共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The Karimnagar granulite terrain is an integral part of the Eastern Dharwar Craton (EDC). It has received much interest because
of the only reported granulite facies rocks in the EDC. These granulites contain quartz-free sapphirine-spinel-bearing granulites,
kornerupine – bearing granulites, mafic granulites, orthopyroxene-cordierite gneisses, charnockites, amphibolites, dolerite
dykes, granite gneisses, quartzites and banded magnetite quartzite. The orthopyroxene-cordierite gneisses occur as enclaves
within granite-gneiss in association with banded magnetite quartzites, charnockites and amphibolites. The observed reaction
textures, spectacular as they are, have an extraordinary information content within a tiny domain. Coronas, symplectites and
resorption textures are of particular interest as they reflect discontinuous or continuous reactions under changing physical
conditions. The main mineral assemblages encountered in these gneisses are orthopyroxene – cordierite – biotite – plagioclase
– perthite – quartz and garnet – orthopyroxene – cordierite – biotite – quartz – plagioclase – perthite ± sillimanite. Multiphase
reaction textures in conjunction with mineral chemical data in the KFMASH system indicate the following reactions:
Based on chemographic relationships and petrogenetic grids in the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) system, a sequence of prograde (early stage), isothermal decompression (middle stage) and retrograde (late stage)
reactions (‘back reactions’ and hydration reactions) are inferred. Relatively lower P–T estimates (0.35 GPa/550–750 °C) obtained from the different geothermobarometers are attributed to late Fe–Mg re-equilibration
during cooling. Therefore, the convergence method has been applied to retrieve simultaneously the P–T conditions of the thermal peak of metamorphism. The near thermal peak condition of metamorphism estimated by the convergence
method are 850 °C/0.62 GPa. The P–T estimates define a retrograde trajectory with substantial decompression. 相似文献
2.
Meenu Rani Sufia Rehman Haroon Sajjad B. S. Chaudhary Jyoti Sharma Sandeep Bhardwaj Pavan Kumar 《Natural Hazards》2018,94(2):711-725
Vizianagaram–Srikakulam coastal shoreline consisting of beaches, mangrove swamps, tidal channel and mudflats is one of the vulnerable coasts in Andhra Pradesh, India. Five site-specific parameters, namely rate of geomorphology, coastal elevation, coastal slope, shoreline change and mean significant wave height, were chosen for constructing coastal vulnerability index and assessing coastal landscape vulnerability. The findings revealed a shift of 2.5 km in shoreline towards the land surface because of constant erosion and that of 1.82 km towards the sea due to accretion during 1997–2017. The rate of high erosion was found in zones IV and V, and high accretion was found in zones II and III. Coastal vulnerability index analysis revealed constant erosion along shoreline and sea level rise in the study area. Most of the coast in zone V has recorded very high vulnerability due to erosion, high slope, significant wave height and sea level rise. Erosion and accretion, significant wave height, sea level rise and slope are attributed to high vulnerability in zones III and IV. Zone II recorded moderate vulnerability. Relatively lower slope, mean sea wave height and sea level rise have made this zone moderately vulnerable. Very low vulnerability was found in zone I, and low vulnerability was recorded in zone II. Accretion, low slope and low sea level rise were found to be causative factors of lower vulnerability. Thus, zones III, IV and V should be accorded higher priorities for coastal management. The findings can be helpful in coastal land planning and management and preparing emergency plans of the coastal ecosystems. 相似文献
3.
A statistical approach by a modified Markov process model and entropy function is used to prove that the early Permian Barakar
Formation of the Bellampalli coalfield developed distinct cyclicities during deposition. From results, the transition path
of lithological states typical for the Bellampalli basin is as: coarse to medium-grained sandstone → interbedded fine-grained
sandstone/shale → shale → coal and again shale. The majority of cycles are symmetrical but asymmetrical cycles are present
as well. The chi-square stationarity test implies that these cycles are stationary in space and time. The cycles are interpreted
in terms of in-channel, point bar and overbank facies association in a fluvial system. The randomness in the occurrence of
facies within a cycle is evaluated in terms of entropy, which can be calculated from the Markov matrices. Two types of entropies
are calculated for every facies state; entropy after deposition E(post) and entropy before deposition E(pre), which together form entropy set; the entropy for the whole system is also calculated. These values are plotted and
compared with Hattori’s idealized plots, which indicate that the sequence is essentially a symmetrical cycle (type-B of Hattroi).
The symmetrical cyclical deposition of early Permian Barakar Formation is explained by the lateral migration of stream channels
in response to varying discharge and rate of deposition across the alluvial plain. In addition, the fining upward cycles in
the upper part enclosing thick beds of fine clastics, as well as coal may represent differential subsidence of depositional
basin. 相似文献
4.
《Journal of Asian Earth Sciences》2001,19(1-2):1-15
An association of westerly verging asymmetric folds, easterly dipping cleavages and contractional faults control the pattern and intensity of structures at different scales in the southern Nallamalai fold–fault belt, Cuddapah district of Andhra Pradesh, Southern India. Variation in structural geometry is manifested across the section by the occurrence of relatively low amplitude folds, sometimes only a monocline and by the near absence of contractional faults in the WSW, but tight to isoclinal folds with frequent fold–fault interactions through the central areas towards ENE.The relationships of structural elements in terms of orientation, style, sense of movement and general vergence indicate their development under a progressive contractional deformation. The structures are interpreted to result from a combination of bulk inhomogeneous shortening across the belt and a top-to-west, variable simple shear. Localized developments of crenulation cleavage, rotation of cleavage in the shorter limbs of some mesoscale asymmetric folds and general variation of structural elements in morphology and associations across the belt, indicate partitioning of deformation and a varying degree of non-coaxiality in discrete domains of the bulk deformation. 相似文献
5.
Kamal Jeet Singh Srikanta Murthy Anju Saxena Husain Shabbar 《Journal of Earth System Science》2017,126(2):25
The coal-bearing sequences of Barakar and Raniganj formations exposed in Bina and Jhingurdah open-cast collieries, respectively, are analysed for their macro- and miofloral content. The sediment successions primarily comprise of sandstones, shales, claystones and coal seams. In addition to the diverse glossopterid assemblage, four palynoassemblage zones, namely Zones I and II in Bina Colliery and Zones III and IV in Jhingurdah Colliery, have also been recorded in the present study. The megafossil assemblage from the Barakar strata of Bina Colliery comprises of three genera, namely Gangamopteris, Glossopteris and cf. Noeggerathiopsis. Palynoassemblage-I is characterised by the dominance of non-striate bisaccate pollen genus Scheuringipollenites and subdominance of striate bisaccate Faunipollenites and infers these strata to be of Early Permian (Artinskian) age (Lower Barakar Formation). The palynoassemblage has also yielded a large number of naked fossil spore tetrads, which is the first record of spore tetrads from any Artinskian strata in the world and has a significant bearing on the climatic conditions. The palynoassemblage-II is characterised with the dominance of Faunipollenites over Scheuringipollenites and is indicative of Kungurian age (Upper Barakar Formation). The megafossil assemblage from the Raniganj Formation of Jhingurdah Colliery comprises of five genera with 26 species representing four orders, viz., Equisetales, Cordaitales, Cycadales and Glossopteridales. The order Glossopteridales is highly diversified with 23 taxa and the genus Glossopteris, with 22 species, dominates the flora. The mioflora of this colliery is represented by two distinct palynoassemblages. The palynoassemblage-III is correlatable with the palynoflora of Early Permian (Artinskian) Lower Barakar Formation. The assemblage suggests the continuity of older biozones into the younger ones. The palynoassemblage-IV equates the beds with composition V: Striatopodocarpites–Faunipollenites–Gondisporites assemblage zone of Tiwari and Tripathi (1992) of Late Permian (Lopingian) Raniganj Formation in Damodar Basin. The FAD’s of Alisporites, Klausipollenites, Falcisporites, Arcuatipollenites pellucidus and Playfordiaspora cancellosa palynotaxa in this assemblage enhance the end Permian level of the Jhingurdah Top seam, as these elements are the key species to mark the transition of Permian into the Lower Triassic. 相似文献
6.
《Chemie der Erde / Geochemistry》2016,76(1):117-131
Elemental and organic geochemical studies have been carried out on the Gondwana sediments, collected from the outcrops of Permian and Jurassic–Cretaceous rocks in the Krishna–Godavari basin on the eastern coast of India, to understand their paleo and depositional environment and its implications for hydrocarbon generation in the basin. Amongst the studied formations, the Raghavapuram, Gollapalli and Tirupati form a dominant Cretaceous Petroleum System in the west of the basin. Raghavapuram shales and its stratigraphic equivalents are the source rock and Gollapalli and Tirupati sandstones form the reservoirs, along with basaltic Razole formation as the caprock. Major element systematics and X-ray diffraction study of the sandstones indicate them to be variably enriched with SiO2 relative to Al2O3 and CaO, which is associated, inherently with the deposition and diagenesis of the Gondwana sediments. Post-Archean Average Shale normalized rare earth elements in shales show enrichment in most of the samples due to the increasing clay mineral and organic matter assemblage. A negative europium and cerium anomaly is exhibited by the REE's in majority of rocks. Composed primarily of quartz grains and silica cement, the Gollapalli and Tirupati sandstones have characteristics of high quality reservoirs. The shales show a significant increase in the concentration of redox sensitive trace elements, Ni, V, Cr, Ba and Zn. The total organic carbon content of the shales ranges between 0.1 and 0.5 wt%. Programmed pyrolysis of selected samples show the Tmax values to range between 352–497 °C and that of hydrogen index to be between 57–460 mgHC/gTOC. The organic matter is characterized by, mainly, gas prone Type III kerogen. The n-alkane composition is dominated by n-C11–C18 and acyclic isoprenoid, phytane. The aromatic fraction shows the presence of naphthalene, anthracene, phenanthrene, chrysene and their derivatives, resulting largely from the diagenetic alteration of precursor terpenoids. The organic geochemical proxies indicate the input of organic matter from near-shore terrestrial sources and its deposition in strongly reducing, low oxygen conditions. The organic matter richness and maturity derived from a favorable depositional setting has its bearing upon the Gondwana sediments globally, and also provides promising exploration opportunities, particularly in the Raghavapuram sequence of the KG basin. 相似文献
7.
K. Balakrishna S.S. Suvarna G. Srinikethan G. Mugeraya P.K. Krishnakumar 《中国地球化学学报》2006,25(B08):268-269
Detailed time-series studies on the major ion geochemistry of tropical peninsular Indian rivers are lacking. In this backdrop, a small stretch of the Godavari River, globally ranking 32nd in terms of total discharge, is chosen for sampling at its mouth. The objectives are: (1) to understand the natural and anthropogenic sources controlling the major ion chemistry of the Godavari River at Rajahmundry, (2) processes controlling the temporal variations in major ions over a period of two years, (3) comparison of total dissolved solid (TDS) fluxes and weathering rates at Godavari River with other major tropical rivers. A total of 47 surface samples were collected, bimonthly, at five stations in the Godavari at Rajahmundry spaced over a distance of 6 km for a period of two years. Water samples were collected in pre-cleaned PP bottles. Parameters like temperature, pH, conductivity, dissolved oxygen, alkalinity were measured on-site. Samples collected for analysis of major ions were processed within a few hours of collection by filtering through 0.45 mm pore size millipore filters. Filtered water samples for major ions were transported to the laboratory in cleaned 250 mL PP bottles. Sodium and K were measured on a Flame Photometer, Ca and Mg on a Flame Atomic Absorption Spectrophotometer, Cl, NO3, SO4 by Ion Chromatography and SiO2 on a spectrophotometer. Chemical weathering of rocks controls the major ion chemistry of the Godavari River at its mouth as indicated by the alkaline nature of the river and dominant presence of Ca, Mg and HCO3 ions. Ca/Mg and Na/Mg ratios point its source to a mixture of lithological assemblages of basalt, granite-granodiorite, 相似文献
8.
The Krishni–Yamuna interstream area is a micro-watershed in the Central Ganga Plain and a highly fertile track of Western
Uttar Pradesh. The Sugarcane and wheat are the major crops of the area. Aquifers of Quaternary age form the major source of
Irrigation and municipal water supplies. A detailed hydrogeological investigation was carried out in the study area with an
objective to assess aquifer framework, groundwater quality and its resource potential. The hydrogeological cross section reveals
occurrence of alternate layers of clay and sand. Aquifer broadly behaves as a single bodied aquifer down to the depth of 100 m bgl
(metre below ground level) as the clay layers laterally pinch out. The depth to water in the area varies between 5 and 16.5 m bgl.
The general groundwater flow direction is from NE to SW with few local variations. An attempt has been made to evaluate groundwater
resources of the area. The water budget method focuses on the various components contributing to groundwater flow and groundwater
storage changes. Changes in ground water storage can be attributed to rainfall recharge, irrigation return flow and ground
water inflow to the basin minus baseflow (ground water discharge to streams or springs), evapotranspiration from ground water,
pumping and ground water outflow from the basin. The recharge is obtained in the study area using Water table fluctuation
and Tritium methods. The results of water balance study show that the total recharge in to the interstream region is of the
order of 185.25 million m3 and discharge from the study area is of the order of 203.24 million m3, leaving a deficit balance of −17.99 million m3. Therefore, the present status of groundwater development in the present study area has acquired the declining trend. Thus,
the hydrogeological analysis and water balance studies shows that the groundwater development has attained a critical state
in the region. 相似文献
9.
The Krishna–Godavari (KG) basin, a passive margin Late Carboniferous to Holocene basin along the rifted east coast of India, includes the deltaic and inter-deltaic regions of the Krishna and Godavari rivers onshore and extends into the offshore. It is one of India’s premier hydrocarbon-bearing basins. In an attempt to better understand the thermal history of the basin, apatite fission track (AFT) data has been obtained from six exploration wells (five onshore and one offshore). AFT thermal history models as well as other thermal indicators e.g. vitrinite reflectance (VR), Rock–Eval Tmax data reveal that the host rocks are currently at their maximum post-depositional temperatures and that any possible heating related to small-scale tectonism or rifting episodes in the basin bears little significance on the maturation of the sediments. In the case of one borehole (M-1) however, the organic maturity data reveals a period of Oligocene cooling across an unconformity when ∼1000 m of section was eroded due to falling sea-level. This information offers the potential for improved basin modeling of the KG basin. 相似文献
10.
J. R. Laurie R. S. Nicoll J. L. Crowley D. J. Mantle A. J. Mory 《Australian Journal of Earth Sciences》2016,63(6):701-730
The advent of chemical abrasion-isotope dilution thermal ionisation mass spectrometry (CA-IDTIMS) has revolutionised U–Pb dating of zircon, and the enhanced precision of eruption ages determined on volcanic layers within basin successions permits an improved calibration of biostratigraphic schemes to the numerical time-scale. The Guadalupian and Lopingian (Permian) successions in the Sydney, Gunnedah, Bowen and Canning basins are mostly non-marine and include numerous airfall tuff units, many of which contain zircon. The eastern Australian palynostratigraphic scheme provides the basis for much of the local correlation, but the present calibration of this scheme against the numerical time-scale depends on a correlation to Western Australia, using rare ammonoids and conodonts in that succession to link to the standard global marine biostratigraphic scheme. High-precision U–Pb zircon dating of tuff layers via CA-IDTIMS allows this tenuous correlation to be circumvented—the resulting direct calibration of the palynostratigraphy to the numerical time-scale highlights significant inaccuracies in the previous indirect correlation. The new data show: the top of the Praecolpatites sinuosus Zone (APP3.2) lies in the early Roadian, not the middle Kungurian; the top of the Microbaculispora villosa Zone (APP3.3) lies in the middle Roadian, not the early Roadian; the top of the Dulhuntyispora granulata Zone (APP4.1) lies in the Wordian, not in the latest Roadian; the top of the Didecitriletes ericianus Zone (APP4.2) lies in the first half of the Wuchiapingian, not the latest Wordian; the Dulhuntyispora dulhuntyi Zone (APP4.3) is exceptionally short and lies within the Wuchiapingian, not the early Capitanian; and the top of the Dulhuntyispora parvithola Zone (APP5) lies at or near the Permo-Triassic boundary, not in the latest Wuchiapingian. 相似文献
11.
In this paper, we, for the first time, report geochemistry of sandstone from Somanpalli Group from Pomburna area in the Eastern Belt of Pranhita–Godavari (PG) Valley, central India and studied to infer their provenance, intensity of paleo-weathering and depositional tectonic setting. Petrographic study of sandstones show QFL modal composition of arenite. Chemical results show high \(\hbox {SiO}_{2}\) and CIA but lower \(\hbox {Al}_{2}\hbox {O}_{3}, \hbox {TiO}_{2}\), Rb, Sr, \(\hbox {K}_{2}\hbox {O}\) indicating mixed sources. Major elements chemistry parameters such as, \(\hbox {K}_{2}\hbox {O/Al}_{2}\hbox {O}_{3}\) ratio and positive correlation of Rb with \(\hbox {K}_{2}\hbox {O}\), reflects a warm and humid climate for study area. The tectonic discrimination plots (\(\hbox {SiO}_{2}/20\)–\(\hbox {K}_{2}\hbox {O} + \hbox {Na}_{2}\hbox {O}\)–\(\hbox {TiO}_{2} + \hbox {Fe}_{2}\hbox {O}_{3} + \hbox {MgO};\,\hbox {K}_{2}\hbox {O}/\hbox {Na}_{2}\hbox {O}\) vs. \(\hbox {SiO}_{2}\); Th–Sc–Zr/20) indicate dominantly passive margin and slight active tectonic setting. Concentrations of Zr, Nb, Y, and Th are higher compared to the UCC values and the trends in Th/Cr, Th/Co, La/Sc and Cr/Zr ratios support a felsic and mafic source for these sandstones and deposition in passive margin basin. Chondrite normalized REE pattern reflects LREE depletion, negative Eu anomaly and flat HREE similar to UCC, felsic components. ICV value (0.95) also supports tectonically quiescent passive margin settings. CIA values (74) indicate high degree of chemical weathering and warm and humid paleoclimatic condition. 相似文献
12.
V. V. Sesha Sai 《Journal of the Geological Society of India》2009,74(4):509-514
Extensive field and petrological studies carried out in Kandra ophiolite complex (KOC) in the southern part of Nellore schist
belt (NSB) revealed the existence of sheeted dykes in Kandra- Kondakuru-Gollapalli section. The sheeted dykes occur in the
northern part of the complex and compositionally vary from medium-grained dolerites showing typical sub-ophitic texture to
diabase dykes that are extremely fine grained aphanitic to fine-grained cryptocrystalline parallel basic dykes (varying in
width from 4 cm to 1.25 m). These dykes show chilled margins on either side with the host dykes into which these are intruded.
Veins of oceanic plagiogranite (0.5 × 5 m) are noticed in a major sheeted dyke. Occurrence of oceanic plagiogranite as ovoid
/ semicircular patches of 6 cm diameter resembling “immiscible droplets” within basic dykes is also noticed. The southern
part of the complex is made of a major NW-SE trending cumulus gabbro that grades into olivine gabbronorite in its eastern
part. The southern gabbros represent the plutonic component and form the deeper part of the complex. In this paper an attempt
has been made to present the field, petrographic and mineral chemistry account of various lithounits that constitute the Kandra
ophiolite complex in a succinct manner. 相似文献
13.
14.
Elizabeth J. Catlos Enrique Reyes Michael Brookfield Daniel F. Stockli 《International Geology Review》2017,59(8):919-945
The Menghai batholith (Yunnan Province, China) is the southern extension of the ~370 km long Lincang granite body that syntectonically intruded the collisional zone between Gondwana (Baoshan block) and Laurasia (Simao block) terranes during closure of the Palaeo-Tethyan Ocean. Eight Menghai granodiorites were analysed across an ~45 km E–W transect from the pluton’s central region to eastern perimeter. Each rock was imaged in cathodoluminescence and geochemically analysed for major and trace elements. A minimum 30 zircons per sample were dated using laser ablation inductively coupled plasma–mass spectrometry. Samples are peraluminous to strongly peraluminous, magnesian, calcic or calc-alkalic granodiorites. Trace element suggest a high pressure (12–15 kbar) low clay source with >20–30% volume interaction with basalt. Crustal anatexis was likely related to post-collisional lithosphere delamination and upwelling of hot asthenosphere, forming large-volume melts. Zircon ages (207Pb–206Pb and 238U–206Pb) range from 3234 ± 42 to 171.7 ± 5.4 Ma (±2σ). Inherited zircon ages include the Palaeoarchaean–Neoarchaean (average 2938 ± 27 Ma, n = 8 ages), Lüliang (2254 ± 38 Ma, n = 7), Changcheng–Jixianian (1274 ± 47 Ma, n = 33), Qinbaikou (963 ± 29 Ma, n = 7), Nanhua (787 ± 24 Ma, n = 7), Sinian (595.4 ± 12.2 Ma, n = 14), Qilian (452.2 ± 8.7 Ma, n = 24) and Tienshan (358.9 ± 12.4 Ma, n = 5). The presence of these ages decrease from the batholith’s central portion (>50% ages) to eastern perimeter (2–16% ages), as the rocks appear progressively metamorphosed. The distribution of U/Th ratio suggests inherited zircons are Carboniferous (317.6 ± 5.7 Ma) and older and crystallization ages span the Permian to Early Jurassic. The average and youngest zircon age per sample decreases from the centre of the batholith to its eastern perimeter, from 226.8 ± 8.8 and 210.7 ± 3.3 to 211.8 ± 5.7 and 171.0 ± 5.4 Ma, respectively. If recorded by syntectonic zircon crystallization, collision and closure of a branch of the Palaeo-Tethyan Ocean occurred here over an ~100 million years time period from the Permian (281.0 ± 13.0 Ma) to Jurassic (171.5 ± 5.4 Ma). 相似文献
15.
16.
Biplab Bhattacharya Joyeeta Bhattacharjee Sandip Bandyopadhyay Sudipto Banerjee Kalyan Adhikari 《Journal of Earth System Science》2018,127(2):29
The present research is an attempt to assess the Barakar Formation of the Raniganj Gondwana Basin, India, in the frame of fluvio-marine (estuarine) depositional systems using sequence stratigraphic elements. Analysis of predominant facies associations signify deposition in three sub-environments: (i) a river-dominated bay-head delta zone in the inner estuary, with transition from braided fluvial channels (FA-B1) to tide-affected meandering fluvial channels and flood plains (FA-B2) in the basal part of the succession; (ii) a mixed energy central basin zone, which consists of transitional fluvio-tidal channels (FA-B2), tidal flats, associated with tidal channels and bars (FA-B3) in the middle-upper part of the succession; and (iii) a wave-dominated outer estuary (coastal) zone (FA-B4 with FA-B3) in the upper part of the succession. Stacked progradational (P1, P2)–retrogradational (R1, R2) successions attest to one major base level fluctuation, leading to distinct transgressive–regressive (T–R) cycles with development of initial falling stage systems tract (FSST), followed by lowstand systems tract (LST) and successive transgressive systems tracts (TST-1 and TST-2). Shift in the depositional regime from regressive to transgressive estuarine system in the early Permian Barakar Formation is attributed to change in accommodation space caused by mutual interactions of (i) base level fluctuations in response to climatic amelioration and (ii) basinal tectonisms (exhumation/sagging) related to post-glacial isostatic adjustments in the riftogenic Gondwana basins. 相似文献
17.
V. R. Lozovsky Yu. P. Balabanov E. V. Karasev I. V. Novikov A. G. Ponomarenko O. P. Yaroshenko 《Stratigraphy and Geological Correlation》2016,24(4):364-380
The comprehensive analysis of the data obtained on terrestrial vertebrata, ostracods, entomologic fauna, megaflora, and microflora in deposits of the Vyaznikovian Horizon and Nedubrovo Member, as well as the paleomagnetic data measured in enclosing rocks, confirms heterogeneity of these deposits. Accordingly, it is necessary to distinguish these two stratons in the terminal Permian of the East European Platform. The combined sequence of Triassic–Permian boundary deposits in the Moscow Syneclise, which is considered to be the most complete sequence in the East European Platform, is as follows (from bottom upward): Vyatkian deposits; Vyaznikovian Horizon, including Sokovka and Zhukovo members; Nedubrovo Member (Upper Permian); Astashikha and Ryabi members of the Vokhmian Horizon (Lower Triassic). None of the sequences of Permian–Triassic boundary deposits known in the area of study characterizes this sequence in full volume. In the north, the Triassic deposits are underlain by the Nedubrovo Member; in the south (the Klyazma River basin), the sections are underlain by the Vyaznikovian Horizon. The Permian–Triassic boundary adopted in the General Stratigraphic Scale of Russia for continental deposits of the East European platform (the lower boundary of the Astashikha Member) is more ancient than the one adopted in the International Stratigraphic Chart. The same geological situation is observed in the German Basin and other localities where Triassic continental deposits are developed. The ways of solving this problem are discussed in this article. 相似文献
18.
Arindam Guha K. Vinod Kumar M. V. V. Kamaraju K. Babu Govindharaj 《Journal of the Geological Society of India》2009,73(2):268-272
The application of SAR data is a proven technology in geological studies but very few accounts are available in India, which
can evaluate and demonstrate the utility of microwave signatures as an important tool for geological mapping. In this connection,
the significance of polarization is an important parameter in enhancing geological elements. Present study reveals that the
simple polarization composite prepared from different polarization channels can significantly aid the delineation of geological
features as demonstrated from the Proterozoic metasedimentary sequences of Kurnool Group. The polarization colour composites
reveal that different sedimentary units can be differentiated on the basis of variable back scattering return in different
polarization channel. Further geological structures of regional importance can also be delineated in these colour composite
images. Comparative analysis of different composite images with published geological maps, illustrates the capabilities of
the microwave polarization in enhancing geological elements and how they can be used in updating geological data. 相似文献
19.
Sitangshu Chatterjee Uday Kumar Sinha Archana. S. Deodhar Md. Arzoo Ansari Nathu Singh Ajay Kumar Srivastava R. K. Aggarwal Ashutosh Dash 《Environmental Earth Sciences》2017,76(18):638
Uttarakhand geothermal area, located in the central belt of the Himalayan geothermal province, is one of the important high temperature geothermal fields in India. In this study, the chemical characteristics of the thermal waters are investigated to identify the main geochemical processes affecting the composition of thermal waters during its ascent toward the surface as well as to determine the subsurface temperature of the feeding reservoir. The thermal waters are mainly Ca–Mg–HCO3 type with moderate silica and TDS concentrations. Mineral saturation states calculated from PHREEQC geochemical code indicate that thermal waters are supersaturated with respect to calcite, dolomite, aragonite, chalcedony, quartz (SI > 0), and undersaturated with respect to gypsum, anhydrite, and amorphous silica (SI < 0). XRD study of the spring deposit samples fairly corroborates the predicted mineral saturation state of the thermal waters. Stable isotopes (δ18O, δ2H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The mixing phenomenon between thermal water with shallow ground water is substantiated using tritium (3H) and chemical data. The extent of dilution is quantified using tritium content of thermal springs and non-thermal waters. Classical geothermometers, mixing model, and multicomponent fluid geothermometry modeling (GeoT) have been applied to estimate the subsurface reservoir temperature. Among different classical geothermometers, only quartz geothermometer provide somewhat reliable estimation (96–140 °C) of the reservoir temperature. GeoT modeling results suggest that thermal waters have attained simultaneous equilibrium with respect to minerals like calcite, quartz, chalcedony, brucite, tridymite, cristobalite, talc, at the temperature 130 ± 5 °C which is in good agreement with the result obtained from the mixing model. 相似文献
20.
《Journal of Asian Earth Sciences》2010,37(6):503-520
Measured lithostratigraphic sections of the classic Permian–Triassic non-marine transitional sequences covering the upper Quanzijie, Wutonggou, Guodikeng and lower Jiucaiyuan Formations at Dalongkou and Lucaogou, Xinjiang Province, China are presented. These measured sections form the framework and reference sections for a range of multi-disciplinary studies of the P–T transition in this large ancient lake basin, including palynostratigraphy, vertebrate biostratigraphy, chemostratigraphy and magnetostratigraphy. The 121 m thick Wutonggou Formation at Dalongkou includes 12 sandstone units ranging in thickness from 0.5 to 10.5 m that represent cyclical coarse terrigenous input to the lake basin during the Late Permian. The rhythmically-bedded, mudstone-dominated Guodikeng Formation is 197 m and 209 m thick on the north and south limbs of the Dalongkou anticline, respectively, and 129 m thick at Lucaogou. Based on limited palynological data, the Permian–Triassic boundary was previously placed approximately 50 m below the top of this formation at Dalongkou. This boundary does not coincide with any mappable lithologic unit, such as the basal sandstones of the overlying Jiucaiyuan Formation, assigned to the Early Triassic. The presence of multiple organic δ13C-isotope excursions, mutant pollen, and multiple algal and conchostracan blooms in this formation, together with Late Permian palynomorphs, suggests that the Guodikeng Formation records multiple climatic perturbation signals representing environmental stress during the late Permian mass extinction interval. The overlap between the vertebrates Dicynodon and Lystrosaurus in the upper part of this formation, and the occurrence of late Permian spores and the latest Permian to earliest Triassic megaspore Otynisporites eotriassicus is consistent with a latest Permian age for at least part of the Guodikeng Formation. Palynostratigrahic placement of the Permian–Triassic boundary in the Junggar Basin remains problematic because key miospore taxa, such as Aratrisporites spp. are not present. Palynomorphs from the Guodikeng are assigned to two assemblages; the youngest, from the upper 100 m of the formation (and the overlying Jiucaiyuan Formation), contains both typical Permian elements and distinctive taxa that elsewhere are known from the Early Triassic of Canada, Greenland, Norway, and Russia. The latter include spores assigned to Pechorosporites disertus, Lundbladispora foveota, Naumovaspora striata, Decussatisporites mulstrigatus and Leptolepidites jonkerii. While the presence of Devonian and Carboniferous spores and Early Permian pollen demonstrate reworking is occurring in the Guodikeng assemblages, the sometimes common occurrence of Scutasporites sp. cf. Scutasporites unicus, and other pollen, suggests that the Late Permian elements are in place, and that the upper assemblage derives from a genuine transitional flora of Early Triassic aspect. In the Junggar Basin, biostratigraphic data and magnetostratigraphic data indicate that the Permian–Triassic boundary (GSSP Level) is in the middle to upper Guodikeng Formation and perhaps as high as the formational contact with the overlying Jiucaiyuan Formation. 相似文献