首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Northeast (NE) China is characterized by large areas of Mesozoic and Paleozoic granitoids, whereas Cenozoic granitoids are scarce. This paper reports LA-ICP-MS zircon U–Pb ages and whole-rock geochemical data for late Paleocene–early Eocene granitoids from the Jiamusi Massif, NE China, in order to determine their petrogenesis and tectonic implications. Geochronological data indicate that the granodiorite and dioritic porphyry from the Wudingshan pluton formed at 51.5 ± 0.3 Ma and 56.3 ± 0.8 Ma, respectively. The biotite–quartz diorite, biotite granodiorite, and dioritic porphyry have high SiO2 (68.38–70.06 wt.%), Al2O3 (15.34–15.79 wt.%), and Na2O (3.96–4.49 wt.%) contents, low MgO contents (1.10–1.26 wt.%), A/CNK ratios of 0.99–1.11, and are classified as medium- to high-K calc-alkaline and weakly peraluminous I-type granitoids. They are enriched in LREEs and LILEs, and depleted in HFSEs, with Nb/Ta ratios of 10.4–15.0. Moreover, they have negative Nb–Ta–Ti anomalies, indicating that they were derived from continental crust. Combining with the previously published isotopic data and regional geological results, we suggest that the late Paleocene–early Eocene granitoids (56–52 Ma) were probably derived from partial melting of juvenile lower crust, and formed in an active continental margin setting, possibly related to subduction slab rollback of the Paleo-Pacific Plate.  相似文献   

2.
LA-ICP-MS zircon U–Pb ages and geochemical data are presented for the Mesozoic volcanic rocks in northeast China, with the aim of determining the tectonic settings of the volcanism and constraining the timing of the overprinting and transformations between the Paleo-Asian Ocean, Mongol–Okhotsk, and circum-Pacific tectonic regimes. The new ages, together with other available age data from the literature, indicate that Mesozoic volcanism in NE China can be subdivided into six episodes: Late Triassic (228–201 Ma), Early–Middle Jurassic (190–173 Ma), Middle–Late Jurassic (166–155 Ma), early Early Cretaceous (145–138 Ma), late Early Cretaceous (133–106 Ma), and Late Cretaceous (97–88 Ma). The Late Triassic volcanic rocks occur in the Lesser Xing’an–Zhangguangcai Ranges, where the volcanic rocks are bimodal, and in the eastern Heilongjiang–Jilin provinces where the volcanics are A-type rhyolites, implying that they formed in an extensional environment after the final closure of the Paleo-Asian Ocean. The Early–Middle Jurassic (190–173 Ma) volcanic rocks, both in the Erguna Massif and the eastern Heilongjiang–Jilin provinces, belong chemically to the calc-alkaline series, implying an active continental margin setting. The volcanics in the Erguna Massif are related to the subduction of the Mongol–Okhotsk oceanic plate beneath the Massif, and those in the eastern Jilin–Heilongjiang provinces are related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent. The coeval bimodal volcanic rocks in the Lesser Xing’an–Zhangguangcai Ranges were probably formed under an extensional environment similar to a backarc setting of double-direction subduction. Volcanic rocks of Middle–Late Jurassic (155–166 Ma) and early Early Cretaceous (145–138 Ma) age only occur in the Great Xing’an Range and the northern Hebei and western Liaoning provinces (limited to the west of the Songliao Basin), and they belong chemically to high-K calc-alkaline series and A-type rhyolites, respectively. Combined with the regional unconformity and thrust structures in the northern Hebei and western Liaoning provinces, we conclude that these volcanics formed during a collapse or delamination of a thickened continental crust related to the evolution of the Mongol–Okhotsk suture belt. The late Early Cretaceous volcanic rocks, widely distributed in NE China, belong chemically to a low- to medium-K calc-alkaline series in the eastern Heilongjiang–Jilin provinces (i.e., the Eurasian continental margin), and to a bimodal volcanic rock association within both the Songliao Basin and the Great Xing’an Range. The volcanics in the eastern Heilongjiang–Jilin provinces formed in an active continental margin setting related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent, and the bimodal volcanics formed under an extensional environment related either to a backarc setting or to delamination of a thickened crust, or both. Late Cretaceous volcanics, limited to the eastern Heilongjiang–Jilin provinces and the eastern North China Craton (NCC), consist of calc-alkaline rocks in the eastern Heilongjiang–Jilin provinces and alkaline basalts in the eastern NCC, suggesting that the former originated during subduction of the Paleo-Pacific Plate beneath the Eurasian continent, whereas the latter formed in an extensional environment similar to a backarc setting. Taking all this into account, we conclude that (1) the transformation from the Paleo-Asian Ocean regime to the circum-Pacific tectonic regime happened during the Late Triassic to Early Jurassic; (2) the effect of the Mongol–Okhotsk suture belt on NE China was mainly in the Early Jurassic, Middle–Late Jurassic, and early Early Cretaceous; and (3) the late Early Cretaceous and Late Cretaceous volcanics can be attributed to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent.  相似文献   

3.
Zircon U–Pb and Hf isotope data integrated in this study for magmatic and metamorphic rocks from the Hida Belt,southwest Japan,lead to a new understanding of the evolution of the Cordilleran arc system along the ancestral margins of present-day Northeast Asia.Ion microprobe data for magmatic zircon domains from eight mafic to intermediate orthogneisses in the Tateyama and Tsunogawa areas yielded weighted mean ~(206)Pb/~(238)U ages spanning the entire Permian period(302–254 Ma).Under cathodoluminescence,primary magmatic growth zones in the zircon crystals were observed to be partially or completely replaced by inward-penetrating,irregularly curved featureless or weakly zoned secondary domains that mostly yielded U–Pb ages of 250–240 Ma and relatively high Th/U ratios( 0.2).These secondary domains are considered to have been formed by solid-state recrystallization during thermal overprints associated with intrusions of Hida granitoids.Available whole-rock geochemical and Sr–Nd isotope data as well as zircon age spectra corroborate that the Hida Belt comprises the Paleozoic–Mesozoic Cordilleran arc system built upon the margin of the North China Craton,together with the Yeongnam Massif in southern Korea.The arc magmatism along this system was commenced in the Carboniferous and culminated in the Permian–Triassic transition period.Highly positive εHf(t) values( +12) of late Carboniferous to early Permian detrital zircons in the Hida paragneisses indicate that there was significant input from the depleted asthenospheric mantle and/or its crustal derivatives in the early stage of arc magmatism.On the other hand,near-chondritic εHf(t) values(+5 to-2) of magmatic zircons from late Permian Hida orthogneisses suggest a lithospheric mantle origin.Hf isotopic differences between magmatic zircon cores and the secondary rims observed in some orthogneiss samples clearly indicate that the zircons were chemically open to fluids or melts during thermal overprints.Resumed highly positive zircon εHf(t) values(+9) shared by Early Jurassic granitoids in the Hida Belt and Yeongnam Massif may reflect reworking of the Paleozoic arc crust.  相似文献   

4.
We report zircon U–Pb geochronologic and geochemical data for the post-collisional volcanic rocks from the Batamayineishan (BS) Formation in the Shuangjingzi area, northwestern China. The zircon U–Pb ages of seven volcanic samples from the BS Formation show that the magmatic activity in the study area occurred during 342–304 Ma in the Carboniferous. The ages also indicate that the Palaeo-Karamaili Ocean had already closed by 342 Ma. Moreover, the volcanic rocks also contained 10 inherited zircons with ages ranging from 565 to 2626 Ma, indicating that Precambrian continental crust or microcontinents with accretionary arcs are two possible interpretations for the basement underlying the East Junggar terrane. The sampled mafic-intermediate rocks belong to the medium-K to high-K calc-alkaline and shoshonitic series, and the formation of these rocks involved fractional crystallization with little crustal contamination. These Carboniferous mafic-intermediate rocks show depletions in Nb and Ta and enrichments in large ion lithophile elements (e.g. Rb, Ba, U, and Th) and light rare earth elements. The low initial 87Sr/86Sr values (0.7034–0.7042) and positive εNd(t) values (+2.63 to +6.46) of these rocks suggest that they formed from depleted mantle material. The mafic-intermediate rocks were most likely generated by 5–10% partial melting of a mantle source composed primarily of spinel lherzolite with minor garnet lherzolite that had been metasomatized by slab-derived fluids and minor slab melts. In contrast, the felsic rocks in the BS Formation are A-type rhyolites with positive εNd(t) values and young model ages. These rocks are interpreted to be derived from the partial melting of juvenile basaltic lower crustal material. Taken together, the mafic-intermediate rocks formed in a post-collisional extensional setting generated by slap breakoff in the early Carboniferous (342–330 Ma) and the A-type rhyolites formed in a post-collisional extensional setting triggered by the upwelling asthenosphere in the late Carboniferous (330–304 Ma).  相似文献   

5.
New U–Pb zircon data from metagranites and metavolcanic rocks of the Schist-Graywacke Complex Domain and the Schistose Domain of Galicia Tras-os-Montes Zone from central and NW Iberia contribute to constrain the timing of the Cambro-Ordovician magmatism from Central Iberian and Galicia Tras-os-Montes Zones which occurred between 498 and 462 Ma. The crystallization ages of the metagranites and metavolcanic rocks from the northern Schist-Graywacke Complex Domain are as follows: (a) in west Salamanca, 489 ± 5 Ma for Vitigudino, 486 ± 6 Ma for Fermoselle and 471 ± 7 Ma for Ledesma; (b) in northern Gredos, 498 ± 4 Ma for Castellanos, 492 ± 4 Ma for San Pelayo and 488 ± 3 Ma for Bercimuelle; (c) in Guadarrama, 490 ± 5 Ma for La Estación I, 489 ± 9 Ma for La Cañada, 484 ± 6 Ma for Vegas de Matute (leucocratic), 483 ± 6 Ma for El Cardoso, 482 ± 8 Ma for La Morcuera, 481 ± 9 Ma for Buitrago de Lozoya, 478 ± 7 Ma for La Hoya, 476 ± 5 Ma for Vegas de Matute (melanocratic), 475 ± 5 Ma for Riaza, 473 ± 8 Ma for La Estación II and 462 ± 11 Ma for La Berzosa; and (d) in Toledo, 489 ± 7 Ma for Mohares and 480 ± 8 Ma for Polán. The crystallization ages of the metagranites from the Schistose Domain of Galicia Tras-os-Montes Zone are 497 ± 6 Ma for Laxe, 486 ± 8 Ma for San Mamede, 482 ± 7 Ma for Bangueses, 481 ± 5 Ma for Noia, 480 ± 10 for Rial de Sabucedo, 476 ± 9 Ma for Vilanova, 475 ± 6 Ma for Pontevedra, 470 ± 6 Ma for Cherpa and 462 ± 8 Ma for Bande. This magmatism is characterized by an average isotopic composition of (87Sr/86Sr)485Ma ≈ 0.712, (εNd)485Ma ≈ ?4.1 and (TDM) ≈ 1.62 Ga, and a high zircon inheritance, composed of Ediacaran–Early Cambrian (65 %) and, to a lesser extent, Cryogenian, Tonian, Mesoproterozoic, Orosirian and Archean pre-magmatic cores. Combining our geochronological and isotopic data with others of similar rocks from the European Variscan Belt, it may be deduced that Cambro-Ordovician magmas from this belt were mainly generated by partial melting of Ediacaran–Early Cambrian igneous rocks.  相似文献   

6.
In eastern Thailand the Klaeng fault zone includes a high-grade metamorphic rock assemblage, named Nong Yai Gneiss, which extends about 30 km in a NW–SE direction along the fault zone. The rocks of this brittle-fault strand consist of amphibolite to granulite grade gneissic rocks. Structural analysis indicates that the rocks in this area experienced three distinct episodes of deformation (D1–D3). The first (D1) formed large-scale NW–SE-trending isoclinal folds (F1) that were reworked by small-scale tight to open folds (F2) during the second deformation (D2). D1 and D2 resulted from NE–SW shortening during the Triassic Indosinian orogeny before being cross-cut by leucogranites. D1 and D2 fabrics were then reworked by D3 sinistral shearing, including shear planes (S3) and mineral stretching lineations (L3). LA–MC–ICP–MS U–Pb zircon dating suggested that the leucogranite intrusion and the magmatic crystallization took place at 78.6 ± 0.7 Ma followed by a second crystallization at 67 ± 1 to 72.1 ± 0.6 Ma. Both crystallizations occurred in the Late Cretaceous and, it is suggested, were tectonically influenced by SE Asian region effects of the West Burma and Shan-Thai/Sibumasu collision or development of an Andean-type margin. The sinistral ductile movement of D3 was coeval with the peak metamorphism that occurred in the Eocene during the early phases of the India–Asia collision.  相似文献   

7.
8.
9.
10.
The Great Xing’an Range in Northeast China is located in the eastern part of the Central Asian Orogenic Belt. From north to south, the Great Xing’an Range is divided into the Erguna, Xing’an, and Songliao blocks. Previous U–Pb zircon geochronology results have revealed that some ‘Precambrian metamorphic rocks’ in the Xing’an block have Phanerozoic protolith ages, questioning whether Precambrian basement exists in the Xing’an block. We present laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb dating results for zircons from suspected Precambrian metamorphic rocks in the Xing’an block. Meta-rhyolites of the Xinkailing Group in Nenjiang yield magmatic ages of 355.8 Ma. Detrital zircons from phyllites of the Xinkailing Group in Duobaoshan yield populations of ca. 1505, ca. 810, and ca. 485 Ma, with the youngest peak constraining its depositional age to be <485 Ma. Zircons from amphibolitic gneisses of the Xinkailing Group in Nenjiang have magmatic ages of 308.6 Ma. Mylonitic granites of the Xinkailing Group in Nenjiang have zircon magmatic ages of 164 Ma. Detrital zircons from two-mica quartz schists of the Luomahu Group in the Galashan Forest yield ca. 2419, ca. 1789, ca. 801, ca. 536, ca. 480, and ca. 420 Ma, with the youngest peak indicating its depositional age as <420 Ma. Detrital zircons from mylonitized sericite–chlorite schist of the Ergunhe Formation in Taerqi yield populations of 982–948, ca. 519, and ca. 410 Ma, with the youngest peak demonstrating that its depositional age is <410 Ma. These zircon ages for a range of lithologies show that the Great Xing’an Range metamorphic rocks formed during the Phanerozoic (164–485 Ma) and that this crust is mostly Palaeozoic. Based on these results and published data, we conclude that there is no evidence of Precambrian metamorphic basement in the Xing’an block. In summary, the age data indicate that Precambrian metamorphic basement may not exist in the Xing’an region.  相似文献   

11.
HAO  NANA  YUAN  WANMING  ZHANG  AIKUI  FENG  YUNLEI  CAO  JIANHUI  CHEN  XIAONING  CHENG  XUEQIN  MO  XUANXUE 《Journal of Earth System Science》2015,124(1):171-196
Journal of Earth System Science - The East Kunlun Orogenic Belt has undergone a composite orogenic process consisting of multiple orogenic cycles and involving many types of magmatic rocks spread...  相似文献   

12.
U–Pb ages, trace elements, and Hf isotope compositions of zircons from the Mayuan migmatite complex in NW Fujian province have been determined to provide constraints on the source and genesis of anatexis and tectonothermal evolution related to the Caledonian orogeny in South China. The migmatites investigated consist of various amounts of mesosome, leucosome, and melansome. Zircons extracted from mesosome, leucosome, and granite samples are characterized by oscillatory overgrowths enclosing inherited cores or occur as newly grown grains. The ages of the inherited zircons from the leucosome and granite samples are consistent with those of adjacent basement paragneiss in the study area, suggesting that both leucosome and granite were generated by partial melting of the latter. A comparison of Hf isotopes between the newly-formed zircons and inherited cores indicates that the former resulted from the breakdown of preexisting inherited zircons and/or less Hf-rich minerals other than zircons at the source. One mesosome sample contains typical metamorphic zircons that yielded a weighted mean 206Pb/238U age of 453 ± 3 Ma. They show enrichments in heavy REEs (LuN/LaN up to 22,709), indicating their growth prior to garnet crystallization. The other mesosome sample, in contrast, contains both newly-formed metamorphic rims and grains that gave a weighted mean 206Pb/238U age of 442 ± 8 Ma. They are characterized by relatively low Th/U ratios, depletions in heavy REEs (LuN/LaN = 117–396), and low 176Lu/177Hf ratios, suggesting their growth synchronous with garnet crystallization. The U–Pb ages of the mesosome samples are interpreted as recording the time of early (ca. 453 Ma) to peak (442 Ma) stages of a regional metamorphic event. Two leucosome and two granite samples yield consistent U–Pb ages of 438 ± 5 Ma to 442 ± 4 Ma, which provide constraints on the timing of subsequent anatexis and magmatism. The geochronological data reported here reveal a consecutive sequence of regional metamorphism, anatexis, and magmatism in NW Fujian province, lasting for at least 15 Myr, which was driven by the Caledonian orogeny that have affected a major part of the SCB.  相似文献   

13.
《International Geology Review》2012,54(13):1666-1689
ABSTRACT

The Wulonggou area in the Eastern Kunlun Orogen (EKO) in Northwest China is characterized by extensive granitic magmatism, ductile faulting, and orogenic gold mineralizations. The Shidonggou granite is located in the central part of the Wulonggou area. This study investigated the major as well as trace-element compositions, zircon U–Pb dates, and zircon Hf isotopic compositions of the Shidonggou granite. Three Shidonggou granite samples yielded an average U–Pb zircon age of 416 Ma (Late Silurian). The Late Silurian Shidonggou granite is peraluminous, with high alkali contents, high Ga/Al ratios, high (K2O + Na2O)/CaO ratios, and high Fe2O3T/MgO ratios, suggesting an A-type granite. The Shidonggou granite samples have zircon εHf(t) values ranging from ?7.1 to +4.4. The Hf isotopic data suggest that the Late Silurian granite was derived from the partial melting of Palaeo- to Mesoproterozoic juvenile mantle-derived mafic lower crust. Detailed geochronological and geochemical data suggest that the Late Silurian granite was emplaced in a post-collisional environment following the closure of the Proto-Tethys Ocean. Combining data of other A-type granitic rocks with ages of Late Early Silurian to Middle Devonian, such post-collisional setting related to the Proto-Tethys Ocean commenced at least as early as ~430 Ma (Late Early Silurian), and sustained up to ~389 Ma (Middle Devonian) in the EKO.  相似文献   

14.
15.
Liu  Shen  Feng  Caixia  Fan  Yan  Chen  Xiaoqing  Yang  Yuhong  Zhao  Huibo  Coulson  Ian M. 《中国地球化学学报》2020,39(6):862-886
Acta Geochimica - This work reports an important episode of extensional, mafic magmatism that impacted the North China Craton (NCC) during the Permo-Triassic and influenced the evolution of this...  相似文献   

16.
Nd model ages(TDM) of the Pre-Mesozoic crustal rock samples from Southeast China range from 1.2 to 3.5Ga.Two age peaks of 1.4Ga and 1.8 Ga are observed in the histogram of TDM model ages.Available U-Pb zircon inheritance ages are concentrated around 1.2-1.4Ga,1.8Ga and 2.5Ga,respectively.The combined use of Sm-Nd and U-Pb zircon inheritance ages suggests that the formation of the Precambrian curst is of episodic character.The oldest crustal nucleus may have been formed during the Late Archean(2.5Ga or older?).A rapid production of the crust took place 1.8 Ga ago,consistent with the global crust formation event at 1.7-1.9Ga.Another important episode of the addition of juvenile crustal material from the mantle in Southeast China took place 1.2-1.4Ga ago,during which the pre-existing crust was strongly reworked and/or remelted.  相似文献   

17.
International Journal of Earth Sciences - Several Proterozoic basement units crop out in the Sonora State of NW Mexico, and the same can be correlated with crustal provinces of southern Laurentia...  相似文献   

18.
Granitic leucosome and pegmatite are widely distributed within biotite-bearing orthogneiss in the northern part of the Sulu ultrahigh-pressure (UHP) metamorphic terrane, eastern China. A combined study of mineral inclusions, cathodoluminescence (CL) images, U–Pb SHRIMP dates, and in situ trace element and Lu–Hf isotope analyses of zircons provided insight into the nature and timing of partial melting in these rocks. Zircon grains separated from biotite-bearing orthogneiss typically have three distinct domains: (1) pre-metamorphic (magmatic) cores with Qtz + Kfs + Pl + Ap inclusions, which record a Neoproterozoic protolith age of ~ 790 Ma, (2) mantles with Coe + Phe + Ap inclusions that record Triassic UHP age at 227 ± 3 Ma, and (3) narrow rims with quartz inclusions that record HP granulite-facies retrograde metamorphism at ~ 210 ± 3 Ma. In contrast, zircons separated from granitic leucosome have only two distinct domains: (1) the central UHP areas with Coe + Phe + Ap inclusions record Triassic UHP age of 227 ± 3 Ma, and (2) outer magmatic areas with Qtz + Kfs + Ab + Ap inclusions that record partial melting time of 212 ± 2 Ma. Zircons separated from pegmatite contain mineral inclusions of Qtz + Kfs + Ap and show regular magmatic zoning from centre to edge. The centres record partial melting time of 212 ± 2 Ma in line with the outer domains of granitic leucosome, whereas the edges give a younger age of 201 ± 2 Ma related to Pb loss and partial recrystallization during late Triassic regional amphibolite-facies retrogression. These data indicate that partial melting in the north Sulu UHP gneissic rocks took place during post-UHP, retrograde HP granulite-facies metamorphism.Pre-metamorphic (magmatic) zircon cores from biotite-bearing orthogneiss give uniform 176Hf/177Hf of 0.28187 ± 0.00003 (2 SD; standard deviation) corresponding to εHf(790) and Hf model ages (TDM2) of about ? 16.3 and 2.41 Ga, respectively. This is consistent with the generation of its protolith by reworking of Paleoproterozoic to late Archean crust. In contrast, UHP zircon domains from biotite-bearing orthogneiss and granitic leucosome are characterized by distinct trace element composition with low Lu/Hf (< 0.006), low Th/U (< 0.1) and considerably higher, 176Hf/177Hf (0.28233 ± 0.00002; 2 SD) than the pre-metamorphic cores. The uniform but significantly different Hf isotope composition between the UHP (εHf(227) = ? 14.6 ± 0.8; 2 SD) and pre-metamorphic (εHf(227) = ? 27.7) domains indicates equilibration of the Lu–Hf isotope system only within the UHP metamorphic mineral assemblage. The disequilibrium between whole rock and UHP zircon suggests that about two thirds of the whole rock Hf retained in the pre-metamorphic zircon domains. Zircon domains crystallized during partial melting at 212 Ma in granitic leucosome and pegmatites have a Hf isotope composition indistinguishable from that of the UHP zircon domains. This suggests that only Hf (and Zr) equilibrated during UHP metamorphism was remobilized during partial melting while pre-metamorphic zircon remained stable or was not accessible. In contrast, the magmatic zircon edges from pegmatite have somewhat lower 176Hf/177Hf (~ 0.28216) and εHf(t) (? 17.6 ± 1.2; 2 SD) indicating some release of less radiogenic Hf for instance by dissolution of pre-metamorphic zircon during late regional amphibolite-facies retrogression.  相似文献   

19.
Porphyritic granitoids that host the Sangan iron mine deposit belong to the Khaf–Kashmar–Bardaskan volcanoplutonic belt in northeastern Iran. These intrusive rocks, mostly quartz monzonite to syenogranite porphyries, have been divided into three groups on the basis of crosscutting relationships and zircon U–Pb dating: (1) group 1, 42.3 ± 0.8 Ma, (2) group 2, 40.0 ± 0.5 Ma, and (3) group 3, 39.2 ± 0.6 Ma. The group 1 and 2 rocks host magnetite mineralization, whereas the group 3 intrusions are interpreted as syn-mineralization. They have features typical of high-K alkali-calcic to calc-alkalic magnesian rocks and are metaluminous to weakly peraluminous formed in a volcanic arc setting. Mantle-normalized, trace-element spider diagrams display enrichment in large ion lithophile elements, such as Rb, Ba, K, and Cs, and depletion in high field strength elements, e.g., Nb, Ti, Ta, Zr, Y, and heavy rare earth elements, with moderate to strong light rare earth elements enrichment ((La/Yb)N = 24.8–7.6) and a negative Eu anomaly. The parental magmas are probably derived from partial melting of mantle that had been metasomatized by a slab-derived fluid. During the upward migration of these melts, additional input of crustal materials could account for the high K characteristic for most of the intrusive rocks around the Sangan mine area.Textural evidence and mineral assemblages indicate the Sangan Fe-skarn is an oxidized magmatic-hydrothermal system caused by the group 3 intrusions.  相似文献   

20.
A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in north Sanjiang orogenic belt, which are the Jomda–Weixi magmatic belt, the Yidun magmatic belt and the Northeast Lhasa magmatic belt, yield abundant data that demonstrate multiphase magmatism took place during the late Paleozoic to early Mesozoic. 9 new zircon LA–ICP–MS U–Pb ages and 160 published geochronological data have identified five continuous episodes of magma activities in the NSOB from the Late Paleozoic to Mesozoic: the Late Permian to Early Triassic (c. 261–230 Ma); the Middle to Late Triassic (c. 229–210 Ma); the Early to Middle Jurassic (c. 206–165 Ma); the Early Cretaceous (c. 138–110 Ma) and the Late Cretaceous (c. 103–75 Ma). 105 new and 830 published geochemical data reveal that the intrusive rocks in different episodes have distinct geochemical compositions. The Late Permian to Early Triassic intrusive rocks are all distributed in the Jomda–Weixi magmatic belt, showing arc–like characteristics; the Middle to Late Triassic intrusive rocks widely distributed in both Jomda–Weixi and Yidun magmatic belts, also demonstrating volcanic–arc granite features; the Early to Middle Jurassic intrusive rocks are mostly exposed in the easternmost Yidun magmatic belt and scattered in the westernmost Yangtza Block along the Garzê–Litang suture, showing the properties of syn–collisional granite; nearly all the Early Cretaceous intrusive rocks distributed in the NE Lhasa magmatic belt along Bangong suture, exhibiting both arc–like and syn–collision–like characteristics; and the Late Cretaceous intrusive rocks mainly exposed in the westernmost Yidun magmatic belt, with A–type granite features. These suggest that the co–collision related magmatism in Indosinian period developed in the central and eastern parts of NSOB while the Yanshan period co–collision related magmatism mainly occurred in the west area. In detail, the earliest magmatism developed in late Permian to Triassic and formed the Jomda–Wei magmatic belt, then magmatic activity migrated eastwards and westwards, forming the Yidun magmatic bellt, the magmatism weakend at the end of late Triassic, until the explosure of the magmatic activity occurred in early Cretaceous in the west NSOB, forming the NE Lhasa magmatic belt. Then the magmatism migrated eastwards and made an impact on the within–plate magmatism in Yidun magmatic belt in late Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号