首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations from the first submersible reconnaissance of the Blake Ridge Diapir provide the geological and ecological contexts for chemosynthetic communities established in close association with methane seeps. The seeps mark the loci of focused venting of methane from the gas hydrate reservoir, and, in one location (Hole 996D of the Ocean Drilling Program), methane emitted at the seafloor was observed forming gas hydrate on the underside of a carbonate overhang. Megafaunal elements of a chemosynthetically based community mapped onto dive tracks provide a preliminary overview of faunal distributions and habitat heterogeneity. Dense mussel beds were prominent and covered 20×20 m areas. The nearly non-overlapping distributions of mussels and clams indicate that there may be local (meter-scale) variations in fluid flux and chemistry within the seep site. Preliminary evidence suggests that the mussels are host to two symbiont types (sulfide-oxidizing thiotrophs and methanotrophs), while the clams derive their nutrition only from thiotrophic bacteria. Invertebrate biomass is dominated by mussels (Bathymodiolus heckerae) that reach lengths of up to 364 mm and, to a lesser extent, by small (22 mm length) vesicomyid clams (Vesicomya cf. venusta). Taking into account biomass distributions among taxa, symbiont characteristics of the bivalves, and stable-isotope analyses, the relative importance of methanotrophic vs thiotrophic bacteria in the overall nutrition of the invertebrate assemblage is on the order of 60% vs 40% (3:2).  相似文献   

2.
Authigenic carbonates were collected from methane seeps at Hydrate Hole at 3113 m water depth and Diapir Field at 2417 m water depth on the northern Congo deep-sea fan during RV Meteor cruise M56. The carbonate samples analyzed here are nodules, mainly composed of aragonite and high-Mg calcite. Abundant putative microbial carbonate rods and associated pyrite framboids were recognized within the carbonate matrix. The δ13C values of the Hydrate Hole carbonates range from ?62.5‰ to ?46.3‰ PDB, while the δ13C values of the Diapir Field carbonate are somewhat higher, ranging from ?40.7‰ to ?30.7‰ PDB, indicating that methane is the predominant carbon source at both locations. Relative enrichment of 18O (δ18O values as high as 5.2‰ PDB) are probably related to localized destabilization of gas hydrate. The total content of rare earth elements (REE) of 5% HNO3-treated solutions derived from carbonate samples varies from 1.6 ppm to 42.5 ppm. The shale-normalized REE patterns all display positive Ce anomalies (Ce/Ce* > 1.3), revealing that the carbonates precipitated under anoxic conditions. A sample from Hydrate Hole shows a concentric lamination, corresponding to fluctuations in δ13C values as well as trace elements contents. These fluctuations are presumed to reflect changes of seepage flux.  相似文献   

3.
Quantitative collections of tubeworm- and mussel-associated communities were obtained from 3 cold seep sites in the deep Gulf of Mexico: in Atwater Valley at 1890 m depth, in Alaminos Canyon at 2200 m depth, and from the Florida Escarpment at 3300 m depth. A total of 50 taxa of macro- and megafauna were collected including 2 species of siboglinid tubeworms and 3 species of bathymodiolin mussels. In general, the highest degree of similarity was between communities collected from the same site. Most of the dominant families at the well-characterized upper Louisiana slope seep sites of the Gulf of Mexico were present at the deep sites as well; however, there was little overlap at the species level between the upper and lower slope communities. One major difference in community structure between the upper and lower slope seeps was the dominance of the ophiuroid Ophioctenella acies in the deeper communities. The transition between upper and lower slope communities appears to occur between 1300 and 1700 m based on the number of shared species with the Barbados seeps at either end of this depth range. Seep communities of the deep Gulf of Mexico were more similar to the Barbados Accretionary Prism seep communities than they were to either the upper slope Gulf of Mexico or Blake Ridge communities based on numbers of shared species and Bray–Curtis similarity values among sites. The presence of shared species among these sites suggests that there is ongoing or recent exchange among these areas. An analysis of bathymodioline mussel phylogeography that includes new collections from the west coast of Africa is presented. This analysis also suggests recent exchange across the Atlantic equatorial belt from the Gulf of Mexico to the seeps of the West Nigerian margin.  相似文献   

4.
The North Atlantic Deep Western Boundary Current (DWBC) was surveyed at the Blake Outer Ridge over 14 days in July and August 1992 to determine its volume transport and to investigate its bottom boundary layer (BBL). This site was chosen because previous investigations showed the DWBC to be strong and bottom-intensified on the ridge’s flanks and to have a thick BBL. The primary instrument used was the Absolute Velocity Profiler, a free-falling velocity and conductivity–temperature–depth device. In two sections across the width of the DWBC, volume transports of 17±1 Sv and 18±1 Sv were measured for all water flowing equatorward below a potential temperature of 6°C (1 Sv=1×106 m3 s-1). Transport values were derived using both absolute velocities and AVP-referenced geostrophic velocities and were the same within experimental uncertainty. Good agreement was found between our results and historical ones when both were similarly bounded and referenced. Although this was a short-term survey, the mean of a 9-day time series of absolute velocity profiles was the same as the means of year-long current-meter records at three depths in the same location. A turbulent planetary BBL was found everywhere under the current. The thickness of the bottom mixed layer (BML), where concentrations of density, nutrients, and suspended sediments were vertically uniform, was asymmetrical across the current and up to 5 times thicker than the BBL. There was no velocity shear above the BBL within the thicker BMLs, and the across-slope density gradient was very small. The extra-thick BML is perhaps maintained by a combination of processes, including turbulence, downwelling Ekman transport, a weak up-slope return flow above the BBL, and buoyant convection from the BBL into the BML. The frictional bottom stress was mostly balanced by a down-stream change in the current’s external potential energy evidenced by a drop in the velocity core of the current.  相似文献   

5.
We conducted full-depth hydrographic observations between 8°50′ and 44°30′N at 165°W in 2003 and analyzed the data together with those from the World Ocean Circulation Experiment and the World Ocean Database, clarifying the water characteristics and deep circulation in the Central and Northeast Pacific Basins. The deep-water characteristics at depths greater than approximately 2000 dbar at 165°W differ among three regions demarcated by the Hawaiian Ridge at around 24°N and the Mendocino Fracture Zone at 37°N: the southern region (10–24°N), central region (24–37°N), and northern region (north of 37°N). Deep water at temperatures below 1.15 °C and depths greater than 4000 dbar is highly stratified in the southern region, weakly stratified in the central region, and largely uniform in the northern region. Among the three regions, near-bottom water immediately east of Clarion Passage in the southern region is coldest (θ<0.90 °C), most saline (S>34.70), highest in dissolved oxygen (O2>4.2 ml l?1), and lowest in silica (Si<135 μmol kg?1). These characteristics of the deep water reflect transport of Lower Circumpolar Deep Water (LCDW) due to a branch current south of the Wake–Necker Ridge that is separated from the eastern branch current of the deep circulation immediately north of 10°N in the Central Pacific Basin. The branch current south of the Wake–Necker Ridge carries LCDW of θ<1.05 °C with a volume transport of 3.7 Sv (1 Sv=106 m3 s?1) into the Northeast Pacific Basin through Horizon and Clarion Passages, mainly through the latter (~3.1 Sv). A small amount of the LCDW flows northward at the western boundary of the Northeast Pacific Basin, joins the branch of deep circulation from the Main Gap of the Emperor Seamounts Chain, and forms an eastward current along the Mendocino Fracture Zone with volume transport of nearly 1 Sv. If this volume transport is typical, a major portion of the LCDW (~3 Sv) carried by the branch current south of the Wake–Necker and Hawaiian Ridges may spread in the southern part of the Northeast Pacific Basin. In the northern region at 165°W, silica maxima are found near the bottom and at 2200 dbar; the minimum between the double maxima occurs at a depth of approximately 4000 dbar (θ~1.15 °C). The geostrophic current north of 39°N in the upper deep layer between 1.15 and 2.2 °C, with reference to the 1.15 °C isotherm, has a westward volume transport of 1.6 Sv at 39–44°30′N, carrying silica-rich North Pacific Deep Water from the northeastern region of the Northeast Pacific Basin to the Northwest Pacific Basin.  相似文献   

6.
The Menez Gwen hydrothermal vents, located on the flanks of a small young volcanic structure in the axial valley of the Menez Gwen seamount, are the shallowest known vent systems on the Mid-Atlantic Ridge that host chemosynthetic communities. Although visited several times by research cruises, very few images have been published of the active sites, and their spatial dimensions and morphologies remain difficult to comprehend. We visited the vents on the eastern flank of the small Menez Gwen volcano during cruises with RV Poseidon (POS402, 2010) and RV Meteor (M82/3, 2010), and used new bathymetry and imagery data to provide first detailed information on the extents, surface morphologies, spatial patterns of the hydrothermal discharge and the distribution of dominant megafauna of five active sites. The investigated sites were mostly covered by soft sediments and abundant white precipitates, and bordered by basaltic pillows. The hydrothermally-influenced areas of the sites ranged from 59 to 200 m2. Geo-referenced photomosaics and video data revealed that the symbiotic mussel Bathymodiolus azoricus was the dominant species and present at all sites. Using literature data on average body sizes and biomasses of Menez Gwen B. azoricus, we estimated that the B. azoricus populations inhabiting the eastern flank sites of the small volcano range between 28,640 and 50,120 individuals with a total biomass of 50 to 380 kg wet weight. Based on modeled rates of chemical consumption by the symbionts, the annual methane and sulfide consumption by B. azoricus could reach 1760 mol CH4 yr−1 and 11,060 mol H2S yr−1. We propose that the chemical consumption by B. azoricus over at the Menez Gwen sites is low compared to the natural release of methane and sulfide via venting fluids.  相似文献   

7.
Enigmatic seafloor gouge marks at depths of 1700–2100 m have been observed from submersible during geological survey work studying mud volcanoes in the eastern Mediterranean Sea. The marks consist of a central groove (about 10 cm deep and 1–2 m long), superimposed on a broader bowl-shaped depression (1–2 m long by about 50 cm wide) with raised rims (up to 10 cm high) to either side of the central groove. We discuss the potential biological causes of these marks, and conclude that they are probably created by Cuvier's beaked whales (Ziphius cavirostris) during foraging dives to these depths. The mud volcanoes have a comparatively rich and diverse benthic ecology associated with methane-rich fluid seeps and thus could be the base of food chains that reach top predators like the deep-diving whales. The characteristic high acoustic backscatter of the mud volcanoes would facilitate their detection by the echolocation system of these whales.  相似文献   

8.
High-temperature hydrothermal activity occurs in all ocean basins and along ridge crests of all spreading rates. While it has long been recognized that the fluxes associated with such venting are large, precise quantification of their impact on ocean biogeochemistry has proved elusive. Here, we report a comprehensive study of heat, fluid and chemical fluxes from a single submarine hydrothermal field. To achieve this, we have exploited the integrating nature of the non-buoyant plume dispersing above the Rainbow hydrothermal field, a long-lived and tectonically hosted high-temperature vent site on the Mid-Atlantic Ridge. Our calculations yield heat and volume fluxes for high-temperature fluids exiting the seafloor of ~0.5 GW and 450 L s?1, together with accompanying chemical fluxes, for Fe, Mn and CH4 of ~10, ~1 and ~1 mol s?1, respectively. Accompanying fluxes for 25 additional chemical species that are associated with Fe-rich plume particles have also been calculated as they are transported away from the Rainbow vent site before settling to the seabed. High-temperature venting has been found to recur at least once every ~100 km along all slow-spreading ridges investigated to-date, with half of all known sites on the Mid-Atlantic Ridge occurring as long-lived and tectonically hosted systems. If these patterns persist along all slow- and ultraslow-spreading ridges, high-temperature venting of the kind reported here could account for ~50% of the on-axis hydrothermal heat flux along ~30,000 km of the ~55,000 km global ridge crest.  相似文献   

9.
10.
《Marine and Petroleum Geology》2012,29(10):1838-1843
The hydrate-bearing sediments above the bottom simulating reflector (BSR) are associated with low attenuation or high quality factor (Q), whereas underlying gas-bearing sediments exhibit high attenuation. Hence, estimation of Q can be important for qualifying whether a BSR is related to gas hydrates and free-gas. This property is also useful for identifying gas hydrates where detection of BSR is dubious. Here, we calculate the interval Q for three submarine sedimentary layers bounded by seafloor, BSR, one reflector above and another reflector below the BSR at three locations with moderate, strong and no BSR along a seismic line in the Makran accretionary prism, Arabian Sea for studying attenuation (Q−1) characteristics of sediments. Interval Q for hydrate-bearing sediments (layer B) above the BSR are estimated as 191 ± 11, 223 ± 12, and 117 ± 5, whereas interval Q for the underlying gas-bearing sediments (layer C) are calculated as 112 ± 7, 107 ± 8 and 124 ± 11 at moderate, strong and no BSR locations, respectively. The large variation in Q is observed at strong BSR. Thus Q can be used for ascertaining whether the observed BSR is due to gas hydrates, and for identifying gas hydrates at places where detection of BSR is rather doubtful. Interval Q of 98 ± 4, 108 ± 5, and 102 ± 5, respectively, at moderate, strong and no BSR locations for the layer immediately beneath the seafloor (layer A) show almost uniform attenuation.  相似文献   

11.
Little is known about the types and concentrations of polycyclic aromatic hydrocarbons (PAHs) existing in the deep-sea subsurface environment, which is believed to be cold, oligothrophic and of high static pressure. PAHs in the upper layers of the water column are unavoidably subjected to degradation while they are deposited to the sea floor and become embedded in the deep-sea sediment. In this report, a high concentration of PAHs was discovered in the sediment 2.7 m beneath the bottom surface at a water depth of 3962 m on the Mid-Atlantic Ridge (MAR). The total concentration of PAHs was 445 ng (g dry wt sediment)-1. Among the seven detected PAHs, the concentrations of phenanthrene (222 ng g-1) and fluorene (79 ng g-1) were relatively high. In addition, PAH-degrading bacteria were found within the sediments. As in a previously detected site on the MAR, in the PAH-enriched region of this site, a bacterium of the genus Cycloclasticus was found to be the predominant isolate detected by PCR-DGGE analysis. In addition, bacteria of the Halomonas, Marinobacter, Alcanivorax, Thalassospira and Maricaulis genera, were also included in the PAH-degrading community. In summary, a high concentration of PAHs was detected in the subsurface of the deep-sea sediment, and once again, the Cycloclasticus bacterium was confirmed to be a ubiquitous marine PAH degrader even in the subsurface marine environment. Considering the abundance of PAHs therein, biodegradation is thus thought to be inactive, probably because of the low temperature, limited oxygen and/or limited nutrients.  相似文献   

12.
The intertidal zone of a sandy beach located on the French coast of the Eastern Channel, was sampled during spring and summer 2000 to analyse the community structure of fish and epibenthic crustaceans. The presence of many juvenile fish (mainly O-group) and crustaceans indicated the important role played by the intertidal zone as a nursery ground. The brown shrimp, Crangon crangon and O-group plaice, Pleuronectes platessa are the two most abundant species of the intertidal ecosystem.Plaice settlement period extended from mid-March to early June. Over the survey period, densities increased to maximum numbers of about 27 ind. 10 m−2 in mid-April. In the following week, density rapidly decreased due to mortality and migration into deeper waters. The mortality was attributed mainly to predation by brown shrimp (C. crangon) and to a lesser extent by the shore crab (Carcinus maenas). The mean size of 0-group plaice increased from 19 mm in mid-April to 58 mm in July. Growth of juvenile 0-group plaice is described by an exponential equation: total length (TL, mm) = 12.602 e0.022 (post-settlement age). Post-settlement growth rates, estimated by otolith microstructure analysis, were 0.38 mm d−1 for plaice ≤30 mm and 0.61 mm d−1 for plaice >30 mm. Settlement of juvenile brown shrimp started in mid-April, peaked in early June (93 ind. 10 m−2) and continued with fluctuating intensity throughout the summer. Growth rate of juvenile C. crangon, estimated after the settlement peak, was 0.163 mm d−1. Growth conditions of juvenile plaice and C. crangon were analysed by comparing estimated growth in the field with predicted maximum growth according to temperature-growth rate models from experimental studies of growth with unlimited food supply. For plaice, the estimated growth rate was lower (plaice ≤30 mm) but similar (plaice >30 mm) to the predicted maximum growth suggesting a food limitation only for newly settled individual. The observed increase in mean length of juvenile C. crangon was lower than the maximum possible growth. The function of the intertidal zone in the early juvenile stages of marine species is discussed.  相似文献   

13.
We conducted a segment-scale hydrothermal plume survey of the Broken Spur segment, 29°00-20′N, Mid-Atlantic Ridge (MAR). The purpose of the study was to identify the distribution of sources of venting throughout the segment as part of a larger study of hydrothermal fluxes. Evidence from plume particle concentrations (as deduced from in situ nephelometer data) and total dissolvable Mn (TDMn) analyses (from discrete water samples) indicated a restricted source of venting close to the segment centre, coincident with the previously known vent-site. No other pronounced plume signals were observed outside an area bounded by 29°07.5–12.5′N and 43°10–12′W, representing less than 10% of the >300 km2 of deep water (>2600 m) within the segment. In addition, however, low-level (<2 nmol l-1) deepwater TDMn concentrations reveal a pervasive enrichment throughout the segment of ⩾0.15 nmol l-1. For the 4×1011 m3 of deepwater within the Broken Spur segment, this corresponds to a standing crop of 6×104 mol of hydrothermal Mn. Future studies of long-term current flow will allow the flux of dissolved Mn out of the segment to be established and will investigate the partitioning of its source, between high temperature and axial diffuse flow.  相似文献   

14.
“CHEMINI” is a new instrument developed for the measurement of seawater chemical parameters. It is a mono-parameter in situ chemical analyzer based on flow injection analysis and colorimetric detection. The deep-sea version of CHEMINI combines two modules to perform the analysis of dissolved iron [Fe (II) or Fe (II+III)] and total sulphide (H2S+HS?+S2?) up to 6000 m depth. Detection limits are, respectively, 0.3 and 0.1 μM for iron and sulphide. The system proved highly reliable during the MoMARETO cruise on the Mid-Atlantic Ridge. The two CHEMINIs were used to describe the chemical environment in 12 mussel beds on the Tour Eiffel hydrothermal edifice.  相似文献   

15.
《Marine Chemistry》2007,103(1-2):30-45
The chemistry of dissolved Fe(III) was studied in the Scheldt estuary (The Netherlands). Two discrete size fractions of the dissolved bulk (< 0.2 μm and < 1 kDa) were considered at three salinities (S = 26, 10 and 0.3).Within the upper estuary, where fresh river water meets seawater, the dissolved Fe concentration decreases steeply with increasing salinity, for the fraction < 0.2 μm from 536 nM at S = 0.3 to 104 nM at S = 10 and for the fraction < 1 kDa from 102 nM to 36 nM Fe. Further downstream, in the middle and lower estuary, this decrease in the Fe concentration continues, but is far less pronounced. For all samples, the traditionally recognised dissolved strong organic Fe-binding ligand concentrations are lower than the dissolved Fe concentrations.Characteristics of dissolved Fe-binding ligands were determined by observing kinetic interactions with adsorptive cathodic stripping voltammetry. From these kinetic experiments we concluded that apart from the well-known strong Fe-binding organic ligands (L, logK = 19–22) also weak Fe-binding ligands (P) existed with an α value (binding potential = K · [P]) varying between 1011.1 and 1011.9. The presence of this relatively weak ligand explained the high concentrations of labile Fe present in both size fractions in the estuary. This weak ligand can retard or prevent a direct precipitation after an extra input of Fe.The dissociation rate constants of the weak ligand varied between 0.5 × 10 4 and 4.3 × 10 4 s 1. The rate constants of the strong organic ligand varied between kd = 1.5 × 10 3–17 × 10 2 s 1 and kf = 2.2 × 108–2.7 × 109 M 1 s 1. The dissociation rate constant of freshly amorphous Fe-hydroxide was found to be between 4.3 × 10 4 and 3.7 × 10 3 s 1, more labile or equal to the values found by Rose and Waite [Rose, A.L., Waite, T.D., 2003a. Kinetics of hydrolysis and precipitation of ferric iron in seawater. Environ. Sci. Technol., 37, 3897–3903.] for freshly precipitated Fe in seawater.Kinetic rate constants of Fe with the ligand TAC (2-(2-Thiazolylazo)-p-cresol) were also determined. The formation rate constant of Fe(TAC)2 varied between 0.1 × 108 and 3.6 × 108 M 1 s 1, the dissociation rate constant between 0.2 × 10 5 and 17 × 10 5 s 1 for both S = 26 and S = 10. The conditional stability constant of Fe(TAC)2 (βFe(TAC)2′) varied between 22 and 23.4 for S = 10 and S = 26 more or less equal to that known from the literature (logβFe(TAC)2 = 22.4; [Croot, P.L., Johansson, M., 2000. Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-Thiazolylazo)-p-cresol (TAC). Electroanalysis, 12, 565–576.]). However, at S = 0.3 the logβFe(TAC)2′ was 25.3, three orders of magnitude higher. Apparently the application of TAC to samples of low salinity can only be done when the correct βFe(TAC)2′ is known.  相似文献   

16.
The geographical distribution of barotropic to baroclinic transfer of tidal energy by baroclinic wave drag in the abyssal ocean is estimated. Using tidal velocities from a state-of-the-art numerical tidal model, the total loss of barotropic tidal energy in the deep ocean (between 70°S and 70°N and at depths greater than 1000 m) is estimated to be about 0.7 TW (M2) corresponding to a mean value of the energy flux (e) of 2.4×10−3 W/m2. The distribution of e is however highly skewed with a median of about 10−6 W/m2. Only 10% of the area is responsible for more than 97% of the total energy transfer.To assess the possible influence of the relatively coarse bathymetry representation upon the present estimate, complementary calculations using better resolved sea floor topography are carried out over a control area around the Hawaiian Ridge. There are no major differences between the results achieved using the two different bathymetry databases. Fluxes of about 16 GW or 6×10−3 W/m2 are computed in both cases, and the main contributions to the total fluxes originate in the same range of e-values and cover equally large parts of the total area.It is not clear whether the present model is valid at flat or subcritical bottom slopes. However, for the Hawaiian region, only 2% of the total energy flux as calculated in the present study originates in areas of critical and subcritical slopes.  相似文献   

17.
The copepods Neocalanus flemingeri and N. plumchrus are major components of the mesozooplankton on the shelf of the Gulf of Alaska, where they feed, grow and develop during April–June, the period encompassing the spring phytoplankton bloom. Satellite imagery indicates high mesoscale variability in phytoplankton concentration during this time. Because copepod ingestion is related to food concentration, we hypothesized that phytoplankton ingestion by N. flemingeri and N. plumchrus would vary in response to mesoscale variability of phytoplankton. We proposed that copepods on the inner shelf, where the phytoplankton bloom is most pronounced, would be larger and have more lipid stores than animals collected from the outer shelf, where phytoplankton concentrations are typically low. Shipboard feeding experiments with both copepods were done in spring of 2001 and 2003 using natural water as food medium. Chlorophyll concentration ranged widely, between 0.32 and 11.44 μg l−1 and ingestion rates varied accordingly, between 6.0 and 627.0 ng chl cop−1 d−1. At chlorophyll concentrations<0.50 μg l−1, ingestion is always low, <40 ng cop−1 d−1. Intermediate ingestion rates were observed at chlorophyll concentrations between 0.5 and 1.5 μg l−1, and maximum rates at chlorophyll concentrations>1.5 μg l−1. Application of these feeding rates to the phytoplankton distribution on the shelf allowed locations and time periods of low, intermediate and high daily feeding to be calculated for 2001 and 2003. A detailed cross-shelf survey of body size and lipid store in these copepods, however, indicated they were indistinguishable regardless of collection site. Although the daily ingestion of phytoplankton by N. flemingeri and N. plumchrus varied widely because of mesoscale variability in phytoplankton, these daily differences did not result in differences in final body size or lipid storage of these copepods. These copepods efficiently dealt with small and mesoscale variations in their food environment such that mesoscale structure in phytoplankton did not affect their final body size.  相似文献   

18.
Data collected on a cruise in January 2008, using a laser optical plankton counter, conductivity–temperature–depth sensors, and a lowered acoustic Doppler current profiler, was used to study the mesoscale distribution and advection of overwintering Calanus finmarchicus in its deep water winter habitat off the shelf of northern Norway. The overwintering animals were generally located immediately below the Atlantic Water (AW) in Arctic Intermediate Water (AIW), in the 600–1200 m depth range. The depth of the interface between AW and AIW varied considerably in the area and this was clearly reflected in the C. finmarchicus distribution. Maximum abundance varied from about 80 ind m?3 to more than 200 ind m?3 at the different stations. Current measurements showed the richness of mesoscazle eddies, with speeds exceeding 70 cm s?1 at the surface and rapidly decreasing with depth. In the main overwintering layer the eddy features were also clearly seen, but with speeds generally below 20 cm s?1. C. finmarchicus were found in the whole survey area, but they were not homogeneously distributed. Advection of the copepods resulted in relatively high local rates of change in overwintering C. finmarchicus abundance with mean value of 8% per day in the area. It is clear that mesoscale physical processes greatly contribute to the variability in the abundance of overwintering C. finmarchicus off the shelf of northern Norway. The collected data are also a valuable addition to the generally sparse datasets on the C. finmarchicus winter distribution and the role of the Lofoten basin in the large scale system is also discussed.  相似文献   

19.
Measurements of 234Th/238U disequilibria and particle size-fractionated (1, 10, 20, 53, 70, 100 μm) organic C and 234Th were made to constrain estimates of the export flux of particulate organic C (POC) from the surface waters of the Ligurian, Tyrrhenian and Aegean Seas in March–June 2004. POC exported from the surface waters (75–100 m depth) averaged 9.2 mmol m−2 d−1 in the Ligurian and Tyrrhenian Seas (2.3±0.5–14.9±3.0 mmol m−2 d−1) and 0.9 mmol m−2 d−1 in the Aegean Sea. These results are comparable to previous measurements of 234Th-derived and sediment-trap POC fluxes from the upper 200 m in the Mediterranean Sea. Depth variations in the POC/234Th ratio suggest two possible controls. First, decreasing POC/234Th ratios with depth were attributed to preferential remineralization of organic C. Second, the occurrence of maxima or minima in the POC/234Th ratio near the DCM suggests influence by phytoplankton dynamics. To assess the accuracy of these data, the empirical 234Th-method was evaluated by quantifying the extent to which the 234Th-based estimate of POC flux, PPOC, deviates from the true flux, FPOC, defined as the p-ratio (p-ratio=PPOC/FPOC=STh/SPOC, where S=particle sinking rate). Estimates of the p-ratio made using Stokes’ Law and the particle size distributions of organic C and 234Th yield values ranging from 0.93–1.45. The proximity of the p-ratio to unity implies that differences in the sinking rates of POC- and 234Th-carrying particles did not bias 234Th-normalized POC fluxes by more than a factor of two.  相似文献   

20.
Seafloor mapping of the central Lomonosov Ridge using a multibeam echo-sounder during the Beringia/Healy–Oden Trans-Arctic Expedition (HOTRAX) 2005 shows that a channel across the ridge has a substantially shallower sill depth than the ∼2500 m indicated in present bathymetric maps. The multibeam survey along the ridge crest shows a maximum sill depth of about 1870 m. A previously hypothesized exchange of deep water from the Amundsen Basin to the Makarov Basin in this area is not confirmed. On the contrary, evidence of a deep-water flow from the Makarov to the Amundsen Basin was observed, indicating the existence of a new pathway for Canadian Basin Deep Water toward the Atlantic Ocean. Sediment data show extensive current activity along the ridge crest and along the rim of a local Intra Basin within the ridge structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号