首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uranium-lead (U–Pb) dating was conducted on zircons in tuff layers and sandstone samples from the uppermost Liantuo Formation and in a tillite sample from the lowermost Nantuo Formation in Three Gorges area, South China, using SHRIMP and LA-ICP-MS techniques. Zircons from these samples yielded age spectrum (within 1000 Ma) of ∼890, ∼830, ∼780, ∼730, and 646 Ma. Zircons from the Liantuo tuffs have a weighted mean 206Pb/238U age of 734.1 ± 8.1 Ma (2σ, n = 7, MSWD = 0.48), which was regarded as the best estimation of the upper boundary age of the Liantuo Formation. Combining with previous geochronologic data, the Liantuo Formation was proposed to be a pre-Chang′an glaciation unit, and it is comparable to the middle-upper Banxi/Danzhou Group in South China.  相似文献   

2.
The Marwar Supergroup refers to a 1000–2000 m thick marine and coastal sequence that covers a vast area of Rajasthan in NW–India. The Marwar Basin uncomformably overlies the ∼750–770 Ma rocks of the Malani Igneous Suite and is therefore considered Late Neoproterozoic to Early Cambrian in age. Upper Vindhyan basinal sediments (Bhander and Rewa Groups), exposed in the east and separated by the Aravalli–Delhi Fold Belt, have long been assumed to coeval with the Marwar Supergroup. Recent studies based on detrital zircon populations of the Marwar and Upper Vindhyan sequences show some similarity in the older populations, but the Vindhyan sequence shows no zircons younger than 1000 Ma whereas samples taken from the Marwar Basin show distinctly younger zircons. This observation led to speculation that the Upper Vindhyan and Marwar sequences did not develop coevally.While there are alternative explanations for why the two basins may differ in their detrital zircon populations, paleomagnetic studies may provide independent evidence for differences/similarities between the assumed coeval basins. We have collected samples in the Marwar Basin and present the paleomagnetic results. Previous paleomagnetic studies of Marwar basinal sediments were misinterpreted as being indistinguishable from the Upper Vindhyan sequence. The vast majority of our samples show directional characteristics similar to the previously published studies. We interpret these results to be a recent overprint. A small subset of hematite-bearing rocks from the Jodhpur Formation (basal Marwar) exhibit directional data (Dec = 89° Inc = −1° α95 = 9°) that are distinct from the Upper Vindhyan pole and may offer additional support for temporally distinct episodes of sedimentation in these proximal regions. A VGP based upon our directional data is reported at 1°S 344°E (dp = 5°, dm = 9°). We conclude that the Marwar Supergroup developed near the close of the Ediacaran Period and is part of a larger group of sedimentary basins that include the Huqf Supergroup (Oman), the Salt-Range (Pakistan), the Krol–Tal belt (Himalayas) and perhaps the Molo Supergroup (Madagascar).  相似文献   

3.
《Precambrian Research》2006,144(1-2):69-91
By using unusual combinations of demagnetization techniques, Proterozoic paleomagnetic vectors and paleopoles are provided for two recently discovered post-tectonic Proterozoic units near Armstrong, northern Ontario, and also for well-dated Gunflint Formation, which by previous techniques yielded problematical paleomagnetic data. The first paleomagnetic data are provided also for the Seagull Pluton and Inspiration Sills. Characteristic remanent magnetizations (ChRM) for the Pillar Lake Lavas indicate a Keweenawan age, more specifically ∼1000–1040 Ma by comparison with the well-established APWP for the Late Proterozoic Superior craton. Four combinations of demagnetization techniques yield declinations in the range 108–133° and inclinations in the range −65 to −70° (n = 100), which define paleopoles near 200 W/48 N corresponding to a location on the Keweenawan APWP near ∼1040 Ma. In the underlying basement a recently discovered Proterozoic igneous complex, the Waweig Troctolitic Complex, yields new paleomagnetic data with declination and inclination 42/−54 (n = 14) defining a paleopole at 238 W/09 N. Its ages may be 1400–1600 or ∼2000 Ma by comparison with the presently available, ambiguous and sparsely populated APWP. The first paleomagnetic results for the Seagull Pluton (U–Pb age 1113 Ma) yield a mean declination of 87.4/−75.7 (n = 32) corresponding to a Keweenawan paleopole near 233/42 N, consistent with other paleopoles near ∼1200 Ma. Tuffs of the oft studied but problematical Gunflint Formation (U–Pb age1878 Ma) yielded stable and presumably primary vectors using several different demagnetization techniques on the same specimens. Their mean primary declination and inclination ∼303/+48.8 (n = 17) yields a paleopole now located near 178 W/42 N, comparable with the published locations of paleopoles of ∼2000 Ma. Of broader interest, we recognized that low temperature demagnetization preceding conventional demagnetization techniques enhanced the isolation of characteristic vectors. Combining the conventional techniques (thermal and AF demagnetization) also improved the resolution of characteristic vectors not achieved by other means. Low grade metamorphism affected the non-tectonized Proterozoic cover to the Canadian shield, due to burial or hydrothermal effects, obfuscating or erasing primary vectors in some lithologies and especially at certain sites.  相似文献   

4.
The Uatumã silicic large igneous province (SLIP) has covered about 1,500,000 km2 of the Amazonian craton at ca. 1880 Ma, when the Columbia/Nuna supercontinent has been assembled. Paleomagnetic and geochronological data for this unit were obtained for the Santa Rosa and Sobreiro Formations in the Carajás Province, southwestern Amazonian craton (Central-Brazil Shield). AF and thermal demagnetizations revealed northern (southern) directions with high upward (downward) inclinations (component SF1), which passes a ‘B’ reversal test, and is carried by magnetite and SD hematite with high-blocking temperature. This component is present on well-dated 1877.4 ± 4.3 Ma (U-Pb zrn - LA-ICPMS) rhyolitic lava flows, providing the SF1 key paleomagnetic pole (Q = 6) located at 319.7°E, 24.7°S (A95 = 16.9°). A second southwestern (northeastern) direction with low inclination (Component SF2) was obtained for a well-dated 1853.7 ± 6.2 Ma (U-Pb zrn - LA-ICPMS) dike of the Velho Guilherme Suite. This component also appears as a secondary component in the host rhyolites of the Santa Rosa Fm and andesites of the Sobreiro Fm at the margins of the dike previously dated. Its primary origin is confirmed by a positive baked contact test, where a Velho Guilherme dike crosscuts the 1880 Ma andesite from the Sobreiro Formation. The corresponding SF2 key pole is located at 220.1°E, 31.1°S (A95 = 5°) and is classified with a reliability criterion Q = 7. The large angular distance between the almost coeval (difference of ~ 25 Ma) SF1 and SF2 poles implies high plate velocities (~ 39.3 cm/yr) which are not consistent with modern plate tectonics. The similar significant discrepancy of paleomagnetic poles with ages between 1880 and 1860 Ma observed in several cratons could be explained by a true polar wander (TPW) event. This event is the consequence of the reorganization of the whole mantle convection, and is supported by paleomagnetic reconstructions at 1880 Ma and 1860 Ma and also by geological/geochronological evidence.  相似文献   

5.
A new paleomagnetic study on well-dated (~ 155 Ma) volcanic rocks of the Tiaojishan Formation (Fm) in the northern margin of the North China Block (NCB) has been carried out. A total of 194 samples were collected from 26 sites in the Yanshan Belt areas of Luanping, Beipiao, and Shouwangfen. All samples were subjected to stepwise thermal demagnetization. After removal of a recent geomagnetic field viscous component, a stable high temperature component (HTC) was isolated. The inclinations of our new data are significantly steeper than those previously published from the Tiaojishan Fm in the Chengde area (Pei et al., 2011, Tectonophysics, 510, 370–380). Our analyses demonstrate that the paleomagnetic directions obtained from each sampled area were strongly biased by paleosecular variation (PSV), but the PSV can be averaged out by combining all the virtual geomagnetic poles (VGPs) from the Tiaojishan Fm in the region. The mean pole at 69.6°N/203.0°E (A95 = 5.6°) passes a reversal test and regional tilting test at 95% confidence and is thus considered as a primary paleomagnetic record. This newly determined pole of the Tiaojishan Fm is consistent with available Late Jurassic poles from red-beds in the southern part of the NCB, but they are incompatible with coeval poles of Siberia and the reference pole of Eurasia, indicating that convergence between Siberia and the NCB had not yet ended by ~ 155 Ma. Our calculation shows a ~ 1600-km latitudinal plate movement and crustal shortening between the Siberia and NCB after ~ 155 Ma. In addition, no significant vertical axis rotation was found either between our sampled areas or between the Yanshan Belt and the major part of the NCB after ~ 155 Ma.  相似文献   

6.
《Gondwana Research》2013,23(3-4):956-973
The configuration and the timing of assembly and break-up of Columbia are still matter of debate. In order to improve our knowledge about the Mesoproterozoic evolution of Columbia, a paleomagnetic study was carried out on the 1420 Ma Indiavaí mafic intrusive rocks that crosscut the polycyclic Proterozoic basement of the SW Amazonian Craton, in southwestern Mato Grosso State (Brazil). Alternating field and thermal demagnetization revealed south/southwest ChRM directions with downward inclinations for sixteen analyzed sites. These directions are probably carried by SD/PSD magnetite with high coercivities and high unblocking temperatures as indicated by additional rock magnetic tests, including thermomagnetic data, hysteresis data and the progressive acquisition of isothermal remanent magnetization. Different stable magnetization components isolated in host rocks from the basement 10 km NW away to the Indiavaí intrusion, further support the primary origin of the ChRM. A mean of the site mean directions was calculated at Dm = 209.8°, Im = 50.7° (α95 = 8.0°, K = 22.1), which yielded a paleomagnetic pole located at 249.7°E, 57.0°S (A95 = 8.6°). The similarity of this pole with the recently published 1420 Ma pole from the Nova Guarita dykes in northern Mato Grosso State suggests a similar tectonic framework for these two sites located 600 km apart, implying the bulk rigidity of the Rondonian-San Ignacio crust at that time. Furthermore these data provide new insights on the tectonic significance of the 1100–1000 Ma Nova Brasilândia belt—a major EW feature that cuts across the basement rocks of this province, which can now be interpreted as intracratonic, in contrast to previous interpretation. From a global perspective, a new Mesoproterozoic paleogeography of Columbia has been proposed based on comparison of these 1420 Ma poles and a 1780 Ma pole from Amazonia with other paleomagnetic poles of similar age from Baltica and Laurentia, a reconstruction in agreement with geological correlations.  相似文献   

7.
Recent work in the central Andean Main Range of Chile near Laguna del Laja (∼37.5°S, 71°W) has produced the first mammal fossils for the region. Fossils, locally abundant and well preserved, occur patchily across a wide area southeast of the lake. Mammalian remains are derived from generally strongly folded (kilometer-scale) exposures of the locally ∼1.8 km thick, early to middle Miocene Cura-Mallín Formation; two identifiable specimens have been recovered from the overlying Trapa Trapa Formation as well. Both formations consist primarily of well-stratified (1–5 m thick layers) volcaniclastic and volcanic strata, deposited predominantly in fluviatile systems. The Cura-Mallín Formation is possibly the southern continuation of (or lateral equivalent to) the richly fossiliferous Abanico Formation mapped between ∼32°S and 36°S. Intensive sampling in a series of localities east and south of Laguna del Laja has yielded diverse faunas, in addition to radioisotopically dateable horizons. The new fossil mammal faunas represent as many as six South American Land Mammal “Ages” (SALMAs). Fossils, together with preliminary 40Ar/39Ar radioisotopic dates, ranging from ∼9 to 20 Ma across the exposed thickness of the Cura-Mallín Formation and into the overlying Trapa Trapa Formation, provide a robust geochronological framework for middle Cenozoic strata in the Laguna del Laja region. The sequence of directly superposed mammalian assemblages at Laguna del Laja is one of the longest in all of South America, rivaled only by the classic Gran Barranca section of Patagonian Argentina. These data illuminate the geological history of the area and its record of mammalian evolution. The potential to isotopically date these diverse faunas with high precision (error ± 0.5 Ma) presents a rare opportunity to calibrate related portions of the SALMA sequence.  相似文献   

8.
《Earth》2006,77(3-4):191-233
A Cenozoic tectonic reconstruction is presented for the Southwest Pacific region located east of Australia. The reconstruction is constrained by large geological and geophysical datasets and recalculated rotation parameters for Pacific–Australia and Lord Howe Rise–Pacific relative plate motion. The reconstruction is based on a conceptual tectonic model in which the large-scale structures of the region are manifestations of slab rollback and backarc extension processes. The current paradigm proclaims that the southwestern Pacific plate boundary was a west-dipping subduction boundary only since the Middle Eocene. The new reconstruction provides kinematic evidence that this configuration was already established in the Late Cretaceous and Early Paleogene. From ∼ 82 to ∼ 52 Ma, subduction was primarily accomplished by east and northeast-directed rollback of the Pacific slab, accommodating opening of the New Caledonia, South Loyalty, Coral Sea and Pocklington backarc basins and partly accommodating spreading in the Tasman Sea. The total amount of east-directed rollback of the Pacific slab that took place from ∼ 82 Ma to ∼ 52 Ma is estimated to be at least 1200 km. A large percentage of this rollback accommodated opening of the South Loyalty Basin, a north–south trending backarc basin. It is estimated from kinematic and geological constraints that the east–west width of the basin was at least ∼ 750 km. The South Loyalty and Pocklington backarc basins were subducted in the Eocene to earliest Miocene along the newly formed New Caledonia and Pocklington subduction zones. This culminated in southwestward and southward obduction of ophiolites in New Caledonia, Northland and New Guinea in the latest Eocene to earliest Miocene. It is suggested that the formation of these new subduction zones was triggered by a change in Pacific–Australia relative motion at ∼ 50 Ma. Two additional phases of eastward rollback of the Pacific slab followed, one during opening of the South Fiji Basin and Norfolk Basin in the Oligocene to Early Miocene (up to ∼ 650 km of rollback), and one during opening of the Lau Basin in the latest Miocene to Present (up to ∼ 400 km of rollback). Two new subduction zones formed in the Miocene, the south-dipping Trobriand subduction zone along which the Solomon Sea backarc Basin subducted and the north-dipping New Britain–San Cristobal–New Hebrides subduction zone, along which the Solomon Sea backarc Basin subducted in the west and the North Loyalty–South Fiji backarc Basin and remnants of the South Loyalty–Santa Cruz backarc Basin subducted in the east. Clockwise rollback of the New Hebrides section resulted in formation of the North Fiji Basin. The reconstruction provides explanations for the formation of new subduction zones and for the initiation and termination of opening of the marginal basins by either initiation of subduction of buoyant lithosphere, a change in plate kinematics or slab–mantle interaction.  相似文献   

9.
In this paper we present new paleomagnetic and paleontological data from the Ordovician and Silurian carbonate rocks of Kotelny Island (the Anjou Archipelago), and from the Ordovician turbidities of Bennett Island (the De Long Archipelago). It is assumed that both archipelagos belong to the NSI (New Siberian Islands) terrane — a key tectonic element in the Arctic region. Ages of the studied rocks have been established by paleontological data and lithological correlations. Our new data on conodonts combined with those from previous studies of Ordovician and Silurian fauna indicate a biogeographic similarity between the shelves of the Siberian paleocontinent and the NSI in the Early Paleozoic. Three new paleomagnetic poles for the NSI (48.9°N, 13.8°E, A95 = 18.1° for 475 Ma; 45.5°N, 31.9°E, A95 = 11.0° for 465 Ma, and 33.7°N, 55.7°E, A95 = 11.0° for 435 Ma) fall between the south-eastern part of Central Europe and the Zagros Mountains. The similarity of paleomagnetic directions from Kotelny and Bennet islands confirms that both the Anjou and De Long archipelagos belong to the same terrane. Calculated paleolatitudes indicate that in Ordovician–Silurian times this terrane has been located between 30° and 45°, possibly in the northern hemisphere. Based on this observation, we suggest a linkage between the NSI and the Kolyma–Omolon superterrane. Comparison of apparent polar wander paths (APWPs) of the NSI, Siberia and other cratons/terranes suggests that the NSI drifted independently. We demonstrate that the structural line between Svyatoy Nos Peninsula and Great Lyakhovsky Island is the continuation of the Kolyma Loop suture on the Arctic shelf, and expect that the continuation of the South Anyui suture is to be found east of the NSI.  相似文献   

10.
《Precambrian Research》2003,120(1-2):101-129
A paleomagnetic and 40Ar/39Ar study of a 630-Ma alkaline granite suite in Madagascar, the so-called ‘stratoid’ granites, reveals a complex history of remagnetization during the formation of the Antananarivo Zone de Virgation at ∼560 Ma (D2) and the Angavo shear zone at ∼550 Ma (D3). 40Ar/39Ar dating of hornblende, biotite and potassium feldspar from rocks affected by D2/D3 show initial cooling rates of 8 °C/Ma during the 550–520 Ma interval followed by slower cooling of 2.5 °C/Ma. The thermal effects of the D2 and D3 events appear to be restricted to regions surrounding the shear zones as evidenced by a 40Ar/39Ar biotite age of 611.9±1.7 Ma north of the virgation zone. The paleomagnetic data from the stratoid granites are complex and some sites, particularly in areas to the north of the virgation zone, may have been rotated about non-vertical axes following their emplacement and cooling. Because of these possible rotations, our best estimate for the paleomagnetic pole for Madagascar is derived from sites within the virgation zone. This pole falls at 6.7°S, 352.6°E (a95=14.2°). A post-metamorphic cooling history for the virgation zone indicates a magnetization age of 521.4±11.9 Ma. Our work in central Madagascar, coupled with previous studies, suggests that emplacement of the 630 Ma stratoid granites followed a collisional (?) tectonic event beginning around 650 Ma, recently recognized in southern Madagascar and in Tanzania. Subsequently, the stratoid granites in the Antananarivo virgation zone were reheated (∼750–800 °C) at pressures between 3.5 and 3.6 kbars resulting in a pervasive remagnetization. We suggest that the younger shear events are genetically related to collisional tectonics elsewhere during the final stages of Gondwana assembly and are a consequence of the Kuunga Orogeny further south.  相似文献   

11.
The Linzizong Group (64–44 Ma) of the Lhasa Terrane in Tibet is critically positioned for establishing the paleoposition of the southern leading edge of the Asian continent during Paleogene times and constraining onset of the India–Asia collision. Here we report paleomagnetic results from a collection comprising 384 drill-core samples from 34 sites embracing all three formations of this group. Comprehensive demagnetization and field tests isolate characteristic remanent magnetizations (ChRM) summarized by overall tilt-corrected formation-mean directions of D = 183.6°, I = −12.4° (α95 = 8.1°) for the Dianzhong (64–60 Ma), D = 1.0°, I = 18.1° (α95 = 8.1°) for the Nianbo (60–50 Ma), and D = 12.4°, I = 23.2° (α95 = 7.3°) for the Pana (50–44 Ma). Fold tests are positive in each formation suggesting a pre-folding origin and we interpret the magnetizations as quasi-primary and acquired at, or slightly later than, formation of the Linzizong Group. Revised Paleogene paleopoles with Ar–Ar age constraints for the Lhasa Terrane indicate that onset of the India–Asia collision occurred no later than ∼60.5 ± 1.5 Ma at a low paleolatitude of ∼10°N. Analysis of 60 site-mean observations from a range of studies of the Pana Formation in the higher part of the succession highlight a large dispersion of ChRM directions; a number of possible causes are suggested but further study of this formation over a wider area is required to resolve this issue.  相似文献   

12.
The sediments deposited on the northern margin of Greater India during the Paleocene allow the timing of collision with the Spontang Ophiolite, the oceanic Kohistan–Dras Arc and Eurasia to be constrained. U–Pb dating of detrital zircon grains from the Danian (61–65 Ma) Stumpata Formation shows a provenance that is typical of the Tethyan Himalaya, but with a significant population of grains from 129 ± 7 Ma also accounting for ∼15% of the total, similar to the synchronous Jidula Formation of south central Tibet. Derivation of these grains from north of the Indus Suture can be ruled out, precluding India’s collision with either Eurasia or the Kohistan–Dras before 61 Ma. Despite the immediate superposition of the Spontang Ophiolite, there are no grains in the Stumpata Formation consistent with erosion from this unit. Either Spontang obduction is younger than previously proposed, or the ophiolite remained submerged and/or uneroded until into the Eocene. The Mesozoic grains correlate well with the timing of ∼130 Ma volcanism in central Tibet, suggesting that this phase of activity is linked to extension across the whole margin of northern India linked to the separation of India from Australia and Antarctica at that time. Mesozoic zircons in younger sedimentary rocks in Tibet suggest a rapid change in provenance, with strong erosion from within or north of the suture zone starting in the Early Eocene following collision. We find no evidence for strongly diachronous collision from central Tibet to the western Himalaya.  相似文献   

13.
The N–S oriented Coastal Cordillera of South Central Chile shows marked lithological contrasts along strike at ∼38°S. Here, the sinistral NW–SE-striking Lanalhue Fault Zone (nomen novum) juxtaposes Permo-Carboniferous magmatic arc granitoids and associated, frontally accreted metasediments (Eastern Series) in the northeast with a Late Carboniferous to Triassic basal-accretionary forearc wedge complex (Western Series) in the southwest. The fault is interpreted as an initially ductile deformation zone with divergent character, located in the eastern flank of the basally growing, upwarping, and exhuming Western Series. It was later transformed and reactivated as a semiductile to brittle sinistral transform fault. Rb–Sr data and fluid inclusion studies of late-stage fault-related mineralizations revealed Early Permian ages between 280 and 270 Ma for fault activity, with subsequent minor erosion. Regionally, crystallization of arc intrusives and related metamorphism occurred between ∼306 and ∼286 Ma, preceded by early increments of convergence-related deformation. Basal Western Series accretion started at >290 Ma and lasted to ∼250 Ma. North of the Lanalhue fault, Late Paleozoic magmatic arc granitoids are nearly 100 km closer to the present day Andean trench than further south. We hypothesize that this marked difference in paleo-forearc width is due to an Early Permian period of subduction erosion north of 38°S, contrasting with ongoing accretion further south, which kinematically triggered the evolution of the Lanalhue Fault Zone. Permo-Triassic margin segmentation was due to differential forearc accretion and denudation characteristics, and is now expressed in contrasting lithologies and metamorphic signatures in todays Andean forearc region north and south of the Lanalhue Fault Zone.  相似文献   

14.
《Journal of Structural Geology》2001,23(6-7):1007-1013
The phenomenon of shear-heating is generally difficult to recognise from petrologic evidence alone. Establishing that shear zones attain higher temperatures than the surrounding country rocks requires independent evidence for temperature gradients. In the Musgrave Block, central Australia, there is a clear spatial association between shear zones and interpreted elevated temperatures. Eclogite facies shear zones that formed at ∼550 Ma record temperatures of ∼650–700°C. Outside the high-pressure shear zones, minerals with low closure temperatures such as biotite (∼450°C in the 40Ar–39Ar and Rb–Sr systems), preserve ages >800 Ma, suggesting that these rocks did not experience temperatures greater than about 450°C at ∼550 Ma for any extended period. Thus, the shear zones record temperatures that are ∼200°C higher than the surrounding country rocks. Simple calculations show that the combination of relatively high shear stresses (∼100 MPa) and high strain rates (∼10−11 s−1) for short durations (<1 Ma) can account for the observed apparent temperature variations. The evidence indicates that shear heating is the dominant mechanism for localised temperature increases in the shear zones, while the country rock remained at relatively lower temperatures.  相似文献   

15.
The Tan–Lu fault is a major strike-slip fault in eastern China that appears to offset the high-grade rocks of the Hong’an–Dabie–Sulu orogen left-laterally ∼540 km. We evaluate models for the collision between the South and North China blocks, published radiometric dates recording HP–UHP metamorphism and exhumation in the Hong’an–Dabie and Sulu terranes, and the timing of sinistral motion on the Tan–Lu fault to evaluate whether UHP rocks provide a piercing point for offset on the Tan–Lu fault. UHP metamorphism in Hong’an–Dabie was concurrent with Sulu based on U–Pb dating of coesite-bearing domains of zircon at 244 ± 5–226 ± 2 Ma for Hong’an–Dabie and 243 ± 4–225 ± 2 Ma for Sulu. Retrograde metamorphism began c. 220 Ma for both Hong’an–Dabie and Sulu, but retrograde zircon growth ended c. 214 Ma in Hong’an–Dabie and continued until c. 202 Ma in Sulu based on U–Pb dating of zircon domains external to coesite-bearing domains. Structures in Sulu are rotated 25° counter-clockwise from, but are broadly similar to, Hong’an–Dabie suggesting the two areas have a common Triassic orogenic history that pre-dates motion on the Tan–Lu fault, and that is consistent with paleomagnetic studies. We constructed a pre-Cretaceous restoration of the Hong’an–Dabie–Sulu belt that moves the Sulu terrane south, aligning the suture and the eclogite-facies isograd, and rotates Sulu c. 25° clockwise to re-align structures with Hong’an–Dabie. Our restoration is supported by published data and shows that the Hong’an–Dabie–Sulu orogen is a piercing point for post-collisional offset on the Tan–Lu fault and that these regions shared a common subduction–exhumation history. The Tan–Lu fault did not play a significant role in the Hong’an–Dabie–Sulu collision and likely developed later, in the Early Cretaceous.  相似文献   

16.
The Permian Solonker–Xar Moron River Suture in South Mongolia and Inner Mongolia of China represents a major tectonic boundary in Asia. The position of its eastward continuation in northeastern China has been debated for many years. In order to resolve this debate, we measured detrital zircons of the Cisuralian (Early Permian) plant fossil-bearing Hesheng Formation in the Yanbian area, Jilin Province. The detrital zircons have ages of ca. 2541–2535 Ma, 1897–1832 Ma, 458–452 Ma, and 390–280 Ma. We therefore conclude that the depositional age of the Hesheng Formation is younger than ca. 280 Ma; this is consistent with paleontologic data that indicates an Artinskian–Early Kungurian age. The presence of Neoarchean and Paleoproterozoic zircons suggests that the Hesheng Formation may have a North-China affinity; the absence of Neoproterozoic and Pan-African zircons preclude detrital sources from the Jiamusi–Mongolia Block during the Cisuralian. This, combined with the Permian floristic and stratigraphic data, provides a clue that the Solonker–Xar Moron River Suture likely extends to the Wangqing–Hunchun region, in eastern Jilin Province.  相似文献   

17.
We conducted paleomagnetic investigations on limestone from the Lower Carboniferous Huaitoutala Formation in the Qaidam Basin near Delingha City, Qinghai Province, China. The characteristic remanent magnetization (D = 5.8°, I =  25.7°, k = 114.3, α95 = 4.8°) passes a fold test and indicates a paleopole position of − 39.2°N, 90.4°E and a paleolatitude of 13.5°N for the Qaidam Block for the early Carboniferous. Based on global tectonic reconstructions and paleontological evidence, we suggest that the Qaidam Block was adjacent to, but independent from, the North China, South China, Alashan–Hexi and Tarim blocks at this time. This result suggests that Pre-Carboniferous sutures reported around the Qaidam Basin represent collisional events within Gondwana, rather than the final sutures that gave rise to the present tectonic configuration.  相似文献   

18.
Paleomagnetism has played an important role in quantifying the Mesozoic evolution of “Proto-Tibet”. In this paper, we present new paleomagnetic data from five Middle-Upper Jurassic sedimentary sequences (Quemo Co, Buqu, Xiali, Suowa and Xueshan Fms.) of the eastern North Qiangtang Terrane (QT) at Yanshiping (33.6°N, 92.1°E). The new paleomagnetic results form a large dataset (99 sites, 1702 samples) and reveal a paleopole at 79.1°N/306.9°E (dp = 3.9°, dm = 6.3°) for the Quemo Co Fm., at 68.9°N/313.8°E (dp = 2.1°, dm = 3.7°) for the Buqu Fm., at 66.1°N/332.1°E (dp = 2.7°, dm = 4.6°) for the Xiali Fm., at 72.4°N/318.6°E (dp = 3.9°, dm = 6.7°) for the Suowa Fm., and at 76.9°N/301.1°E (dp = 7.9°, dm = 13.2°) for the Xueshan Fm. These results indicate clockwise (CW) rotations of ~ 19.8 ± 9.4° between ~ 171.2 and 161.7 Ma and counterclockwise (CCW) rotations of ~ 15.4 ± 13.4° between ~ 161.7 and < 157.2 Ma for Yanshiping. We attribute the change in rotation sense at approximately ~ 161.7 Ma to the initial collision of the Lhasa and Qiangtang terranes. Using this and other paleomagnetic data from the Lhasa, Qiangtang and Tarim terranes, as well as other geological evidence (e.g., tectonism-related sedimentary sequences, volcanism, and HP metamorphism), we propose a new conceptual evolution model for the Mesozoic QT and Tethyan Oceans. The Longmo Co-Shuanghu oceanic slab was subducted before 248 Ma, followed by continental collision of the North-South Qiangtang subterranes between ~ 245 and 237 Ma. The Qiangtang Terrane experienced post-collisional exhumation between ~ 237 and 230 Ma during subduction of the Jinsha oceanic slab. The collision of the Qiangtang and Songpan-Ganzi terranes occurred between ~ 230 and 225 Ma. The QT experienced post-collisional relaxation from ~ 225 to ~ 200 Ma, followed by subsidence and extension-related exhumation between ~ 200 and 162 Ma in association with subduction of the Bangong-Nujiang oceanic slab. Finally, these events were followed by the scissor-like diachronous collisions of the Lhasa and Qiangtang terranes between ~ 162 Ma and the mid-Cretaceous.  相似文献   

19.
The paper presents the results of paleomagnetic and geochronological studies of the Late Paleozoic granites of the Angara-Vitim batholith as well as Vendian-Early Cambrian sedimentary rocks and Late Devonian subvolcanic rocks of the Patom margin of the Siberian Platform. Primary and metachronous magnetization in the rocks of the study region was used to calculate an Early Permian (~ 290 Ma) paleomagnetic pole, which is proposed as a reference pole for the Siberian Platform in paleomagnetic reconstructions, plotting of the apparent polar-wander path curve, and other magnetotectonic studies. The published and obtained paleomagnetic data and analysis of the geological data confirm the Late Paleozoic age of the final folding in the Baikal-Patom area. Possible causes of Late Paleozoic deformations and large-scale granite formation in the Baikal-Patom area and Transbaikalia in the Late Paleozoic are discussed.  相似文献   

20.
《Gondwana Research》2014,25(1):159-169
The Ediacaran–Early Ordovician interval is of great interest to paleogeographer's due to the vast evolutionary changes that occurred during this interval as well as other global changes in the marine, atmospheric and terrestrial systems. It is; however, precisely this time period where there are often wildly contradictory paleomagnetic results from similar-age rocks. These contradictions are often explained with a variety of innovative (and non-uniformitarian) scenarios such as intertial interchange true polar wander, true polar wander and/or non-dipolar magnetic fields. While these novel explanations may be the cause of the seemingly contradictory data, it is important to examine the paleomagnetic database for other potential issues.This review takes a careful and critical look at the paleomagnetic database from Baltica. Based on some new data and a re-evaluation of older data, the relationships between Baltica and Laurentia are examined for ~ 600–500 Ma interval. The new data from the Hedmark Group (Norway) confirms suspicions about possible remagnetization of the Fen Complex pole. For other Baltica results, data from sedimentary units were evaluated for the effects of inclination shallowing. In this review, a small correction was applied to sedimentary paleomagnetic data from Baltica. The filtered dataset does not demand extreme rates of latitudinal drift or apparent polar wander, but it does require complex gyrations of Baltica over the pole. In particular, average rates of APW range from 1.5° to 2.0°/Myr. This range of APW rates is consistent with ‘normal’ plate motion although the total path length (and its oscillatory nature) may indicate a component of true polar wander. In the TPW scenario, the motion of Baltica results in a back and forth path over the south pole between 600 and 550 Ma and again between 550 and 500 Ma. The rapid motion of Baltica over the pole is consistent with the extant database, but other explanations are possible given the relative paucity of high-quality paleomagnetic data during the Ediacaran–Cambrian interval from Baltica and other continental blocks.A sequence of three paleogeographic maps for Laurentia and Baltica is presented. Given the caveats involved in these reconstructions (polarity ambiguity, longitudinal uncertainty and errors), the data are consistent with geological models that posit the opening of the Iapetus Ocean around 600 Ma and subsequent evolution of the Baltica–Laurentia margin in the Late Ediacaran to Early Ordovician, but the complexity of the motion implied by the APWP remains enigmatic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号