ray diffraction experiment of strontium orthophosphate Sr3(PO4)2 has been carried out to 20.0 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the PV data yields a volume of V 0 = 498.0 ± 0.1 Å3, an isothermal bulk modulus of K T  = 89.5 ± 1.7 GPa, and first pressure derivative of K T ′ = 6.57 ± 0.34. If K T ′ is fixed at 4, K T is obtained as 104.4 ± 1.2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a  = 79.6 ± 3.2 GPa) is more compressible than the c-axis (K c  = 116.4 ± 4.3 GPa). Based on the high pressure Raman spectroscopic results, the mode Grüneisen parameters are determined and the average mode Grüneisen parameter of PO4 vibrations of Sr3(PO4)2 is calculated to be 0.30(2).  相似文献   

20.
Saltwater intrusion into rivers is a major concern for freshwater exploitation and management in French Guiana (South America). To detect and analyse saltwater occurrence, a permanent station was installed on La Comté River to measure the electrical conductivity C. The objective of the present study was twofold. First, the temporal link between C, sea water level SWL and river discharge Q was explored during the dry seasons from 2009 to 2012 (total measurement duration of ~6 months). A lag of 3 h between C and SWL was evidenced (i.e. the C peaks are delayed by 3 h with high water conditions), as well as the co-occurrence of sea water intrusion with the low Q period. Second, a data-driven approach was set up through a kernel-based support vector machine SVM technique to forecast two events: (1) the forthcoming maximum value of C (for the next 3 h) exceeds 500 µS/cm; (2) C exceeds 500 µS/cm during more than 2 h. One potential drawback of such a data-driven approach is to fail to predict outside the range of calibration: this issue was thoroughly explored by means of an intensive bootstrap-based test exercise. It was showed that SVM has very high degree of predictive capability with accuracy and area under receiver operator curve above 90% in average. We additionally analyse the practical implementation of the SVM model with comparison to alternative popular classification techniques (logistic regression, random forest, linear and quadratic discriminant analysis): the SVM strength is to provide the nonlinear decision boundary without making a priori restrictive assumptions on its shape (like linear or quadratic methods) and without being too sensitive to noisy observations/outliers. Yet this strength can turn to be a weakness unless a careful examination of the shape is done from a physical perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号