首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, a period analysis of the late-type eclipsing binary VV UMa is presented. This work is based on the periodic variation of eclipse timings of the VV UMa binary. We determined the orbital properties and mass of a third orbiting body in the system by analyzing the light-travel time effect. The O−C diagram constructed for all available minima times of VV UMa exhibits a cyclic character superimposed on a linear variation. This variation includes three maxima and two minima within approximately 28,240 orbital periods of the system, which can be explained as the light-travel time effect (LITE) because of an unseen third body in a triple system that causes variations of the eclipse arrival times. New parameter values of the light-time travel effect because of the third body were computed with a period of 23.22 ± 0.17 years in the system. The cyclic-variation analysis produces a value of 0.0139 day as the semi-amplitude of the light-travel time effect and 0.35 as the orbital eccentricity of the third body. The mass of the third body that orbits the eclipsing binary stars is 0.787 ± 0.02 M, and the semi-major axis of its orbit is 10.75 AU.  相似文献   

2.
Gao W  Li Z  Wu X  Zhang Z  Li Y 《The Astrophysical journal》1999,527(1):L55-L58
We report the photometry of a peculiar SU Ursae Majoris-type dwarf nova, ER Ursae Majoris, for 10 nights during 1998 December and 1999 March, covering a complete rise to the supermaximum and a normal outburst cycle. Superhumps have been found during the rise to the superoutburst. A negative superhump appeared in the December 22 light curve, while the superhump on the next night became positive and had a large-amplitude waveform distinct from that of the previous night. In the normal outbursts we captured, superhumps with larger or smaller amplitudes seem to always exist, although it is not necessarily true for every normal outburst. These results show great resemblance to V1159 Ori. It is more likely that superhumps occasionally exist at essentially all phases of the eruption cycles of ER UMa stars, which should be considered in modeling.  相似文献   

3.
4.
The relation between period and spectral type is examined for 33 W Ursae Majoris stars for which accurate observations have enabled us to clearly classify their eclipse types at the primary minimum (transit (A) or occultation (W)). About a half of the examined stars are of A-type, and the rest correspond to W-type. Periods of W-type systems are found to fall within 0.25–0.5 days, while periods of A-type systems range between 0.25–0.9 days. For A-type systems certain period-spectral type relations seem to hold, but for W-type systems no definite relation could be found. Statistically, a W Ursae Majoris star will undergo a period change every ~17000 cycles, on the average, and a time scale for the period change (d lnP/dt)?1 is estimated to be about 106 years.  相似文献   

5.
Theoretical study indicates that a contact binary system would merge into a rapidly rotating single star due to tidal instability when the spin angular momentum of the system is more than a third of its orbital angular momentum. Assuming that W Ursae Majoris (W UMa) contact binary systems rigorously comply with the Roche geometry and the dynamical stability limit is at a contact degree of about 70 per cent, we obtain that W UMa systems might suffer Darwin's instability when their mass ratios are in a region of about 0.076–0.078 and merge into the fast-rotating stars. This suggests that the W UMa systems with mass ratio   q ≤ 0.076  cannot be observed. Meanwhile, we find that the observed W UMa systems with a mass ratio of about 0.077, corresponding to a contact degree of about 86 per cent would suffer tidal instability and merge into the single fast-rotating stars. This suggests that the dynamical stability limit for the observed W UMa systems is higher than the theoretical value, implying that the observed systems have probably suffered the loss of angular momentum due to gravitational wave radiation (GR) or magnetic stellar wind (MSW).  相似文献   

6.
A total of 311 BVRI observations were carried out on 4 May 2013 for the new short period W UMa system 1SWASP J133105.91 + 121538.0 using the 1.88 m reflector telescope of Kottamia Astronomical Observatory (KAO) at NRIAG. A photometric solution of these light curves was obtained by means of Wilson–Devinney (WD) code. A spotted model was applied to treat the asymmetry of the light curve. The results show that the more massive component is hotter than the less massive one with about ΔT  300 K. The system is at a distance of 89 ± 3.6 pc. Based on the physical parameters of the system, we investigate the evolutionary state of the components. Both components are above the zero age main sequence (ZAMS) track by about 0.2 magnitudes.  相似文献   

7.
In a previous paper, using Eggleton's stellar evolution code, we have discussed the structure and evolution of low-mass W Ursae Majoris (W UMa) type contact binaries with angular momentum loss owing to gravitational radiation or magnetic braking. We find that gravitational radiation is almost insignificant for cyclic evolution of low-mass W UMa type systems, and it is possible for angular momentum to be lost from W UMa systems in a magnetic stellar wind. The weaker magnetic activity shown by observations in W UMa systems is likely caused by the lower mass of the convective envelopes in these systems than in similar but non-contact binaries. The spin angular momentum cannot be neglected at any time for W UMa type systems, especially for those with extreme mass ratios. The spin angular momenta of both components are included in this paper and they are found to have a significant influence on the cyclic evolution of W UMa systems. We investigate the influence of the energy transfer on the common convective envelopes of both components in detail. We find that the mass of the convective envelope of the primary in contact evolution is slightly more than that in poor thermal contact evolution, and that the mass of the convective envelope of the secondary in contact evolution is much less than that in poor thermal contact evolution. Meanwhile, the rate of angular momentum loss of W UMa type systems is much lower than that of poor thermal contact systems. This is indeed caused by the lower masses of the convective envelopes of the components in W UMa type systems. Although the models with angular momentum loss for W UMa systems exhibit cyclic evolution, they seem to show that a W UMa system cannot continue this type of cyclic evolution indefinitely, and it might coalesce into a fast-rotating star after about 1200 cycles of evolution (about  7.0 × 109 yr  ).  相似文献   

8.
We obtained complete V and Rc light curves of the eclipsing binary V380 Gem in 2012. With our data we were able to determine six new times of minimum light and refine the orbital period of the system to 0.3366088 days. The 2003 version of the Wilson–Devinney code was used to analyze the light curves in the V and Rc bands simultaneously. It is shown that V380 Gem may be classified as an W-type W Ursae Majoris system with a high mass ratio q = 1.45, a degree of contact f = 10.6% the same temperature for both the components (ΔT = 10 K) and an orbital inclination of i  = 81.5°. Our observations show symmetric light curves in all passbands with brightness in both maxima at the same level. The absolute dimensions of V380 Gem are estimated and its dynamical evolution is inferred.  相似文献   

9.
We report on time-resolved photometry carried out during the 1995 short outburst and the 1997 long outburst in the eclipsing dwarf nova DV UMa. The revised orbital period is 0.0858526172 (67) d. We detected gigantic superhumps with an amplitude of ∼0.6 mag in the mid-phase of the 1997 outburst, revealing the SU UMa nature of DV UMa. The superhump period is 0.0887 (4) d. The superhumps became less clear during the late phase of the superoutburst, and we found two possible periods of 0.0885 (15) and 0.0764 (15). During both outbursts, the eclipse was wide and shallow near the maximum, and then became narrower and deeper, which is qualitatively well explained by the current disc instability theory.  相似文献   

10.
Well-determined physical parameters of 130 W Ursae Majoris (W UMa) systems were collected from the literature. Based on these data, the evolutionary status and dynamical evolution of W UMa systems are investigated. It is found that there is no evolutionary difference between W- and A-type systems in the   M – J   diagram, which is consistent with the results derived from the analysis of observed spectral type and of   M – R   and   M – L   diagrams of W UMa systems.   M – R   and   M – L   diagrams of W- and A-type systems indicate that a large amount of energy should be transferred from the more massive to the less massive component, so that they are not in thermal equilibrium and undergo thermal relaxation oscillation. Moreover, the distribution of angular momentum, together with the distribution of the mass ratio, suggests that the mass ratio of the observed W UMa systems decreases with decreasing total mass. This could be the result of the dynamical evolution of W UMa systems, which suffer angular momentum loss and mass loss as a result of the magnetic stellar wind. Consequently, the tidal instability forces these systems towards lower q values and finally to rapidly rotating single stars.  相似文献   

11.
《Planetary and Space Science》2007,55(9):1126-1134
We present the results of a spectral study of the soft X-ray emission (0.2–2.5 keV) from low-latitude (‘disk’) regions of Jupiter. The data were obtained during two observing campaigns with XMM-Newton in April and November 2003. While the level of the emission remained approximately the same between April and the first half of the November observation, the second part of the latter shows an enhancement by about 40% in the 0.2–2.5 keV flux. A very similar, and apparently correlated increase, in time and scale, was observed in the solar X-ray and EUV flux.The months of October and November 2003 saw a period of particularly intense solar activity, which appears reflected in the behavior of the soft X-rays from Jupiter's disk. The X-ray spectra, from the XMM-Newton EPIC CCD cameras, are all well fitted by a coronal model with temperatures in the range 0.4–0.5 keV, with additional line emission from Mg XI (1.35 keV) and Si XIII (1.86 keV): these are characteristic lines of solar X-ray spectra at maximum activity and during flares.The XMM-Newton observations lend further support to the theory that Jupiter's disk X-ray emission is controlled by the Sun, and may be produced in large part by scattering, elastic and fluorescent, of solar X-rays in the upper atmosphere of the planet.  相似文献   

12.
This paper presents charge-couple device (CCD) photometric observations for the eclipsing binary AW UMa. The V-band light curve in 2007 was analyzed using the 2003 version of the Wilson–Devinney code. It is confirmed that AW UMa is a total eclipsing binary with a higher degree of contact f=80.2% and a lower mass ratio of q=0.076. From the (OC) curve, the orbital period shows a continuous period decrease at a rate of dP/dt=−2.05×10−7 d yr−1. The long-term period decrease suggested that AW UMa is undergoing the mass transfer from the primary component to the secondary one, accompanied by angular momentum loss due to mass outflow L 2. Weak evidence indicates that there exists a cyclic variation with a period of 17.6 yr and a small amplitude of A=0. d 0019, which may be attributed to the light-time effect via the third body. If the existence of an additional body is true, it may remove a great amount of angular momentum from the central system. For this kind of contact binary, as the orbital period decreases, the shrinking of the inner and outer critical Roche lobes will cause the contact degree f to increase. Finally, this kind of binary will merge into a single rapid-rotation star.  相似文献   

13.
In this work we present an active Compton scattering polarimeter as a focal plane instrument able to extend the X-ray polarimetry towards hard X-rays.Other authors have already studied various instrument design by means of Monte Carlo simulations, in this work we will show for the first time the experimental measurements of “tagging efficiency” aimed to evaluate the polarimeter sensitivity as a function of energy. We performed a characterization of different scattering materials by measuring the tagging efficiency that was used as an input to the Monte Carlo simulation. Then we calculated the sensitivity to polarization of a design based on the laboratory set-up. Despite the geometry tested is not optimized for a realistic focal plane instrument, we demonstrated the feasibility of polarimetry with a low energy threshold of 20 keV. Moreover we evaluated a minimum detectable polarization of 10% for a 10 mCrab source in 100 ks between 20 and 80 keV in the focal plane of one multilayer optics module of NuSTAR. The configuration used consisted of a doped p-terphenyl scatterer 3 cm long and 0.7 cm of diameter coupled with a 0.2 cm thick LaBr3 absorber.  相似文献   

14.
We present an analysis of the long-term evolution of outbursts in the neutron star soft X-ray transient GRS 1747–312. Observations taken from ASM/RXTE, in the 1.5–12 keV passband, are utilized. We reveal a cyclic behavior in the residuals of the outburst recurrence time with respect to the mean value of TC = 136 ± 2 days. The profile of this cycle is approximately sinusoidal; the remaining cycle-to-cycle fluctuations possess a considerably smaller amplitude. We find that, although the peak flux of the outbursts displays a significant scatter at a given phase of the cycle, the most luminous outbursts occur after the longest TC. The fluence displays a large scatter for the individual outbursts and tends to decrease with time. We argue that although the cycle-length of ~5.4 yr is compatible with that of the presumed magnetic activity of the late-type donor, it cannot be explained by variations of the mass outflow from the donor to the disk. In our interpretation, the stellar activity is translated to variations of TC via interaction of the magnetic field of the spots on the donor with the magnetic field of the disk. This gives rise to a variable efficiency of the removal of the angular momentum from the quiescent disk during the activity cycle of the donor. This mechanism can be strengthened by accompanying variations of the radius of the optically thin advection-dominated accretion flow in quiescence. We show that the peak mass accretion rate onto the neutron star in the individual outbursts of GRS 1747–312 is considerably more stable than in two other similar systems with frequent outbursts, Aql X-1 and 4U 1608–52; this allows the cyclic modulation of TC to show itself in GRS 1747–312.  相似文献   

15.
We present CCD photometric observations of the W UMa type contact binary EK Comae Berenices using the 2 m telescope of IUCAA Girawali Observatory, India. The star was classified as a W UMa type binary of subtype-W by Samec et al. (1996). The new V band photometric observations of the star reveal that shape of the light curve has changed significantly from the one observed by Samec et al. (1996). A detailed analysis of the light curve obtained from the high-precision CCD photometric observations of the star indicates that EK Comae Berenices is not a W-type but an A-type totally eclipsing W UMa contact binary. The photometric mass ratio is determined to be 0.349 ± 0.005. A temperature difference of ΔT = 141 ± 10 K between the components and an orbital inclination of i[°] = 89.800 ± 0.075 were obtained for the binary system. Absolute values of masses, radii and luminosities are estimated by means of the standard mass-luminosity relation for zero age main-sequence stars. The star shows O’Connell effect, asymmetries in the light curve shape around the primary and secondary maximum. The observed O’Connell effect is explained by the presence of a hot spot on the primary component.  相似文献   

16.
We present the 2005–2010 outburst history of the SU UMa-type dwarf HS 0417+7445, along with a detailed analysis of extensive time-series photometry obtained in March 2008 during the second recorded superoutburst of the system. The mean outburst interval is 197 ± 59 d, with a median of 193 d. The March 2008 superoutburst was preceded by a precursor outburst, had an amplitude of 4.2 magnitudes, and the whole event lasted about 16 days. No superhumps were detected during the decline from the precursor outburst, and our data suggests instead that orbital humps were present during that phase. Early superhumps detected during the rise to the superoutburst maximum exhibited an unusually large fractional period excess of ? = 0.137 (Psh = 0.0856(88) d). Following the maximum, a linear decline in brightness followed, lasting at least 6 days. During this decline, a stable superhump period of Psh = 0.07824(2) d was measured. Superimposed on the superhumps were orbital humps, which allowed us to accurately measure the orbital period of HS 0417+7445, Porb = 0.07531(8) d, which was previously only poorly estimated. The fractional superhump period excess during the main phase of the outburst was ? = 0.037, which is typical for SU UMa dwarf novae with similar orbital period. Our observations are consistent with the predictions of the thermal-tidal instability model for the onset of superoutbursts, but a larger number of superoutbursts with extensive time-series photometry during the early phases of the outburst would be needed to reach a definite conclusion on the cause of superoutbursts.  相似文献   

17.
The ionization yield in a two-phase liquid xenon dark-matter detector has been studied in keV nuclear recoil energy region. The newly obtained nuclear quenching as well as the average energy required to produce an electron–ion pair from the measurement in Seguinot (1992) are used to calculate the total electric charges produced. To estimate the fraction of the electron charges collected, the Thomas-Imel model is generalized to describe the field dependence for nuclear recoils in liquid xenon. With free parameters fitted to experimentally measured 56.5 keV nuclear recoils, the energy dependence of ionization yield for nuclear recoils is predicted, which increases as recoil energy decreases and reaches the maximum value at 2∼3 keV. This prediction agrees well with existing data and may help to lower the energy detection threshold for nuclear recoils to ∼1 keV.  相似文献   

18.
《New Astronomy Reviews》2000,44(7-9):511-517
The width of the broad Hβ emission line is the primary defining characteristic of the NLS1 class. This parameter is also an important component of Boroson and Green’s optical “Eigenvector 1” (EV1), which links steeper soft X-ray spectra with narrower Hβ emission, stronger Hβ blue wing, stronger optical Fe II emission, and weaker [O III] λ5007. Potentially, EV1 represents a fundamental physical process linking the dynamics of fueling and outflow with the accretion rate. We attempted to understand these relationships by extending the optical spectra into the UV for a sample of 22 QSOs with high quality soft-X-ray spectra, and discovered a whole new set of UV relationships that suggest that high accretion rates are linked to dense gas and perhaps nuclear starbursts. While it has been argued that narrow (BLR) Hβ means low Black Hole mass in luminous NLS1s, the C IV λ1549 and Lyα emission lines are broader, perhaps the result of outflows driven by their high Eddington accretion rates. We present some new trends of optical-UV with X-ray spectral energy distributions. Steeper X-ray spectra appear associated with stronger UV relative to optical continua, but the presence of strong UV absorption lines is associated with depressed soft X-rays and redder optical–UV continua.  相似文献   

19.
A study of the orbital period variation of the W UMa system CK Bootis is made using an extended observational time base. The biperiodicity of the orbital period modulation is emphasized. Both detected periodicities (24.14 yr and 10.62 yr) cannot be explained through the light-time effect unless the companion would be a white dwarf as suggested by other authors, too. Moreover, we also argue that, nowadays at least, it seems that there is no causal relation between the orbital period variation and the recently discovered visual companion. Consequently, we infer that at least one of the two periodicities may be related to the magnetic activity cycles in the component stars of CK Boo, while the other periodicity could be related to the presence of a fourth companion in the system.  相似文献   

20.
We present a new set of CCD photometric observations for the short period eclipsing binary 1SWASP J1743 (= V1067 Her). We have determined the available times of light minima and two new linear and quadratic ephemerides have been obtained. The photometric solutions for the system have been performed using Wilson and Devinney Code. The 3D and fill out configuration revealed that V1067 Her is an over contact W UMa binary with relatively low fill-out factor of about 16%.We investigated the period variation for the system. It showed a strong evidence of period changes by using the (O-C) residual diagram method and we have concluded long-term orbital period decrease rate dP/dt= −3.0 × 107 d/yr, corresponding to a time scale 8.6 × 105 yr. Such period decrease in the A-type W UMa systems is usually interpreted to be due to mass transfer from the more to the less massive component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号