共查询到7条相似文献,搜索用时 15 毫秒
1.
Yuji Ichiyama Hisatoshi Ito Akihiro Tamura Shoji Arai 《International Geology Review》2020,62(4):503-521
ABSTRACTA Paleogene accretionary complex, the Mineoka–Setogawa belt is distributed adjacent to the northern portion of the collision zone between Honshu and Izu–Bonin–Mariana (IBM) arcs in central Japan, comprising a mélange of ophiolitic fragments of various sizes. The Eocene-Oligocene plutonic rocks in this belt (gabbro, diorite, and tonalite) have been interpreted as fragments brought from the deep crust beneath the IBM arc through tectonic collisions. The geochemical characteristics of the gabbro and associated basaltic dike are similar to those of the Eocene IBM tholeiitic basalt; thus, the gabbro was likely formed via the crystallization of the Eocene tholeiitic basaltic magmas, which was produced by the partial meltings of a depleted mantle wedge. A comparison with experimental results and geochemical modeling indicates that the tonalite was generated by 10–30% dehydration melting of the gabbro. Actually, Eocene–Oligocene felsic veins, which are coeval with the plutonic rocks, occur in the Mineoka–Setogawa gabbro. Plagioclase crystals in the diorite comprise Ca-rich and -poor parts in a single crystal. Their compositional characteristics are consistent with those of plagioclase in the gabbro and tonalite, respectively. The textures and chemical composition of plagioclase indicate that the diorite was formed by the mixing between mafic and silicic magmas. The whole-rock composition of the diorite also indicates the evidence for the mixing between basaltic magmas which were fractionated to variable degrees and homogeneous silicic magma. The mixing model proposed from the first direct observations of the IBM middle crust exposed on the Mineoka–Setogawa belt is applied to the genesis of the Eocene to present intermediate rocks in the IBM arc. If the continental crust were created at intra-oceanic arc settings such as the IBM arc, the magma mixing model would be one of the most likely mechanisms for the genesis of the continental crust. 相似文献
2.
J. Escuder Viruete M. Joubert P. Urien R. Friedman D. Weis T. Ullrich A. Prez-Estaún 《Lithos》2008,104(1-4):378-404
We present new regional petrologic, geochemical, Sr–Nd isotopic, and U–Pb geochronological data on the Turonian–Campanian mafic igneous rocks of Central Hispaniola that provide important clues on the development of the Caribbean island-arc. Central Hispaniola is made up of three main tectonic blocks—Jicomé, Jarabacoa and Bonao—that include four broad geochemical groups of Late Cretaceous mafic igneous rocks: group I, tholeiitic to calc-alkaline basalts and andesites; group II, low-Ti high-Mg andesites and basalts; group III, tholeiitic basalts and gabbros/dolerites; and group IV, tholeiitic to transitional and alkalic basalts. These igneous rocks show significant differences in time and space, from arc-like to non-arc-like characteristics, suggesting that they were derived from different mantle sources. We interpret these groups as the record of Caribbean arc-rifting and back-arc basin development in the Late Cretaceous. The> 90 Ma group I volcanic rocks and associated cumulate complexes preserved in the Jicomé and Jarabacoa blocks represent the Albian to Cenomanian Caribbean island-arc material. The arc rift stage magmatism in these blocks took place during the deposition of the Restauración Formation from the Turonian–Coniacian transition (~ 90 Ma) to Santonian/Lower Campanian, particularly in its lower part with extrusion at 90–88 Ma of group II low-Ti, high-Mg andesites/basalts. During this time or slightly afterwards adakitic rhyolites erupted in the Jarabacoa block. Group III tholeiitic lavas represent the initiation of Coniacian–Lower Campanian back-arc spreading. In the Bonao block, this stage is represented by back-arc basin-like basalts, gabbros and dolerite/diorite dykes intruded into the Loma Caribe peridotite, as well as the Peralvillo Sur Formation basalts, capped by tuffs, shales and Campanian cherts. This dismembered ophiolitic stratigraphy indicates that the Bonao block is a fragment of an ensimatic back-arc basin. In the Jicomé and Jarabacoa blocks, the mainly Campanian group IV basalts of the Peña Blanca, Siete Cabezas and Pelona–Pico Duarte Formation, represent the subsequent stage of back-arc spreading and off-axis non-arc-like magmatism, caused by migration of the arc toward the northeast. These basalts have geochemical affinities with the mantle domain influenced by the Caribbean plume, suggesting that mantle was flowing toward the NE, beneath the extended Caribbean island-arc, in response to rollback of the subducting proto-Caribbean slab. 相似文献
3.
The Haji‐Abad ophiolite in SW Iran (Outer Zagros Ophiolite Belt) is a remnant of the Late Cretaceous supra‐subduction zone ophiolites along the Bitlis–Zagros suture zone of southern Tethys. These ophiolites are coeval in age with the Late Cretaceous peri‐Arabian ophiolite belt including the Troodos (Cyprus), Kizildag (Turkey), Baer‐Bassit (Syria) and Semail (Oman) in the eastern Mediterranean region, as well as other Late Cretaceous Zagros ophiolites. Mantle tectonites constitute the main lithology of the Haji‐Abad ophiolite and are mostly lherzolites, depleted harzburgite with widespread residual and foliated/discordant dunite lenses. Podiform chromitites are common and are typically enveloped by thin dunitic haloes. Harzburgitic spinels are geochemically characterized by low and/or high Cr number, showing tendency to plot both in depleted abyssal and fore‐arc peridotites fields. Lherzolites are less refractory with slightly higher bulk REE contents and characterized by 7–12% partial melting of a spinel lherzolitic source whereas depleted harzburgites have very low abundances of REE and represented by more than 17% partial melting. The Haji‐Abad ophiolite crustal sequences are characterized by ultramafic cumulates and volcanic rocks. The volcanic rocks comprise pillow lavas and massive lava flows with basaltic to more‐evolved dacitic composition. The geochemistry and petrology of the Haji‐Abad volcanic rocks show a magmatic progression from early‐erupted E‐MORB‐type pillow lavas to late‐stages boninitic lavas. The E‐MORB‐type lavas have LREE‐enriched patterns without (or with slight) depletion in Nb–Ta. Boninitic lavas are highly depleted in bulk REEs and are represented by strong LREE‐depleted patterns and Nb–Ta negative anomalies. Tonalitic and plagiogranitic intrusions of small size, with calc‐alkaline signature, are common in the ophiolite complex. The Late Cretaceous Tethyan ophiolites like those at the Troodos, eastern Mediterranean, Oman and Zagros show similar ages and geochemical signatures, suggesting widespread supra‐subduction zone magmatism in all Neotethyan ophiolites during the Late Cretaceous. The geochemical patterns of the Haji‐Abad ophiolites as well as those of other Late Cretaceous Tethyan ophiolites, reflect a fore‐arc tectonic setting for the generation of the magmatic rocks in the southern branch of Neotethys during the Late Cretaceous. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
4.
P. M. Valley D. L. Whitney S. R. Paterson R. B. Miller H. Alsleben 《Journal of Metamorphic Geology》2003,21(2):203-220
The Swakane Gneiss and the overlying Napeequa Complex in the North Cascade range, Washington, were metamorphosed and deformed during development of a Cretaceous‐Paleogene continental arc, and are among the structurally deepest exposed rocks within the Cordilleran arcs of North America. Peak metamorphic conditions in both the Swakane Gneiss and Napeequa Complex were c. 640–750 °C, 9–12 kbar. Clockwise paths and widespread evidence for high‐P metamorphism in meta‐supracrustal rocks (burial to >40 km) document major vertical tectonic motion during arc construction and unroofing. These and other moderately high‐pressure rocks in the North Cascades‐Coast Mountains experienced a dramatically different tectonometamorphic history than metamorphic rocks within other Cordilleran arcs. The exhumed arc complexes of the Sierra Nevada and Peninsular Ranges are dominated by relatively low‐P metamorphic and plutonic rocks (typically <6 kbar). There is no evidence that the northern Cordillera was thickened to a greater degree than these other belts, suggesting that the greater magnitude of vertical motion in the Cascades may have been related to exhumation mechanisms: Eocene extension in the northern Cordillera vs. erosional unroofing in the central and southern Cordillera. 相似文献
5.
《Chemie der Erde / Geochemistry》2016,76(4):529-541
The Ebrahim-Attar (EBAT) leucogranite body is intruded within the Jurassic metamorphic complex of the Ghorveh area, located in the northern part of the Sanandaj Sirjan zone (SaSZ) of northwest Iran. The granite comprises alkali feldspar, quartz, Na-rich plagioclase and to a lesser extent, muscovite and biotite. Garnet and beryl are also observed as accessory minerals. Additionally, high SiO2 (71.4–81.0wt %) and Rb (145–440 ppm) content; low MgO (<0.12wt %), Fe2O3 (< 0.68 wt.%), Sr (mainly < 20 ppm), Ba (<57 ppm), Zr (10–53 ppm) and rare earth elements (REEs) low content (3.88–94.9 ppm with an average = 21.2 ppm); and flat REE patterns with a negative Eu anomaly characterize these rocks. The chemical composition and mineral paragenesis indicate that the rocks were formed by the partial melting of siliciclastic to pelitic rocks and can be classified as per-aluminous leucogranite or strongly per-aluminous (SP) granite. The Rb-Sr whole rock and mineral isochrons confirm that crystallization of the body occurred at 102.5 ± 6.1 Ma in Albian. The 87Sr/86Sr(i) and 143Nd/144Nd(i) ratios are 0.7081 ± 0.009 and 0.51220 ± 0.00005, respectively, and εNd(t) values range from −5.8 to −1.6. These values verify that the source of this body is continental crust. The Nd model ages (TDM2) vary between 1.0 and 1.3 Ga and are more consistent with the juvenile basement of Pan African crust. Based on these results, we suggest that the upwelling of the hot asthenospheric mantle in the SaSZ (likely during the Neo-Tethys rollback activity) occurred after the late Cimmerian orogeny. Consequently, we suggest that this process was responsible for a thinning and heating of the continental crust, from which the SP granite was produced by the partial melting of muscovite rich in pelitic or felsic-metapelitic rocks in the northern SaSZ. 相似文献
6.
7.
Petrographical and geochemical methods were combined to investigate the provenance, geodynamic and weathering history of the Shurijeh sandstones, Kopet-Dagh Basin. The point-counting method and XRF technique are used for modal and geochemical analyses. Based on petrographical examinations, it seems that the Shurijeh sandstones are mainly deposited in the craton interior and recycled orogen belts. In addition to petrographical investigation, geochemical analyses (major oxides and trace elements) of Late Jurassic-Early Cretaceous rocks reveal that the sedimentation processes are performed in a passive continental margin. Such interpretation is supported with geodynamic and paleogeographical studies of the Kopeh-Dagh basin during this time. The geochemical investigations suggested that the composition of probable source rocks mostly was acidic-intermediate with minor mafic igneous rocks. Based on the above, Paleo-Tethys remnants and their collision-related granitoids, in the south and west of Mashhad, may have been the source area for these rocks. CIA values, which range from 63.8 to 94.9 in samples, are suggesting a moderate to relatively high degree of alteration (weathering) in the source area. Therefore, petrographical and paleogeographical studies of siliciclastic rocks can be used for the provenance, tectonic setting and paleoweathering studies in the source area. 相似文献