首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detrital mode, composition of feldspars and heavy minerals, and major element chemistry of sandstones from the Permo-Triassic succession in the intracratonic Satpura Gondwana basin, central India have been used to investigate provenance. The Talchir Formation, the lowermost unit of the succession, comprises glacio-marine and glacio-fluvial deposits. The rest of the succession (base to top) comprising the Barakar, Motur, Bijori, Pachmarhi and Denwa formations, largely represent variety of fluvial depositional systems with minor fluvio-deltaic and fluvio-lacustrine sedimentation under a variety of climatic conditions including cold, warm, arid, sub-humid and semi-arid. QFL compositions of the sandstones indicate a predominantly continental block provenance and stable cratonic to fault-bounded basement uplift tectonic setting. Compositional maturity of sandstones gradually increases upwards from the Early Permian Talchir to the Middle Triassic Denwa but is punctuated by a sharp peak of increased maturity in the Barakar sandstones. This temporal change in maturity was primarily controlled by temporal variation in fault-induced basement uplift in the craton and was also influenced by climatic factors. Plots of different quartz types suggest plutonic source rocks for the Talchir sandstones and medium-to high-rank metamorphic plus plutonic source rocks for the younger sandstones. Composition of alkali feldspars in the Permo-Triassic sandstones and in different Precambrian rocks suggests sediment derivation from felsic igneous and metasedimentary rocks. Compositions of plagioclase in the Talchir and Bijori sandstones are comparable with those of granite, acid volcanic and metasedimentary rocks of the Precambrian basement suggesting the latter as possible source. Rare presence of high-K plagioclase in the Talchir sandstones, however, indicates minor contribution from volcanic source rock. Exclusively plagioclase-bearing metasedimentary rock, tonalite gneiss and mafic rocks are the probable sources of plagioclase in the Upper Denwa sandstones. Quartz-rich nature of the sandstones, predominance of K-feldspar over plagioclase and albite rich character of plagioclase in the sandstones is consistent with deposition in an intracratonic, pull-apart basin like the Satpura Gondwana basin. Composition of garnet and its comparison with that from the Precambrian basement rocks suggests mica-schist and amphibolite as possible sources. Predominance of dravite variety of tourmaline in the Permian sandstones suggests sediment supply from metasedimentary rocks. Presence of both dravite and schorl variety of tourmaline in subequal amount in the Triassic sandstones indicates sediment derivation from granitic and metasedimentary rocks. However, schorl-bearing rocks are absent in the basement complex of the study area. A-CN-K plot suggests granites, acid volcanic rock and meta-sediments of the basement as possible sources of the Talchir sandstones and metasedimentary rocks for the Barakar to Pachmarhi sandstones. The Denwa sandstones were possibly derived from K-feldspar-free, plagioclase-bearing metasediments, mafic rocks and tonalite gneiss. Chemical Index of Alteration (CIA) values suggest low intensity source rock weathering for the Talchir sandstones and higher intensity source rock weathering for the others. Various bivariate plots of major oxides composition of the sandstones suggest passive to active continental margin setting and even arc tectonic setting for a few samples.  相似文献   

2.
ABSTRACT

Zircons from Carboniferous sandstones (three samples) and Mid-Late Triassic sandstones (four samples) from the Tauride and Anatolide continental units were analysed for U-Pb-Hf isotopes. For comparison, zircons were also analysed from Carboniferous granites of the Afyon Zone, Anatolides (three samples). A NE African/Arabian source is inferred for both the Carboniferous sandstones of the Taurides (Alada?) and the Anatolides (Konya Complex). In contrast, the Carboniferous Karaburun Melange is characterised by a NW African provenance. A prominent Devonian population occurs in the Carboniferous Karaburun Melange, characterised by mainly positive εHf(t) values that differ significantly from those of the Devonian granites of the Sakarya continental crustal unit (Pontides). Middle-Late Triassic Tauride sandstones include minor Palaeozoic and Early Mesozoic zircons. In contrast, Devonian and Carboniferous zircons are relatively abundant in Late Triassic sandstones of the Karaburun Peninsula. The Hf isotopic compositions of 25 Carboniferous-aged zircons from three samples of Mid-Late Triassic sandstone and one of Late Carboniferous age (one sample) overlap with the εHf(t) values of Carboniferous arc-type granites in the Anatolides. Taking account of the available U-Pb and Lu-Hf isotopic data from comparative crustal units, the Devonian zircon populations from the melanges in the Karaburun Peninsula and the Konya Complex are inferred to have a westerly source (e.g. granitic rocks of Aegean region or central Europe). A tectonic model is proposed in which Palaeozoic Tethys sutured during the late Carboniferous in the west (Aegean region westwards), leaving an eastward-widening oceanic gulf in which sandstone turbidites accumulated, including Devonian zircons.  相似文献   

3.
滇东南八布基性/超基性岩体被认为代表洋壳残片,与越北Song Hien构造带内的蛇绿岩体共同构成八布-Song Hien古特提斯缝合带的重要岩石记录,是认识华南西南缘古特提斯构造演化的重要窗口.环绕八布基性/超基性岩体分布大面积碎屑岩系,内夹有硅质岩序列,长期以来被认为是三叠纪浊流沉积,但缺少确切的古生物化石和放射性年代学证据.为确定这套碎屑岩的沉积时代和物质来源,对紧邻八布岩体的龙林西含火山岩屑砂砾岩进行LA-ICPMS碎屑锆石U-Pb同位素和微量元素分析.结果显示,碎屑锆石年龄谱与华南西南缘的二叠系-三叠系年龄谱明显不同,但与Song Hien构造带晚二叠世砂岩和哀牢山带绿春二叠纪砂岩年龄谱相似.最年轻锆石年龄组约为285Ma,在微量元素组成上与弧/造山型岩浆结晶锆石一致,对应于安山质-流纹质火山岩屑,指示早二叠世火山岩浆活动.结合碎屑锆石年龄谱的对比分析和八布村东硅质岩序列的新发现,结果表明八布碎屑岩的沉积时代应为早二叠世,而非中三叠世,其早二叠世火山岩源区与八布-Song Hien古特提斯洋俯冲有关.   相似文献   

4.
徐民  刘永江  温泉波  高飞 《世界地质》2017,36(2):371-380
对内蒙古霍林郭勒地区出露的"宝音图群"砂岩进行了锆石LA-ICP-MS U-Pb同位素测年,样品112个分析点结果显示,具有主要峰值年龄257 Ma、283 Ma、313 Ma和少数老年龄(1 700 Ma),且257 Ma的年龄表明该地层主体的沉积下限的时代为早三叠世,原定为下元古界的"宝音图群"实为早三叠世地层。该地层物源主要来自于大石寨组火山岩、苏尼特左旗—锡林浩特—西乌旗南岩浆弧和相邻地块的变质基底,并有少量华北板块北缘物源混入,说明在早三叠世初华北板块北缘与北侧地块已经开始碰撞。  相似文献   

5.
新的区域地质调查在海南岛东北部木栏头地区识别出一套从前未知的中级变质杂岩。木栏头变质杂岩主要沿林新—木栏头—虎威岭—赤坡—七星岭—新埠海—铺前海边沿岸呈基岩或不同尺度的无根岩块断续出露,其主体是钙硅酸盐岩和正、副片麻岩,含有少量斜长角闪岩、石英岩和大理岩,并按分布区域可进一步区分出林新片麻岩- 斜长角闪岩组合、木栏头变质火山岩- 钙硅酸盐岩组合、虎威岭- 七星岭片麻岩- 钙硅酸盐岩- 大理岩组合和新埠海- 铺前片麻岩组合等四套岩石组合。对30件变质基性岩、变质中酸性岩、变质碎屑沉积岩、钙硅酸盐岩以及花岗和伟晶岩脉等不同类型岩石的锆石U- Pb定年结果表明,木栏头变质杂岩的原岩主体是一套二叠纪火山- 沉积岩系,其内含有少量二叠纪花岗质侵入岩以及前寒武纪结晶基底的残留。前寒武纪结晶基底主要包括古元古代晚期(1670 Ma)碎屑沉积岩和中元古代早期(1460~1410 Ma)花岗质片麻岩,晚二叠世碱性花岗岩中还存在大量单一的中元古代晚期(1180 Ma)继承锆石。变质沉积岩中的早期碎屑锆石年龄峰值为2550~2490 Ma、1850~1780 Ma、1600~1560 Ma、1450 Ma和1100 Ma,表明其物源主要来自于海南岛中部的抱板群、石碌群和石灰顶组。二叠纪花岗岩的侵入时代主要为280 Ma和260 Ma,与陆缘弧前盆地环境下形成的火山- 沉积岩系的时代基本一致。这些沉积岩中的碎屑锆石除具有395~345 Ma和280~256 Ma两个年龄峰值外,部分样品还含有960~930 Ma和450~410 Ma两个重要年龄峰值,与前人在海南岛晚古生代地层中获得的年代学结果相似。木栏头变质杂岩经历了晚二叠世—中三叠世(254~235 Ma)高角闪岩相区域变质和深熔作用以及花岗和伟晶岩脉的大规模侵入,独居石U- Pb定年表明中侏罗世(159 Ma)花岗岩脉也侵入其中。结合近年发表的研究资料,我们认为海南岛应属于印支陆块的一部分,由中元古代结晶基底和早古生代盖层构成的琼南地体以及该地体演化而来的琼北构造混杂岩带两个次级构造单元组成,邦溪- 晨星构造带或昌江- 琼海断裂不能被视为华南和印支陆块间的构造边界,真正的古特提斯缝合带(即金沙江- 哀牢山- 马江缝合带的东延)应位于木栏头北部,大致相当于现今琼州海峡断裂的位置。华南和印支陆块间古特提斯洋盆的关闭始于石炭纪(340~300 Ma)洋壳的南向俯冲,形成北部的潮滩鼻榴辉岩和南部的邦溪- 晨星弧后盆地,二叠纪时期(280~255 Ma)洋盆持续俯冲形成海南岛主体大陆岛弧以及木栏头弧前盆地,而后洋盆最终关闭并进入到陆- 陆碰撞和碰撞后伸展阶段,从而形成木栏头变质杂岩以及海南岛内部其他三叠纪变质岩和同期花岗质岩石。  相似文献   

6.
The Rajang Group sediments in central Borneo form a very thick deep-water sequence which was deposited in one of the world's largest ancient submarine fans. In Sarawak, the Lupar and Belaga Formations form the Rajang Group, characterised by turbidites and large debris flows, deposited in an interval of at least 30 Ma between the Late Cretaceous (Maastrichtian) and late Middle Eocene. Borneo is one of the few places in SE Asia where sediments of this age are preserved. Heavy mineral assemblages and detrital zircon U-Pb dating permit the Rajang Group to be divided into three units. The Schwaner Mountains area in SW Borneo, and West Borneo and the Malay Tin Belt were the main source regions and the contribution from these source areas varied with time. Unit 1, of Late Cretaceous to Early Eocene age, is characterised by zircon-tourmaline-dominated heavy mineral assemblages derived from both source areas. Unit 2, of Early to Middle Eocene age, has zircon-dominated heavy mineral assemblages, abundant Cretaceous zircons and few Precambrian zircons derived primarily from the Schwaner Mountains. Unit 3, of Middle Eocene age, has zircon-tourmaline-dominated heavy mineral assemblages derived from both sources and reworked sedimentary rocks. There was limited contemporaneous magmatism during deposition of the Rajang Group inconsistent with a subduction arc setting. We suggest the Rajang Group was deposited north of the shelf edge formed by the Lupar Line which was a significant strike-slip fault.  相似文献   

7.
松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义   总被引:36,自引:17,他引:36  
松潘-甘孜地体总体上是一个三角状褶皱带,其北侧、东南侧及东侧分别与东昆仑-西秦岭构造带、金沙江构造带及龙门山构造带相邻。地体内几乎全部被三叠系浊积岩所覆盖,其中侵位了很多花岗岩体。显然,这些花岗岩的岩浆特征、来源与侵位时代,对研究松潘-甘孜地体基底性质、构造演化等问题具有重要意义。本文报道利用SHRIMP定年技术对一些花岗岩岩体锆石所进行的精确测年数据。测试结果表明:(1)松潘-甘孜地体内的花岗岩体主要形成于晚三叠世,但岩浆活动可延续到早侏罗世晚期;(2)早期花岗岩浆活动与三叠纪系褶皱变形大致同期,指示这一时期的花岗岩浆的形成可能与三叠系下部大型拆离滑脱构造相关;(3)花岗岩结晶锆石普遍具有浑圆状或不规则状较老的继承锆石核,这些核部继承锆石可能代表花岗岩浆在上升过程中从不同地层内捕获的碎屑锆石,或者是下地壳岩石深熔残留锆石。根据SHRING U-Pb定年,这些继承锆石的年龄分别为二叠纪、加里东期、晚元古代和早元古代。元古代碎屑锆石的存在也可能指示松潘-甘孜地体具前寒武系基底。  相似文献   

8.
ABSTRACT

This article reports single-grain multi-elemental results (Sr, Y, Th, U, and rare earth elements) obtained in 966 apatites from 18 rocks (sandstones and granitoids) that were sampled from the Mesozoic (Todos Santos and San Ricardo Formations) and Eocene (the El Bosque Formation) successions as well as from the Permian–Triassic Chiapas Massif Complex (CMC), all of which are exposed within the Sierra de Chiapas (SCH), SE Mexico. The objectives of the present study are (1) to establish changes in provenance between the Mesozoic and Eocene sedimentary sequences using single-grain apatite geochemistry, and (2) to identify source areas for siliciclastic materials from the Todos Santos, San Ricardo, and the El Bosque Formations. The results of the present work strongly suggest that apatites from the Todos Santos and San Ricardo Formations were mainly derived from intermediate to felsic I-type granitoids as well as from arc-related volcanic rocks, indicating that the CMC basement was the most important source area for the Mesozoic sandstones in the SCH. An abrupt change in provenance from Mesozoic to Eocene units was identified based on single-grain apatite geochemistry. Detrital apatites of the Ypresian–Lutetian El Bosque Formation were derived from diverse source rocks such as mafic–ultramafic rocks, intermediate to felsic I-type plutons, strongly fractionated S-type granites and pegmatites, as well as from different metamorphic source lithologies (including high-pressure rocks) such as gneisses, migmatites, metapelites, and/or eclogites. It was proposed, therefore, that most Eocene sediments of the SCH were derived from the Guatemala Suture Complex, which involves all the rock types mentioned above. A minor portion of the El Bosque Formation sediments was derived from the CMC area and/or from recycled sandstones from the Mesozoic Todos Santos and San Ricardo Formations. Some advantages and disadvantages of provenance studies based on detrital apatite chemistry were also observed and briefly discussed.  相似文献   

9.
The provenance of Eocene–Oligocene turbidites from the Pindos Foreland Basin, SW Greece, has been constrained using petrographical and geochemical techniques. Modal petrographic analysis of the studied sandstones shows that the source area comprises sedimentary, metamorphic, and plutonic igneous rocks deposited in a recycled orogenic environment and in magmatic arc province. The relative proportions of the detrital components indicate that the Late Eocene–Early Oligocene sandstones of West Peloponnesus are quartz-rich and were primarily derived from granitic and metamorphic basement rocks typically of a tectonically active area. Major, trace, and rare earth element (REE) concentrations in both sandstones and mudstones complement the petrographical data indicating an active continental margin/continental island arc signature. All the samples are light REE, enriched relative to heavy REE (HREE), with flat HREE pattern and positive Eu anomalies, suggesting that the processes of intra-crustal differentiation (involving plagioclase fractionation) were not of great importance. The results derived from the multi-element diagrams also suggest an active margin character and a mafic/ultramafic source rock composition.  相似文献   

10.
Paleomagnetic results from Upper Jurassic to Paleocene rocks in Peninsular Malaysia show counter clockwise (CCW) rotations, while clockwise rotations (CW) are predominantly found in older rocks. Continental redbeds of the Upper Jurassic to Lower Cretaceous Tembeling Group have a post folding remagnetization, giving a VGP at N54°E29°, corresponding to approximately 40° of CCW rotation relative to Eurasia and 60° CCW relative to the Indochina block (Khorat Plateau). Samples from Cretaceous to Paleocene mafic volcanics of the Kuantan dike swarm and the Segamat basalts give VGPs at N59°E47° and N34°E36°, respectively. These Malayasian data are indistinguishable from the Late Eocene and Oligocene VGPs reported for Borneo and the Celebes Sea and are similar to the Eocene VGPs reported for southwest Sulawesi and southwest Palawan. The occurrence of CCW deflected data over this large region suggests that much of Malaysia, Borneo, Sulawesi, and the Celebes Sea rotated approximately 30° to 40° CCW relative to the Geocentric Axial Dipole (GAD) between the Late Eocene and the Late Miocene, although not necessarily synchronously, nor as a single rigid plate. These regional CCW rotations are not consistent with simple extrusion based tectonic models. CW declinations have been measured in Late Triassic granites, Permian to Triassic volcanics, and remagnetized Paleozoic carbonates. The age of this magnetization is poorly understood and may be as old as Late Triassic, or as young as Middle or Late Cretaceous. The plate, or block rotations, giving rise to these directions are correspondingly weakly constrained.  相似文献   

11.
富含继承锆石的过铝质花岗岩一般来源于富铝质岩石(如变泥质岩)的部分熔融,因而分析这些继承锆石的U-Pb年龄可以像分析沉积岩碎屑锆石的U-Pb年龄一样,提供过铝质花岗岩源区物质中碎屑沉积物物源区的丰富信息。本文报道了中部拉萨地块早侏罗世过铝质花岗岩的全岩地球化学和锆石U-Pb年代学数据,结合拉萨地块已有二叠纪和晚三叠世过铝质花岗岩的继承锆石年代学数据,总结了目前已有的拉萨地块过铝质花岗岩的继承锆石U-Pb年龄特征(共199个谐和测点)。这些过铝质花岗岩属强过铝质S型花岗岩,其中的继承锆石定义了1250~1100Ma(峰值1181±14Ma)和550~450Ma(峰值494±7Ma)2个最突出的年龄群,分别可比于拉萨地块古生代沉积岩的碎屑锆石年龄峰值(约1170Ma)和寒武纪火山岩的侵位时代,明显不同于西羌塘、安多和特提斯喜马拉雅新元古代-古生代沉积岩中的碎屑锆石年龄频谱。拉萨地块过铝质花岗岩中约1181Ma的继承锆石,可能与拉萨地块古生代沉积岩中的同期碎屑锆石一样,都来自澳大利亚南西部Albany-Fraser造山带和东南极Wilkes等地,而约494的继承锆石,既可能来自澳大利亚西部,也可能来自拉萨地块本地。本文提供了拉萨地块与澳大利亚大陆北缘具有古地理联系的过铝质花岗岩继承锆石U-Pb年龄证据。拉萨地块的研究实践表明,采用过铝质花岗岩继承锆石和古生代沉积岩碎屑锆石相结合的锆石U-Pb年代学方法,可为重建冈瓦纳大陆北缘其它微陆块的古地理和构造岩浆演化提供重要约束。  相似文献   

12.
The Mesozoic sediments of Thakkhola (central Nepal) were deposited on a broad eastern north Gondwanan passive margin at mid-latitudes (28–41 °S) facing the Southern Tethys ocean to the north. The facies is strikingly similar over a distance of several thousand kilometres from Ladakh in the west to Tibet and to the paleogeographically adjacent north-west Australian margin (Exmouth Plateau, ODP Legs 122/123) and Timor in the east. Late Paleozoic rifting led to the opening of the Neo-Tethys ocean in Early Triassic times. An almost uninterrupted about 2 km thick sequence of syn-rift sediments was deposited on a slowly subsiding shelf and slope from Early Triassic to late Valanginian times when break-up between Gondwana (north-west Australia) and Greater India formed the proto-Indian Ocean. The sedimentation is controlled by (1) global events (eustasy; climatic/oceanographic changes due to latitudinal drift; plate reorganization leading to rift-type block-faulting) and (2) local factors, such as varying fluvio-deltaic sediment input, especially during Permian and late Norian times. Sea level was extremely low in Permian, high in Carnian and low again during Rhaeto-Liassic times. Third-order sea-level cycles may have occurred in the Early Triassic and late Norian to Rhaeto-Liassic. During the Permian pure quartz sand and gravel were deposited as shallowing upward series of submarine channel or barrier island sands. The high compositional maturity is typical of a stable craton-type hinterland, uplifted during a major rifting episode. During the early Triassic a 20–30 m thick condensed sequence of nodular ‘ammonitico rosso’-type marlstone with a ‘pelagic’ fauna was deposited (Tamba Kurkur Formation). This indicates tectonic subsidence and sediment starvation during the transgression of the Neo-Tethys ocean. During Carnian times a 400 m thick sequence of fining upward, filament-rich wackestone/shale cycles was deposited in a bathyal environment (Mukut Formation). This is overlain by about 300 m of sandy shale and siltstone intercalated with quartz-rich bioclastic grain- to rudstone (Tarap Shale Formation, late Carnian-Norian). The upper Norian to (?lower) Rhaetian Quartzite Formation consists of (sub)arkosic sandstones and pure quartz arenites, indicating different sediment sources. The fluvio-deltaic sandstones are intercalated with silty shale, coal and bioclastic limestone, as well as mixed siliciclastic-bioclastic rocks. The depositional environment was marginal marine to shallow subtidal. The fluvio-deltaic influence decreased towards the overlying carbonates of Rhaeto-Liassic (?) age (Jomosom Formation correlative with the Kioto Limestone), when the region entered tropical paleolatitudes resulting in platform carbonates.  相似文献   

13.
《International Geology Review》2012,54(18):2291-2312
ABSTRACT

As the north part of Simao Terrane, Lanping Basin is located between the Sanjiang Tethys Orogen (STO) and Yangtze Block, also the junction zone between the Gondwanaland and Cathaysian old land (Pan Huaxia mainland), which includes Yangtze and Cathaysian Blocks. The aim of this study is to decipher the provenance of the sedimentary units in the Lanping Basin and affiliation of Simao Terrane by the U-Pb ages, Hf isotope of detrital zircons and whole-rock geochemistry. The whole-rock geochemistry and the mineral composition indicate that most of the Triassic–Paleocene sedimentary rocks are derived from the upper crust and exhibit recycled orogen features. The detrital zircon U-Pb ages from the North Simao Terrane are consistent with the magmatic events during Early Neoproterozoic and Permian in the Western Yangtze Block. And the detrital zircons ages from North Simao Terrane show same distribution features as the Permian–Triassic magmatic rocks, which are distributed in the Simao Terrane and along major sutures. These comparisons suggest that the clastic sediments in Lanping Basin (North Simao Terrane) are derived from Early Neoproterozoic and Permian magmatic rocks from Western Yangtze Block, Permian–Triassic magmatic rocks from Simao Terrane, along Jinshajiang, Garz-Litang and Ailaoshan Sutures. The comparison of the detrital zircon age distributions shows that Simao Terrane and Yangtze Block exhibited similarity tectonic setting in the evolution history, especially during Paleoproterozoic–Late Paleozoic. This suggests that the Simao Terrane is part of Cathaysian old land, although Simao Terrane was separated from Yangtze Block for short period during Early Paleozoic. Besides, the Hf mapping, stratigraphic succession, paleogeography and paleomagnetism in SW China support that Simao Terrane has a Cathaysian old land-affinity, rather than one involving Gondwanaland.  相似文献   

14.
祁凯  任战利  张梦婷  马骞  杨燕  刘润川 《岩石学报》2020,36(6):1897-1912
本文在对渭河地区及周缘晚古生代-中生代残存地层分布研究的基础上,采用岩石学、锆石同位素年代学、主微量元素地球化学分析方法,对渭河地区南北两侧上古生界二叠系及中生界三叠系进行对比,进而恢复了研究区晚古生代晚期、中生代早期沉积面貌,并结合裂变径迹构造抬升的研究结果,探讨了渭河地区中生代后期改造过程及演化阶段。结果显示:渭河盆地内部主要凹陷可能仅残留小范围的、不连续的C-P地层,未发现中生代地层。岩石学、锆石U-Pb年龄、主微量元素表明鄂尔多斯南部和北秦岭地区二叠系、三叠系具有很好的对比性,两者在相同时期为同一盆地。二叠系碎屑岩源区可能为再旋回造山带及陆块源区,主要来自北秦岭中-新元古界宽坪群变质碎屑岩及南部二郎坪群火山-沉积岩;三叠系沉积岩物源主要来自北秦岭地区的宽坪群、秦岭群或同期发育的火山岩。裂变径迹资料暗示渭河地区与渭北隆起及秦岭造山带中生代抬升期次具有一致性:晚侏罗世-早白垩世末,地层以强烈的构造变形、弱抬升为主;早白垩世末以来,地层发生大规模抬升、剥蚀,致使上古生界-中生界在渭河地区残留较少。在以上研究的基础上,将渭河地区晚古生代-中生代演化过程分为晚古生代二叠纪、中生代三叠纪-早中侏罗世、晚侏罗世-早白垩世末、早白垩世末-白垩纪末几个演化阶段。  相似文献   

15.
中亚造山带南缘二叠纪的构造背景一直存在争议。以内蒙古西乌旗罕乌拉地区发育的寿山沟组为研究对象,开展了野外地质、岩石学、碎屑锆石LA-ICP-MS U-Pb年龄研究。2个样品锆石阴极发光图像和Th/U值指示,锆石为岩浆成因锆石。103颗碎屑锆石年龄测试结果显示,年龄信息可划分为5组:285~328Ma,峰期年龄302Ma;338~361Ma;455~490Ma;757Ma;1278Ma、2380Ma。最年轻的年龄为285Ma,结合侵入其中的花岗岩同位素年龄,指示西乌旗罕乌拉地区寿山沟组沉积时限介于285~280Ma之间,主体沉积时代应为早二叠世Sakmarian期—Artinskian期。寿山沟组碎屑锆石反映出近源、快速沉积的特点,沉积物源中含有较多的火山碎屑物,可能代表弧后盆地沉积,为早二叠世古亚洲洋闭合前洋壳俯冲消减作用的沉积响应。结合区域资料,寿山沟组碎屑锆石的年龄对应于东北地区的变质基底及其后的构造岩浆事件,物源区物质主要来自于苏尼特左旗—锡林浩特—西乌旗一带早石炭世末—晚石炭世岩浆弧及贺根山—东乌旗一带,并进一步限制了华北与西伯利亚两大板块的缝合线应位于寿山沟组发育地区的南部,即索伦缝合带,拼合时代最可能为晚二叠世—早三叠世。  相似文献   

16.
胡培远  李才  杨韩涛  张海波  于红 《地质通报》2010,29(12):1825-1832
藏北羌塘果干加年山的东部出露有一处花岗岩岩体,其主要岩性为黑云母二长花岗岩和花岗细晶岩岩脉,侵入晚三叠世望湖岭组和晚石炭世—早二叠世展金岩群之中。锆石LA-ICP-MS U-Pb年龄测定结果表明,该花岗岩的形成时代为晚三叠世(210.3Ma±2.6Ma),略晚于区域上高压变质带的变质峰期年龄和望湖岭组底部流纹岩的年龄。岩石地球化学数据显示,该花岗岩岩体属高钾钙碱性过铝质花岗岩,形成于后碰撞环境,是岩石圈碰撞加厚之后减压过程中岩浆活动的产物,说明在210Ma左右果干加年山地区的构造环境开始由碰撞阶段向板内阶段转化,进入了后碰撞阶段。  相似文献   

17.
New field, geochemical, and geochronological data from the Segama Valley Felsic Intrusions (SVFI) of Sabah, north Borneo, shows them to be arc-derived tonalites; not windows or partial melts of a crystalline basement beneath Sabah. U-Pb zircon ages date emplacement in the Triassic and Jurassic: 241.1 ± 2.0 Ma, 250.7 ± 1.9 Ma, 178.7 ± 2.4 Ma, and 178.6 ± 1.3 Ma; contemporaneous with peaks in magmatism and detrital zircons in Sarawak and west Kalimantan (west Borneo). Isotopic data for Sr, Nd, and Pb from whole rocks, and for Hf and O from zircon all show mantle and/or MORB affinities indicating a mantle-derived origin. Enrichment of fluid mobile trace elements and trace element ratios indicate that the most likely setting for this is in a continuation of the Sundaland continental arc. There is no evidence in the field, geochemical, or zircon U-Pb data for continental basement in the Segama Valley region.The intrusive nature of the Segama Valley tonalites constrains the emplacement age of their supra-subduction zone host rocks to at least the Triassic. This new data expands the Triassic and Jurassic extent of Borneo and the Sundaland arc, and challenges models of Borneo's development predominantly through allochthonous terrane accretion in the Cretaceous. Instead, we propose a model of protracted autochthonous growth through supra-subduction zone crustal extension and associated magmatism.  相似文献   

18.
A succession of quartz-rich fluvial sandstones and siltstones derived from a mainly rhyolitic source and minor metamorphic rocks, located to the west, represent the first Upper Paleocene–Early Eocene deposits described in Chilean eastern central Patagonian Cordillera (46°45′S). This unit, exposed 25 km south of Chile Chico, south of lago General Carrera, is here defined as the Ligorio Márquez Formation. It overlies with an angular unconformity Lower Cretaceous shallow marine sedimentary rocks (Cerro Colorado Formation) and subaerial tuffs that have yielded K–Ar dates of 128, 125 and 123 Ma (Flamencos Tuffs, of the Divisadero Group). The Ligorio Márquez Formation includes flora indicative of a tropical/subtropical climate, and its deposition took place during the initial part of the Late Paleocene–Early Eocene Cenozoic optimum. The underlying Lower Cretaceous units exhibit folding and faulting, implying a pre-Paleocene–Lower Eocene contractional tectonism. Overlying Oligocene–Miocene marine and continental facies in the same area exhibit thrusts and normal faults indicative of post-Lower Miocene contractional tectonism.  相似文献   

19.
The crystallochemical characteristics of Cr-spinels and tourmalines in combination with U–Pb isotope data on detrital zircons from the Upper Permian and Lower Triassic sandstones of the Belskii Depression showed that the main provenances of the molasse sequence in the southern part of the Cis-Uralian foredeep were Lower Paleozoic (Sakmara zone) and Precambrian (Uraltau zone) complexes. The absence of Late Paleozoic zircons in the Tatarian (Upper Permian) sandstones, as well as their small amount in the Lower Triassic psammites together with geochemical and petrographic data, suggest that granite massifs of the Main Granitic Axis of the Urals, as Middle–Upper Paleozoic magmatic complexes of the Magnitogorsk Megazone, were not involved in erosion. At the same time, the significant amount of Precambrian zircons is indicative of the presence of metamorphic complexes in the provenance of the Uraltau zone.  相似文献   

20.
Magnesium isotopic compositions, along with new Sr–Nd–Pb isotopic data and elemental analyses, are reported for 12 Miocene tourmaline-bearing leucogranites, 15 Eocene two-mica granites and 40 metamorphic rocks to investigate magnesium isotopic behaviors during metamorphic processes and associated magmatism and constrain the tectonic-magmatic-metamorphic evolution of the Himalayan orogeny. The gneisses, granulites and amphibolites represent samples of the Indian lower crust and display large range in δ26Mg from −0.44‰ to −0.09‰ in mafic granulites, −0.44‰ to −0.10‰ in amphibolites, and −0.70‰ to −0.03‰ in granitic gneisses. The average Mg isotopic compositions of the granitic gneisses (−0.19 ± 0.34‰), mafic granulites (−0.22 ± 0.17‰) and amphibolites (−0.25 ± 0.24‰) are similar, indicating the limited Mg isotope fractionation during prograde metamorphism from granitic gneisses to mafic granulites and retrograde metamorphism from mafic granulites to amphibolites. The Eocene two-mica granites and Miocene leucogranites are characterized by large variations in elemental and Sr–Nd–Pb isotopic compositions. The leucogranites and two-mica granites have their corresponding (87Sr/86Sr)i varying from 0.7282 to 0.7860 and 0.7163 to 0.7191, (143Nd/144Nd)i from 0.511888 to 0.512040 and 0.511953 to 0.512076, 207Pb/204Pb from 15.7215 to 15.7891 and 15.7031 to 15.7317, 208Pb/204Pb from 38.8521 to 39.5286 and 39.2710 to 39.4035, and 206Pb/204Pb from 18.4748 to 19.0139 and 18.7834 to 18.9339. However, they have similar Mg isotopic compositions (−0.21‰ to +0.06‰ versus −0.24‰ to +0.09‰), which did not originate from fractional crystallization nor source heterogeneity. Based on hornblende/biotite/muscovite dehydration melting reaction and Mg isotopic variations in two-mica granites and leucogranites with the proceeding metamorphism, along with elemental discrimination diagrams, Eocene two-mica granites and Miocene leucogranites could be related to hornblende dehydration melting and muscovite dehydration melting, respectively. Mg isotopic compositions of Eocene two-mica granites become heavier compared to the source because of residues of isotopically light garnet in the source; while those of Miocene leucogranites become lighter because of entrainment of isotopically light garnet from the source region. Thus, a new model for crustal anatexis and Himalayan orogenesis was proposed based on the Mg isotope fractionation in the leucogranites and metamorphic rocks. This model emphasizes a successive process from Indian continental subduction to rapid exhumation of the Higher Himalayan Crystalline Series (HHCS). The former underwent high-temperature (HT) and high-pressure (HP) granulite-facies prograde metamorphism, which resulted in the hornblende dehydration melting and the formation of Eocene two-mica granites; while the latter experienced amphibolite-facies retrogression and decompression, which resulted in the muscovite dehydration melting and the formation of Miocene leucogranites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号