首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A marine geophysical survey in early 1982, conducted by the Australian Bureau of Mineral Resources, indicated that much of Prydz Bay is underlain by a sedimentary basin. Severe seismic multiples preclude an accurate estimate of total sediment thickness, but interpretation of the seismic and magnetic data suggest that it is probably at least 5 km. The trends of the southeast basin margin and of mild faulting and folding in the southwest indicate an overall NNE trend, roughly orthogonal to the continental margin.In the south of Prydz Bay, two series of seismic sequences are evident, separated by a mildly erosional unconformity. The lower series ranges from poorly- to well-stratified, has minor folding and faulting, and probably derives from continental and perhaps shallow marine pre-breakup sediments. The upper series is generally well-stratified, and prograded near the shelf edge; it probably represents shallow marine post-breakup sediments. The seabed is distinctly unconformable with the underlying sediments, implying both that much of the upper series sediments and some of the lower series sediments have been bulldozed off by advances of the Amery Ice Shelf, and that present sedimentation rates are very low. Possible thin moraines or tillites in the northeast part of the Prydz Bay are also attributed to these glacial advances.The continental slope and rise sedimentary section ranges from at least 3 km thick off Prydz Bay, to thin off the MacRobertson Shelf to the west, reflecting the more prolific sediment source in Prydz Bay. The deep water section includes several seismic sequences, the most distinctive being interpreted as sheet volcanics and turbidite fans. The deepest visible unconformity is locally strongly faulted and may separate the pre-breakup and post-breakup sediments.Indo-Antarctic breakup has been tentatively dated as Early Neocomian (130 Ma) and the E-W orientation of the resultant Antarctic coast invites interpretation of the Lambert Glacier-Prydz Bay structure as a possible failed rift arm of a triple junction. Direct information on the age and nature of the sediments under Prydz Bay is lacking, but Permian continental sediments cropping out at Beaver Lake, to the south, may correspond to the lower pre-breakup series. This interpretation gains some support from analogies with fault-bounded intracratonic basins in India which contain Permian to Triassic continental strata and which may have been juxtaposed prior to breakup. The upper series probably consists of Upper Cretaceous and Cainozoic sands and shales, with moraines or tillites at the top of the section.  相似文献   

2.
本文通过早二叠世岩相、生物群落、岩石化学、古地磁资料的综合研究分析,认为内蒙—兴安亚区的古地理,早二叠世早期,在乌兰浩特—林东—林西—线存在—火山弧。火山弧对沉积物和生物群落均有一定的控制作用,古地势为东低西高。早二叠世晚期,亚区东部迅速抬升,西部以海盆沉积为主,古地势为东高西低。同时根据海洋底栖、浮游生物的不同时混生现象,确定了板块分隔、对接、碰撞时期。  相似文献   

3.
BASIN-RANGE TRANSITION AND GENETIC TYPES OF SEQUENCE BOUNDARY OF THE QIANGTANG BASIN IN NORTHERN TIBET  相似文献   

4.
吐哈盆地及邻区早二叠世沉积特征与构造发育的耦合关系   总被引:7,自引:0,他引:7  
通过对不同露头剖面和探井资料的分析,在吐哈盆地及邻区区分出三种不同类型沉积相:(1)裂谷型海相火山喷发沉积相;(2)裂谷型陆相火山喷发沉积相;(3)造山带磨拉石相;不同沉积相特征并结合构造分析认为,早二叠世在吐哈及邻区存在二种不同类型的盆地,即前陆盆地和裂谷盆地,同时,还探讨了大陆一大陆碰撞带上两种不同类型盆地的形成机理。  相似文献   

5.
Permian marine sedimentary rocks that crop out in northern Chile are closely related to the development of a Late Paleozoic magmatic arc. A study of Upper Paleozoic units east of Iquique (20°S) identified three members within the Juan de Morales Formation, each of which were deposited in a different sedimentary environment. A coarse-grained terrigenous basal member represents alluvial sedimentation from a local volcanic source. A mixed carbonate-terrigenous middle member represents coastal and proximal shallow marine sedimentation during a relative sea-level rise related with a global transgression. Preliminary foraminifer biostratigraphy of this middle member identified a late Early Permian (late Artinskian–Kungurian) highly impoverished nodosarid–geinitzinid assemblage lacking fusulines and algae, which is characteristic of temperate cold waters and/or disphotic zone. The upper fine-grained terrigenous member represents shallow marine siliciclastic sedimentation under storm influence. The Juan de Morales Formation consists of continental, coastal and shallow marine sediments deposited at the active western margin of Gondwana at mid to low latitudes. A revised late Early Permian age and similar paleogeography and sedimentary environments are also proposed for the Huentelauquén Formation and related units of northern and central Chile, Arizaro Formation of northwestern Argentina, and equivalent units of southernmost Peru.  相似文献   

6.
Permian sediments are continuous between the Sydney and Bowen Basins west of the Hunter‐Mooki fault system and its probable northern continuation, the Goondiwindi Fault. Both fault systems appear to have influenced sedimentation in Early Permian time. A disconformity between Lower Permian coal measures (dated by plant microfossils) and Upper Permian sandstones and shales (dated by marine macrofossils) is present in the northern extension of the Sydney Basin. This hiatus may be correlated with a similar break in sedimentation in the southeastern part of the Bowen Basin. It is probably related to a Mid‐Permian diastrophism which folded Lower Permian and older sediments east of the Mooki and Peel Faults. Marine connection between the Sydney and Bowen Basins appears to have been interrupted during the event so that the two basins may have been temporarily isolated. The difference in the fossil faunas of the Sydney and Bowen Basins may well reflect this isolation.  相似文献   

7.
重庆地区上二叠统包括龙潭组/吴家坪组和长兴组,主要发育海陆过渡相(海湾-泻湖-潮坪)及浅海碳酸盐沉积,其中龙潭组和吴家坪组为同期异相沉积。通过对区内钻井剖面及露头剖面的分析,在本区上二叠统中识别出区域性构造不整合面和沉积相转换面等地层界面,并将上二叠统划分为2个三级层序。基于近海煤盆地的背景,研究区厚煤层常靠近初始海泛面发育。总体来看,近海含煤盆地三级层序以海侵体系域聚煤最好。   相似文献   

8.
中国东北地区晚二叠世岩相古地理特征   总被引:1,自引:0,他引:1       下载免费PDF全文
在6条野外实测剖面和38条收集剖面的基础上, 通过剖面的岩石组合特征及样品的元素地球化学分析, 对中国东北地区晚二叠世的沉积环境和古地理特征进行了研究。结果显示, 东北地区上二叠统样品常量元素具有高Si、Al, 低P、Mn、Ca的特点;微量元素具有高V、Rb、Zr、Ba, 低Be、Mo、Cd、Ta和U的特点;稀土元素表现为轻、重稀土分异显著, 轻稀土相对富集, Eu负异常的特征。沉积环境主体为陆相淡水还原环境;存在北部、东部和西部3个物源, 其中北部和东部为主要物源方向;发育三角洲相、扇三角洲相和湖泊相沉积。此外, 林西组底部样品在常量、微量及稀土元素的异常和杨家沟组底部大量碳酸盐岩砾石的出现, 说明晚二叠世初期局部有海侵发生。中国东北地区晚二叠世沉积初期为海陆交互环境, 主体为陆相湖泊沉积环境。  相似文献   

9.
沉积物源分析是认识盆山演化的重要途径。了解四川盆地西南缘上二叠统宣威组物源,对于重建晚二叠世扬子克拉通周缘演化具有重要意义。本文对峨眉山地区宣威组顶部泥岩、砂岩开展了岩石学和全岩地球化学分析,进行了物源、沉积环境和构造背景的研究。宣威组泥岩主要成分为黏土矿物,SiO2含量(平均49.42%)中等;砂岩成分大部分为火山岩屑,含有少量石英及长石,具中等的SiO2含量(平均44.12%),属于杂砂岩系列。泥岩与砂岩均具有轻稀土元素富集、重稀土元素较右倾的稀土元素配分型式,微量元素相对大陆上地壳富集高场强元素(如Nb、Zr),亏损大离子亲石元素(如Sr、Ba)。根据地球化学分析结果结合已发表的扬子克拉通周缘二叠系沉积岩数据,认为上二叠统宣威组顶部沉积岩物源区经历了强烈的化学风化作用,沉积古环境为富氧的淡水沉积环境;宣威组顶部沉积物物源不仅来自于近源搬运的峨眉山高Ti玄武岩,还接受了扬子克拉通的补给,扬子克拉通西缘晚二叠世时期是活动大陆边缘沉积。  相似文献   

10.
The review paper provides an updated account of the previous and recently published records concerning the palaeobiology and the geology of the Talcher Basin of Orissa State, India. We conclude that fossil floral species in this basin originated in the earliest Permian Talchir Formation and evolved and diversified through the Karharbari Fm., Barakar Fm., Barren Measures Fm. and the uppermost Kamthi Fm. (Late Permian–Triassic). The megaflora and the palynology of the different formations of the basin are also discussed briefly. The geological setting of the basin along with the status of different formations (especially the Kamthi Formation) has been redefined. The post‐Barakar Fm. rocks, earlier retained in the Raniganj/Kamthi, Panchet and Mahadeva formations in this basin, have been critically assessed and redefined as the Lower and Upper Kamthi formations of Late Permian and Triassic ages, respectively. Accordingly, the geological map of the basin has been modified. Permian deposits (particularly the Barakar and the lower Kamthi formations) not only have the best preserved flora but also possess the highest diversity, whereas the upper Kamthi Triassic sediments have a meagre number of taxa. The plant diversity of the basin has been discussed in detail to interpret the development of the flora, evolutionary trends and palaeoenvironments of the basin. The patchy Gangamopteris vegetation of the Talchir glacial phase has ultimately evolved and diversified through time (Karharbari Fm. to Lower Kamthi Fm.) and gave rise to the thick dense swampy forests consisting of large Glossopteris trees and other shade‐loving under‐storied pteridophytes. Several groups of plants including spores and pollen have disappeared in a ladder pattern during the Permian–Triassic interval (Lower Kamthi–Upper Kamthi Fm.) and, similarly, in steps, many new fore‐runners appeared in the Upper Kamthi Formation. Records of marine acritarchs and ichnofossils in this basin at various Permian–Triassic levels demonstrate that there were marine influences. These features suggest a paralic (coastal marine to deltaic) mode of origin of the coal beds and associated sediments in the basin. The present study also advocates the continued survival of plants, rather than a mass extinction near the vicinity of the Permian–Triassic (P–T) boundary in this basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
INTRODUCTIONTheSimaoregion (SWYunnan ,China) ,situatedbe tweentheAilaoshanbeltintheeastandtheLancangjiangzoneinthewest (Fig .1) ,isakeyareatochronologicallyconstrainlatePaleozoiccompressionaldeformationsandthusofprimein terestwhendiscussingtheplate tectonichi…  相似文献   

12.
The Iraqi territory could be divided into four main tectonic zones; each one has its own characteristics concerning type of the rocks, their age, thickness and structural evolution. These four zones are: (1) Inner Platform (stable shelf), (2) Outer Platform (unstable shelf), (3) Shalair Zone (Terrain), and (4) Zagros Suture Zone. The first two zones of the Arabian Plate lack any kind of metamorphism and volcanism.The Iraqi territory is located in the extreme northeastern part of the Arabian Plate, which is colliding with the Eurasian (Iranian) Plate. This collision has developed a foreland basin that includes: (1) Imbricate Zone, (2) High Folded Zone, (3) Low Folded Zone and (4) Mesopotamia Foredeep.The Mesopotamia Foredeep, in Iraq includes the Mesopotamia Plain and the Jazira Plain; it is less tectonically disturbed as compared to the Imbricate, High Folded and Low Folded Zones. Quaternary alluvial sediments of the Tigris and Euphrates Rivers and their tributaries as well as distributaries cover the central and southeastern parts of the Foredeep totally; it is called the Mesopotamian Flood Plain. The extension of the Mesopotamia Plain towards northwest however, is called the Jazira Plain, which is covered by Miocene rocks.The Mesopotamia Foredeep is represented by thick sedimentary sequence, which thickens northwestwards including synrift sediments; especially of Late Cretaceous age, whereas on surface the Quaternary sediments thicken southeastwards. The depth of the basement also changes from 8 km, in the west to 14 km, in the Iraqi–Iranian boarders towards southeast.The anticlinal structures have N–S trend, in the extreme southern part of the Mesopotamia Foredeep and extends northwards until the Latitude 32°N, within the Jazira Plain, there they change their trends to NW–SE, and then to E–W trend.The Mesozoic sequence is almost without any significant break, with increase in thickness from the west to the east, attaining 5 km. The sequence forms the main source and reservoir rocks in the central and southern parts of Iraq. The Cenozoic sequence consists of Paleogene open marine carbonates, which grades upwards into Neogene lagoonal marine; of Early Miocene and evaporitic rocks; of Middle Miocene age, followed by thick molasses of continental clastics that attain 3500 m in thickness; starting from Late Miocene. The Quaternary sediments are very well developed in the Mesopotamia Plain and they thicken southwards to reach about 180 m near Basra city; in the extreme southeastern part of Iraq.The Iraqi Inner Platform (stable shelf) is a part of the Arabian Plate, being less affected by tectonic disturbances; it covers the area due to south and west of the Euphrates River. The main tectonic feature in this zone that had affected on the geology of the area is the Rutbah Uplift; with less extent is the Ga’ara High.The oldest exposed rocks within the Inner Platform belong to Ga’ara Formation of Permian age; it is exposed only in the Ga’ara Depression. The Permian rocks are overlain by Late Triassic rocks; represented by Mulussa and Zor Hauran formations, both of marine carbonates with marl intercalations. The whole Triassic rocks are absent west, north and east of Ga’ara Depression. Jurassic rocks, represented by five sedimentary cycles, overlie the Triassic rocks. Each cycle consists of clastic rocks overlain by carbonates, being all of marine sediments; whereas the last one (Late Jurassic) consists of marine carbonates only. All the five formations are separated from each other by unconformable contacts. Cretaceous rocks, represented by seven sedimentary cycles, overlie the Jurassic rocks. Marine clastics overlain by marine carbonates. Followed upwards (Late Cretaceous) by continental clastics overlain by marine carbonates; then followed by marine carbonates with marl intercalations, and finally by marine clastics overlain by carbonates; representing the last three cycles, respectively.The Paleocene rocks form narrow belt west of the Ga’ara Depression, represented by Early–Late Paleocene phosphatic facies, which is well developed east of Rutbah Uplift and extends eastwards in the Foredeep. Eocene rocks; west of Rutbah Uplift are represented by marine carbonates that has wide aerial coverage in south Iraq. Locally, east of Rutbah Uplift unconformable contacts are recorded between Early, Middle and Late Eocene rocks. During Oligocene, in the eastern margin of the Inner Platform, the Outer Platform was uplifted causing very narrow depositional Oligocene basin. Therefore, very restricted exposures are present in the northern part of the Inner Platform (north of Ga’ara Depression), represented by reef, forereef sediments of some Oligocene formations.The Miocene rocks have no exposures west of Rutbah Uplift, but north and northwestwards are widely exposed represented by Early Miocene of marine carbonates with marl intercalations. Very locally, Early Miocene deltaic clastics and carbonates, are interfingering with the marine carbonates. The last marine open sea sediments, locally with reef, represent the Middle Miocene rocks and fore reef facies that interfingers with evaporates along the northern part of Abu Jir Fault Zone, which is believed to be the reason for the restriction of the closed lagoons; in the area.During Late Miocene, the continental phase started in Iraq due to the closure of the Neo-Tethys and collision of the Sanandaj Zone with the Arabian Plate. The continental sediments consist of fine clastics. The Late Miocene – Middle Pliocene sediments were not deposited in the Inner Platform.The Pliocene–Pleistocene sediments are represented by cyclic sediments of conglomeratic sandstone overlain by fresh water limestone, and by pebbly sandstone.The Quaternary sediments are poorly developed in the Inner Platform. Terraces of Euphrates River and those of main valleys represent pleistocene sediments. Flood plain of the Euphrates River and those of large valleys represent Holocene sediments. Residual soil is developed, widely in the western part of Iraq, within the western marginal part of the Inner Platform.  相似文献   

13.
In the Grands Causses, incised valleys, lapies, fissures and sinkholes inherited from successive polyphase karstifications were filled by Palaeocene marine sediments overall assigned to the P1c–P3 interval (Upper Danian–Lower Selandian). These sediments are distributed into three detritic facies, generated by extensional tectonics controlling karstic and erosional processes. Upper Cretaceous marine fossils known within these facies are interpreted as reworked from hypothetically pellicular deposits. The probable palaeogeographic connection with the Pyrenean Palaeocene ‘Breccia trough’ supposes the presence of a SE–NW ‘ria’ running across the continental areas of Lower Languedoc and draining towards the northwest the marine waters of the Palaeocene transgression as far as the Rodez region. To cite this article: B. Peybernès et al., C. R. Geoscience 335 (2003).  相似文献   

14.
Origin of the Kupferschiefer polymetallic mineralization in Poland   总被引:2,自引:0,他引:2  
The Kupferschiefer ore series, between the Lower Permian (Rotliegendes) terrestrial redbeds/volcanics and the Upper Permian (Zechstein) marine sequence, is developed as dark-grey organic matter-rich and metal sulphide-containing deposits (reduced zone) and as red-stained organic matter-depleted and iron oxide-bearing sediments (oxidized zone?=?Rote Fäule). The transition zone from oxidized to reduced rocks occurs both vertically and horizontally. This zone is characterized by sparsely disseminated remnant copper sulphides within hematite-bearing sediments, replacements of copper sulphides by iron oxides and covellite, and oxide pseudomorphs after framboidal pyrite. These textural features and copper sulphide replacements after pyrite in reduced sediments imply that the main oxide/sulphide mineralization postdated formation of an early-diagenetic pyrite. Hematite-dominated sediments locally contain enrichments of gold and PGE. The Kupferschiefer mineralization resulted from upward and laterally flowing fluids which oxidized originally pyritiferous organic matter-rich sediments to form hematitic Rote Fäule areas, and which emplaced base and noble metals into reduced sediments. It is argued that long-lived and large-scale lateral fluid flow caused the cross-cutting relationships, expansion of the hematitic alteration front, redistribution of noble metals at the outer parts of oxidized areas, and the location of copper orebodies directly above and around oxidized and gold-bearing areas. The Rote Fäule may be a guide to favourable areas for both the Cu-Ag and new Au-Pt-Pd Kupferschiefer-type deposits.  相似文献   

15.
Summary This article is a brief résumé of the geology of the marine Upper Carboniferous beds (Itaituba series) of the Amazonian basin. The unfolded sediments cover a large area of the basin and are constituted of limestones, shales and sandstones. The macrofauna includes brachiopods, pelecypoda, corals, bryozoa, etc., from which the brachiopods are the better known by the present. The microfauna includes two genera of fusulinids:Millerella andFusulinella.According to the age as given by the fusulinids the sediments are Pennsylvanian (Upper Carboniferous), and not Permian as it has been supposed by some authors. So, the correlation with the Andean (Bolivia and Peru) permian groups is no more valid. Correlation with Tarma Group (Upper Carboniferous from Peru) and with the marine carboniferous of the MaranhÃo-Piauí (Brazil) is possible but not very well established.  相似文献   

16.
ILFRYN PRICE 《Sedimentology》1977,24(4):529-546
The Othris Mountains of eastern Greece contain a calcareous continental margin/ocean basin sequence exposed in a stack of Cretaceous thrust sheets. Upper Triassic to Lower Cretaceous shelf, submarine fan and basinal successions overlie shallow marine units of Lower Triassic and Permian age. In off-shelf sequences the older sediments are separated from the younger by a horizon of alkaline ‘early-rifting’ basalts. Ophiolites overthrust the marginal sequence. Pre-rifting sediments are represented by a varied suite of limestones and clastics resting on metamorphic basement and include distinctive, green lithic arenites. In the thrust sheet immediately over the para-autochthonous shelf sequence, pre-rifting sediments are separated from the rift basalts by an intermittent horizon of calcareous sandstones and conglomerates reworked from uplifted basement and older sediments. Textural and petrographic immaturity suggests that these are probably deposits derived from fault scarps, produced in an early phase of rifting. Above the basalts in the same sheet is a suite of calciclastic sediment-gravity-flow deposits, apparently sedimented on a submarine fan. Progressive downslope modification of calcirudites suggests deposition from evolving, high concentration flows. Massive calcarenite facies (? grain flows) are unusually abundant; a possible reflection of a shallow palaeo-shelf break since provenance and palaeocurrent evidence proves the clastic carbonates to have been derived from a calcareous shelf. In addition to limestone lithoclasts the calcirudites, but not the massive calcarenites, contain fragments of pre-rifting lithologies including the distinctive arenites. Since the shelf sequence in Othris is totally nondetrital these clasts imply derivation of coarse sediment from an off-shelf position; probably the walls of a submarine canyon. This may have occurred either by direct erosion of wall rock, or by reworking of material from an older clastic sequence. In the latter case the inferred fault-scarp deposits are a likely source.  相似文献   

17.
The Malatya Basin is situated on the southern Taurus-Anatolian Platform. The southern part of the basin contains a sedimentary sequence which can be divided into four main units, each separated by an unconformity. From base to top, these are: (1) Permo-Carboniferous; (2) Upper Cretaceous–Lower Paleocene, (3) Middle-Upper Eocene and (4) Upper Miocene. The Upper Cretaceous–Tertiary sedimentary sequence resting on basement rocks is up to 700 m thick.The Permo-Carboniferous basement consist of dolomites and recrystallized limestones. The Upper Cretaceous–Lower Paleocene transgressive–regressive sequence shows a transition from terrestrial environments, via lagoonal to shallow-marine limestones to deep marine turbiditic sediments, followed upwards by shallow marine cherty limestones. The marine sediments contain planktic and benthic foraminifers indicating an upper Campanian, Maastrichtian and Danian age. The Middle-Upper Eocene is a transgressive–regressive sequence represented by terrestrial and lagoonal clastics, shallow-marine limestones and deep marine turbidites. The planktic and benthic foraminifers in the marine sediments indicate a Middle-Upper Eocene age. The upper Miocene sequence consists of a reddish-brown conglomerate–sandstone–mudstone alternation of alluvial and fluvial facies.During Late Cretaceous–Early Paleocene times, the Gündüzbey Group was deposited in the southern part of a fore-arc basin, simultaneously with volcanics belonging to the Yüksekova Group. During Middle-Late Eocene times, the Yeşilyurt Group was deposited in the northern part of the Maden Basin and the Helete volcanic arc. The Middle-Upper Eocene Malatya Basin was formed due to block faulting at the beginning of the Middle Eocene time. During the Late Paleocene–Early Eocene, and at the end of the Eocene, the study areas became continental due to the southward advance of nappe structures.The rock sequences in the southern part of the Malatya Basin may be divided into four tectonic units, from base to top: the lower allochthon, the upper allochthon, the parautochthon and autochthonous rock units.  相似文献   

18.
中国北方地区二叠纪岩相古地理   总被引:7,自引:1,他引:7  
主要以实地踏勘和测量建立的87个标准剖面及529个辅助剖面为基础,通过对二叠系分布格局、岩石学特征、沉积构造特征、古气候、古生态、古环境等分析,来恢复中国北方地区二叠纪的古地理面貌。早二叠世:主要存在额尔古纳和佳木斯古陆,塔里木-敦煌-祁连-内蒙古古陆;海域主要分布在松辽海相区,华北残留海湾相区,柴西残留海湾相区和南准噶尔-吐哈-北山残留海湾相区;此外还有塔里木西部碳酸盐台地相区和准噶尔腹部河湖相区。中二叠世:早二叠世的古陆依然存在,但华北北部古陆范围明显缩小,而准噶尔南缘-吐哈地区已上升成为陆地;海域只局限在东北和南祁连地区,华北地区-北祁连地区大面积为河湖相发育区;塔里木盆地主要为陆相碎屑岩沉积;准噶尔地区发育河湖相沉积,北山残留海盆火山碎屑岩发育。晚二叠世:仅在南祁连地区有海相沉积,其他地区均为陆相沉积,东北地区陆相和湖泊相沉积占主导地位;华北地区-北祁连地区主体为河湖相沉积;塔里木盆地整体为河湖相沉积;准噶尔-吐哈盆地主体为河湖相沉积。  相似文献   

19.
In the region of Bande Amir, located on the southern rim of the Tadschik basin, the Mesozoic section starts with detrital and conglomeratic limestones. These marine deposits of Upper Cretaceous age (Cenomanian-Turonian) disconformably cover a truncated complex of Upper Paleozoic rocks (Permian). After an interval of neritic sedimentation (Santonian, Campanian) the Upper Cretaceous sea (Maastrichtian) regressed from the Central Afghanian High. In the Hindukusch mountains the regression is related to crustal movements and regional uplifts, which hinged on the Herat lineament. Intermontane basins, developed on this mobile zone during mid-Tertiary time, gathered continental debris (Neogene conglomerates; Zohak-Formation) and led to the deposition of lacustrine sediments (Ghulghola-Formation). Orogenetic movements along the colliding edges of crustal blocks were rejuvenated in Plio-Pleistocene time, shifting the focus of deposition to the northwest. The basin was finally captured by the Amu Darja drainage system, leading to the development of canyon-like incisions. During warm periods of the Quaternary, fluviatile erosion in Bande Amir was interrupted at least four times by the retention of water behind large dams of travertine.  相似文献   

20.
In the conjunction zone of the East European Platform and the Uralian foredeep, involved in structures of the Southern Urals (Bashkiria), sediments deposited at the shelf zone edge in the Late Carboniferous–Early Permian crop out. The Upper Carboniferous bioherm and Lower Permian deep marine–shelf boundary limestones, composing Voskresenka Mount near Tabynsk township, were studied. Results of the complex analysis of lithofacies, paleontological, structural, and also geological and geophysical data show that the Voskresenka carbonate massif, previously attributed to a single reef structure, represents the SW-dipping tectonic horst block, composed of Upper Carboniferous shelf–bioherm limestones, which is uplifted in a near break zone. As a result of tectonic processes, the edge of the late Carboniferous carbonate platform, overlain by Asselian deep-water sediments, was exhumed. The sedimentary succession shows that the paleogeographic setting at the margin of the East European Craton changed at the Carboniferous–Permian boundary during the formation of the Ural collisional orogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号