首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salt precipitation on the surface of porous media significantly affects water transport processes. Most studies on salt precipitation mainly focused on single salts, but in nature, salt precipitation usually occurs as mixtures. Consequently, information on the crystallization of salt mixtures and its effect on water transport remains scarce. This study investigated the precipitation of mixtures (the mass ratios of NaCl:Na2SO4 were 3:7, 5:5, and 7:3, respectively) of NaCl (typical efflorescence) and Na2SO4 (typical subflorescence) in the initially saturated sandy soil columns and its effect on evaporation and compared it with the cases of the two salts individually. The results showed that salt mixtures exhibited a mixed pattern of crystals including both efflorescence and subflorescence, and the efflorescence showed granular aggregation, unlike the mono-salts. The crystallization coverage of the salt mixtures was smaller than that of NaCl mono-salt; high (7:3) and low (5:5 and 3:7) proportions of NaCl led to larger and smaller crystallization coverage than that of Na2SO4 mono-salt, respectively. While the salt mixtures had less crystallization coverage than the mono-salts, they showed lower evaporation because the salt mixtures formed a denser crystallization structure of efflorescence-subflorescence-soil layer, this crystallization structure exhibited greater inhibition of water vapour diffusion, thus reducing evaporation. In addition, the crystallization of the salt mixtures with higher NaCl proportion afforded greater resistance of evaporation. The mixed crystallization pattern formed by the salt mixtures significantly enhances the crystallization resistance to evaporation.  相似文献   

2.
To this day, field capacity (FC) is rarely defined in the context of soil properties, and the use of non-physical simplistic models is the common way to normalize water content at FC. In this study, the problem of water drainage redistribution in a soil column with and without the presence of evaporation (EV) was extensively studied. Analytical solutions for the Richards equation were established for the case of water drainage redistribution through a deeply wetted soil water column with and without EV at FC conditions. Water retention and depth evolution curves were plotted first, using different EV values of (2 mmday, 5 mmday and 8 mmday) and second, for different drainage redistribution durations of (1 day, 4 days and 6 days) where EV was set to zero for the case with no EV or to a fixed value of 5 mmday for the case with EV. The results suggest that EV plays a significant role in soil water drainage suggesting that, in the presence of EV, the FC drying front reaches much higher depths in the soil water profile than if EV is turned off. It was also concluded that FC reaches deeper depths faster the stronger EV is acting at the surface of a soil water column. Additionally, the results suggest that the texture of the soil receiving drainage controls the amount of water available for EV and as a result, EV was found to play a stronger role the smaller the hydraulic conductivity of the soil is.  相似文献   

3.
打桩对周围建筑物振动影响的研究与实例分析   总被引:5,自引:0,他引:5  
研究了打桩过程中土层质点振动速度的监测方法,打桩振动对周围建筑物影响程度的评价标准,并结合工程实例探讨了有关因素对检测结果的影响,及施工中应采取的相应减振措施。  相似文献   

4.
Soil erosion and nutrient losses with surface runoff in the loess plateau in China cause severe soil quality degradation and water pollution. It is driven by both rainfall impact and runoff flow that usually take place simultaneously during a rainfall event. However, the interactive effect of these two processes on soil erosion has received limited attention. The objectives of this study were to better understand the mechanism of soil erosion, solute transport in runoff, and hydraulic characteristics of flow under the simultaneous influence of rainfall and shallow clear‐water flow scouring. Laboratory flume experiments with three rainfall intensities (0, 60, and 120 mm h−1) and four scouring inflow rates (10, 20, 30, and 40 l min−1) were conducted to evaluate their interactive effect on runoff. Results indicate that both rainfall intensity and scouring inflow rate play important roles on runoff formation, soil erosion, and solute transport in the surface runoff. A rainfall splash and water scouring interactive effect on the transport of sediment and solute in runoff were observed at the rainfall intensity of 60 mm h−1 and scouring inflow rates of 20 l min−1. Cumulative sediment mass loss (Ms) was found to be a linear function of cumulative runoff volume (Wr) for each treatment. Solute transport was also affected by both rainfall intensity and scouring inflow rate, and the decrease in bromide concentration in the runoff with time fitted to a power function well. Reynolds number (Re) was a key hydraulic parameter to determine erodability on loess slopes. The Darcy–Weisbach friction coefficients (f) decreased with the Reynolds numbers (Re), and the average soil and water loss rate (Ml) increased with the Reynolds numbers (Re) on loess slope for both scenarios with or without rainfall impact. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The important role of vegetation in adding cohesion and stabilizing streambanks has been widely recognized in several aspects of fluvial geomorphology, including stream restoration and studies of long‐term channel change. Changes in planform between braided, meandering, and anabranching forms have been attributed to the impacts of vegetation on hydraulic roughness and bank stability. However, these studies focus either on flume studies where analog vegetation is used, or case studies featuring one species, which is commonly invasive. We present functional differences of bank‐stabilizing root characteristics and added cohesion, with vegetation categorized as woody and non‐woody and by the vegetation groups of trees, shrubs, graminoids, and forbs. We analyzed root morphology and tensile strength of 14 species common to riparian areas in the southern Rocky Mountains, in field sites along streambanks in the montane and subalpine zones of the Colorado Front Range. Using the vegetation root component (RipRoot) of a physically‐based bank stability model (BSTEM), we estimated the added cohesion for various sediment textures with the addition of each of the 14 species. Significant differences exist between woody and non‐woody vegetation and between the four vegetation categories with respect to the coefficient of the root tensile strength curve, lateral root extent, and maximum root diameter. Woody vegetation (trees and shrubs) have higher values of all three parameters than non‐woody species. Tree roots add significantly more cohesion to streambanks than forb roots. Additionally, rhizomes may play an important role in determining the reach‐scale effects of roots on bank stabilization. Differences in root characteristics and added cohesion among vegetation categories have several important implications, including determining the likelihood of planform change, developing guidelines for the use of bank‐stabilizing vegetation, and linking the effect of vegetation to geomorphic structure that can benefit ecosystem functioning. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Abstract

The diurnal cycle of convective activity and cloudiness over Lake Victoria, is examined using infrared satellite data. The results indicate that geographically distinct patterns of convection occur. Maximum convective activity occurs over the northwestern quadrant of the lake and tends to occur during the night time. There is a similar pattern in the southwest but the convection is relatively infrequent. In the eastern quadrants convective activity is somewhat weaker than in the northwest, but considerably stronger than in the surrounding catchment. There maximum convection occurs during late afternoon and early evening hours during most months, as over the surrounding land. The influence of the diurnal cycle of cloudiness on evaporation is also assessed, using both two simplistic scenarios and using realistic estimates. The calculations indicate that the actual diurnal cycles have a significant impact on evaporation, such that it ranges from 1527 mm year?1 in the northwest to 1164 mm year?1 in the southeast.  相似文献   

8.
The depth of soil freezing in river watersheds is a factor governing winter runoff formation. The freezing depth regulates the redistribution of stored soil moisture between thawed and frozen soil layers. The moisture stored in the thawed soil layer is spent for winter runoff, while that in the frozen zone forms snowmelt runoff. The depth of soil freezing has considerably decreased over the period of climate changes, resulting in an increase in winter runoff and greater losses of snowmelt runoff.  相似文献   

9.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Acoustic Doppler current profiles and current meter data are combined with wind observations to describe the transport of water leaving Florida Bay and moving onto the inner shelf on the Atlantic side of the Florida Keys. A 275-day study in the Long Key Channel reveals strong tidal exchanges, but the average ebb tide volume leaving Florida Bay is 19% greater than the average flood tide volume entering the bay. The long-term net outflow averages 472 m3 s−1. Two studies in shelf waters describe the response to wind forcing during spring and summer months in 2004 and during fall and winter months in 2004–2005. During the spring–summer study, southeasterly winds have a distinct shoreward component, and a two-layer pattern appears. Surface layers move shoreward while near-bottom layers move seaward. During the winter study, the resultant wind direction is parallel to the Keys and to the local isobaths. The entire water column moves in a nearly downwind direction, and across-shelf transport is relatively small. During the summer wet season, Florida Bay water should be warmer, fresher, and thus less dense than Atlantic shelf waters. Ebbing bay water should move onto the shelf as a buoyant plume and be held close to the Keys by southeasterly winds. During the winter dry season, colder and saltier Florida Bay water should leave the tidal channels with relatively high density and be concentrated in the near-bottom layers. But little across-shelf flow occurs with northeasterly winds. The study suggests that seasonally changing wind forcing and hydrographic conditions serve to insulate the reef tract from the impact of low-quality bay water.  相似文献   

11.
12.
张晨  张双喜 《地震学报》2014,36(5):872-882
热传导系数和热膨胀系数是影响板块俯冲动力学过程的两个重要参数. 由于地球介质的不均匀性,热系数也会随深度发生变化.然而,这种变化在地球动力学模拟研究中往往被忽略.本文针对随温度变化的热传导系数和热膨胀系数, 模拟板块俯冲的动力学过程,分析热系数、黏度对板块俯冲形态的影响及其对应的地幔对流特征.结果表明,依温度变化的热传导系数和热膨胀系数会影响地幔温度及黏度分布,进而改变板块的俯冲角度;黏度是控制板块俯冲动力学演化过程的重要因素;地幔对流受黏度结构的影响,呈现分层对流及局部多个对流环等多种不同形态的对流场特征.  相似文献   

13.
It is crucial for accurately describing the precipitation patterns and their underlying mechanisms to optimise the hydro-climatic model parameters and improve the accuracy of precipitation forecasting. Based on 212 precipitation samples collected during August 2015 to July 2016 in the mid-mountain region of the Manasi River Basin in the northern slope of the Tianshan Mountains, we estimated the effect of sub-cloud evaporation on precipitation, analysed the factors that influence the sub-cloud evaporation, and modelled the response of sub-cloud evaporation to global warming. The mean remaining raindrop mass fraction after evaporation (f ) in this region is 94.39%. The mean deviation between d-excess (Δd ) of ground precipitation and raindrops under cloud is −4.22‰. The intensity of sub-cloud evaporation is the highest in summer. There is a significant positive correlation between f and Δd (0.72‰/%). The relative humidity and diameter of raindrops were observed to have a direct influence on the intensity of sub-cloud evaporation. The temperature was observed to influence the intensity of sub-cloud evaporation indirectly by influencing the relative humidity and diameter of raindrops. Global warming will increase the intensity of sub-cloud evaporation in the Tianshan Mountains, especially for small precipitation events.  相似文献   

14.
Biological soil crusts (BSCs) cover up to 60 to 70% of the soil surface in grasslands after the ‘Grain for Green’ project was implemented in 1999 to rehabilitate the Loess Plateau. However, few studies exist that quantify the effects of BSCs on the soil detachment process by overland flow in the Loess Plateau. This study investigated the potential effects of BSCs on the soil detachment capacity (Dc), and soil resistance to flowing water erosion reflected by rill erodibility and critical shear stress. Two dominant BSC types that developed in the Loess Plateau (the later successional moss and the early successional cyanobacteria mixed with moss) were tested against natural soil samples collected from two abandoned farmland areas. The samples were subjected to flow scouring under six different shear stresses ranging from 7.15 to 24.08 Pa. The results showed that Dc decreased significantly with crust coverage under both moss and mixed crusts. The mean Dc of bare soil (0.823 kg m?2 s?1) was 2.9 to 48.4 times greater than those of moss covered soil (0.017–0.284 kg m?2 s?1), while it (3.142 kg m?2 s?1) was 4.9 to 149.6 times greater than those of mixed covered soil (0.021–0.641 kg m?2 s?1). The relative detachment rate of BSCs compared with bare soils decreased exponentially with increasing BSC coverage for both types of BSCs. The Dc value can be simulated by flow shear stress, cohesion, and BSC coverage using a power function (NSE ≥ 0.59). Rill erodibility also decreased with coverage of both crust types. Rill erodibility of bare soil was 3 to 74 times greater than those of moss covered soil and was 2 to 165 times greater than those of mixed covered soil. Rill erodibility could also be estimated by BSC coverage in the Loess Plateau (NSE ≥ 0.91). The effect of crust coverage on critical shear stress was not significant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Based on an empirical orthogonal function analysis of satellite altimeter data, guidance from numerical model results, and CANEK transport estimates, we propose an index, based on differences in satellite-measured sea surface height anomalies, for measuring the influence of Gulf of Mexico Loop Current intrusion on vertically integrated transport variability through the Yucatan Channel. We show that the new index is significantly correlated at low frequencies (cut-off 120 days) with the cable estimates of transport between Florida and the Bahamas. We argue that the physical basis for the correlation is the geometric connectivity between the Yucatan Channel and the Straits of Florida.  相似文献   

16.
Soil detachment by rill flow is a key process of rill erosion, modelling this process can help in understanding rill erosion mechanisms. However, many soil detachment models are established on conceptual assumptions rather than experimental data. The objectives of this study were to establish a model of soil detachment by rill flow based on flume experimental data and to quantitatively verify the model. We simulated the process of soil detachment by rill flow in flume experiments with a soil-feeding hopper using loessial soil on steep slopes. Seven flow discharges, six slopes and five sediment loads were combined. Soil detachment capacity, sediment transport capacity, and soil detachment rate by rill flow under different sediment loads were measured. The process of soil detachment by rill flow can be modelled by a dual power function based on soil detachment capacity and transport capacity deficit as variables. The established model exhibited high credibility (NSE=0.97; R2=0.97). The contributions of soil detachment capacity and transport capacity deficit to soil detachment rate by rill flow reached 60% and 36%, respectively. Soil detachment capacity exerted more influence on soil detachment rate than did transport capacity deficit. The performance of the WEPP rill erosion equation is also favourable (NSE=0.95; R2=0.97). The two power exponents in the model we established strengthen the role of soil detachment capacity in soil detachment rate and weaken that for transport capacity deficit. Soil detachment capacity and transport capacity deficit played important roles in the determination of soil detachment rate by rill flow. The results can be applied to implement the numerical modeling and prediction of rill erosion processes on steep loessial hillslopes. © 2019 John Wiley & Sons, Ltd.  相似文献   

17.
Hysteresis is a common feature exhibited in hydraulic properties of an unsaturated soil. The movement of wetting front and the hysteresis effect are important factors which impact the shear strength of the unsaturated soil and the mechanics of shallow landslides. These failures are mainly triggered by the deepening of the wetting front accompanied by a decrease in matric suction induced by infiltration. This research establishes a method for determining a stability analysis of unsaturated infinite soil slopes, integrating the influence of infiltration and the water retention curve hysteresis. Furthermore, the present stability analysis method including the infiltration model and the advanced Mohr–Coulomb failure criterion calculates the variations of the safety factor (FS) in accordance with different slope angle, depth and hydrological processes. The experimentally measured data on the effect of hysteresis are also carried out for comparison. Numerical analyses, employing both wetting and drying hydraulic behaviour of unsaturated soil, are performed to study the difference in soil‐water content as observed in the experiments. The simulating approximations also fully responded to the experimental data of sand box. The results suggest that the hysteresis behaviour affect the distribution of soil‐water content within the slope indeed. The hysteresis made the FS values a remarkable recovery during the period of non‐rainfall in a rainfall event. The appropriate hydraulic properties of soil (i.e. wetting or drying) should be used in accordance with the processes that unsaturated soil actually experience. This method will enable us to acquire more accurate matric suction head and the unsaturated soil‐shear strength as it changes with the hysteretic flow, in order to calculate into the stability analysis of shallow landslides. An advanced understanding of the process mechanism afforded by this method is critical to realizing a reliable and appropriate design for slope stabilization. It also offers some immediate reference information to the disaster reduction department of the government. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This study fits into a wider research program from RWS RIKZ concerning the exchange of sediment between the coast and the tidal basins, Western Scheldt and Wadden Sea, which are the largest basins along the Dutch Coast, over different time-scales. For both basins, questions about the evolution of the import/export at the mouth recently arose. In case of the Western Scheldt, which is the subject of this study, mainly the uncertainty about the future developments after the change from import to export at the mouth was noticed in the 1990s, which necessitated a more detailed study of this area.  相似文献   

19.
Transport of sorbing solutes in 2D steady and heterogeneous flow fields is modeled using a particle tracking random walk technique. The solute is injected as an instantaneous pulse over a finite area. Cases of linear and Freundlich sorption isotherms are considered. Local pore velocity and mechanical dispersion are used to describe the solute transport mechanisms at the local scale. This paper addresses the impact of the degree of heterogeneity and correlation lengths of the log-hydraulic conductivity field as well as negative correlation between the log-hydraulic conductivity field and the log-sorption affinity field on the behavior of the plume of a sorbing chemical. Behavior of the plume is quantified in terms of longitudinal spatial moments: center-of-mass displacement, variance, 95% range, and skewness. The range appears to be a better measure of the spread in the plumes with Freundlich sorption because of plume asymmetry. It has been found that the range varied linearly with the travelled distance, regardless of the sorption isotherm. This linear relationship is important for extrapolation of results to predict behavior beyond simulated times and distances. It was observed that the flow domain heterogeneity slightly enhanced the spreading of nonlinearly sorbing solutes in comparison to that which occurred for the homogeneous flow domain, whereas the spreading enhancement in the case of linear sorption was much more pronounced. In the case of Freundlich sorption, this enhancement led to further deceleration of the solute plume movement as a result of increased retardation coefficients produced by smaller concentrations. It was also observed that, except for plumes with linear sorption, correlation between the hydraulic conductivity and the sorption affinity fields had minimal effect on the spatial moments of solute plumes with nonlinear sorption.  相似文献   

20.
Journal of Seismology - Earthquake is always known as a natural phenomenon with complex and unpredictable characteristics. One of the parameters which affects the ground motion properties is soil....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号