首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A damaging and widely felt moderate (Mw 5.0) earthquake occurred in the Talala region of Saurashtra, Gujarat (western India) on November 6, 2007. The highly productive sequence comprised about 1300 micro earthquakes (M > 0.5) out of which 325 of M ? 1.5 that occurred during November 6, 2007–January 10, 2008 were precisely located. The spatial aftershock distribution revealed a NE–SW striking fault in accordance with the centroid moment tensor solution, which in turn implies left-lateral motion. The orientation and sense of shear are consistent with similarly orientated geological fault identified in the area from satellite imagery and field investigation.The aftershocks temporal decay, b-value of frequency–magnitude distribution, spatial fractal dimension, D, and slip ratio (ratio of the slip occurred on the primary fault to the total slip) were examined with the purpose to identify the properties of the sequence. The high b-value (1.18 ± 0.01) may be attributed to the paucity of the larger (M ? 4.0) aftershocks and reveals crustal heterogeneity and low stress regime. The high p-value (1.10 ± 0.39), implying fast decay rate of aftershocks, evidences high surface heat flux. A value of the spatial fractal dimension (D) equal to 2.21 ± 0.02 indicates random spatial distribution and source in a two-dimensional plane that is being filled-up by fractures. A slip ratio of 0.42 reveals that more slip occurred on secondary fault systems.The static Coulomb stress changes due to the coseismic slip of the main shock, enhanced off fault aftershock occurrence. The occurrence of a moderate earthquake (Mw 4.3) on October 5, 2008 inside a region of positive Coulomb stress changes supports the postulation on aftershock triggering. When the stress changes were resolved on a cross section including the stronger (M4.8) foreshock plane that is positioned adjacent to the main fault, it became evident that the activity continued there due to stress transfer from the main rupture.  相似文献   

2.
A high-resolution passive seismic experiment in the Kachchh rift zone of the western India has produced an excellent dataset of several thousands teleseismic events. From this network, 500 good teleseismic events recorded at 14 mobile broadband sites are used to estimate receiver functions (for the 30–310° back-azimuth ranges), which show a positive phase at 4.5–6.1 s delay time and a strong negative phase at 8.0–11.0 s. These phases have been modeled by a velocity increase at Moho (i.e. 34–43 km) and a velocity decrease at 62–92 km depth. The estimation of crustal and lithospheric thicknesses using the inversion of stacked radial receiver functions led to the delineation of a marked thinning of 3–7 km in crustal thickness and 6–14 km in lithospheric thickness beneath the central rift zone relative to the surrounding un-rifted parts of the Kachchh rift zone. On an average, the Kachchh region is characterized by a thin lithosphere of 75.9 ± 5.9 km. The marked velocity decrease associated with the lithosphere–asthenoshere boundary (LAB), observed over an area of 120 km × 80 km, and the isotropic study of xenoliths from Kachchh provides evidence for local asthenospheric updoming with pockets of partial melts of CO2 rich lherzolite beneath the Kachchh seismic zone that might have caused by rifting episode (at 88 Ma) and the associated Deccan thermal-plume interaction (at 65 Ma) episodes. Thus, the coincidence of the area of the major aftershock activity and the Moho as well as asthenospheric upwarping beneath the central Kachchh rift zone suggests that these pockets of CO2-rich lherzolite partial melts could perhaps provide a high input of volatiles containing CO2 into the lower crust, which might contribute significantly in the seismo-genesis of continued aftershock activity in the region. It is also inferred that large stresses in the denser and stronger lower crust (at 14–34 km depths) induced by ongoing Banni upliftment, crustal intrusive, marked lateral variation in crustal thickness and related sub-crustal thermal anomaly play a key role in nucleating the lower crustal earthquakes beneath the Kachchh seismic zone.  相似文献   

3.
Earthquake source parameters and crustal \(Q_{0}\) values for the 138 selected local events of (\(\hbox {M}_{\mathrm{w}}{:}2.5{-}4.4\)) the 2001 Bhuj earthquake sequence have been computed through inversion modelling of S-waves from three-component broadband seismometer data. SEISAN software has been used to locate the identified local earthquakes, which were recorded at least three or more stations of the Kachchh seismological network. Three component spectra of S-wave are being inverted by using the Levenberg–Marquardt non-linear inversion technique, wherein the inversion scheme is formulated based on \(\omega ^{2}\) source model. SAC Software (seismic analysis code) is being utilized for calculating three-component displacement and velocity spectra of S-wave. The displacement spectra are used for estimating corner frequency (in Hz) and long period spectral level (in nm-s). These two parameters play a key role in estimating earthquake source parameters. The crustal \({Q}_{0}\) values have been computed simultaneously for each component of three-component broadband seismograph. The estimated seismic moment (\(M_{0}\)) and source radius (r) using S-wave spectra range from 7.03E+12 to 5.36E+15 N-m and 178.56 to 565.21 m, respectively. The corner frequencies for S-wave vary from 3.025 to 7.425 Hz. We also estimated the radiated energy (\(E_{S}\)) using velocity spectra, which is varying from 2.76E+06 to 4.07E+11 Joules. The estimated apparent stress drop and static stress drop values range from 0.01 to 2.56 and 0.53 to 36.79 MPa, respectively. Our study also reveals that estimated \(Q_{0}\) values vary from 119.0 to 7229.5, with an average \(Q_{0}\) value of 701. Another important parameter, by which the earthquake rupture process can be recognized, is Zuniga parameter. It suggests that most of the Kachchh events follow the frictional overshoot model. Our estimated static stress drop values are higher than the apparent stress drop values. And the stress drop values are quite larger for intraplate earthquakes than the interplate earthquakes.  相似文献   

4.
The Talala (Sasangir) area in the Saurashtra region of Gujarat, western India, is experiencing tremors since 2001. The swarm type of earthquake activity in 2001, 2004, and every year from 2007 onward has occurred after the monsoon and lasted 2?C3?months each time. In 2007 some 200 shocks (largest Mw 5.0) and in 2011 about 400 shocks down to M1 are well recorded with 1?C2?km location error. The focal depths are about 2?C10?km and shocks are accompanied by blast-like subterranean sounds. The epicenter (21.09?N 70.45E, focal depth: 5?km from location program, 3?km from MTS) of the October 20, 2011 mainshock occurred about 12-km WNW of Talala town or 8-km SSW of the 2007?M w 5.0 earthquake epicenter. The epicentral trends deciphered from local earthquake data indicate two ENE trends (Narmada trend) for about 50?km length and a conjugate 15-km-long NNW trend (Aravali trend). The focal mechanisms by moment-tensor analysis of full wave forms of two 2007 events of Mw 4.8 and 5.0 and the 2011 event of Mw 5.1 indicate rupture along either of the two trends. The ENE trends follow a gravity low between the gravity highs of Girnar mounts. Seismic reflections also indicate a fault in the area named Girnar Fault. Most of Saurashtra region including the Talala area is covered by Deccan Trap Basalt forming plateaus and conical ridges. There is no major fault within Saurashtra Peninsula though it is believed to have major faults along the boundaries that are non-seismic. The intensity of the October 20, 2011 Talala earthquake is estimated to be 6.5 in MM scale while isoseismals of 6, 5, and 4 and felt distance give Mw 5.1 based on Johnston??s 1994 empirical regressions. The source parameters of the 2011 Talala earthquake are estimated using data from 14 broadband seismograph stations. Estimated seismic moment, moment magnitude, stress drop, corner frequency, and source radius are found to be 1016.6 N-m, 5.1, 1.6?MPa, 1.3?Hz, and 2,300?m, respectively. The b and p values are obtained to be low, being 0.67 and 0.71, respectively. PGA of 35?cm/sec2 is noted and the decay rate of acceleration has been estimated from strong motion data recorded at 5 stations with epicentral distances ranging from 32 to 200?km.  相似文献   

5.
Water chemistry, sediment texture, clay mineralogy and foraminiferal contents from the bottom of Meda creek were studied to assess the geo-environmental status of the creek. Water quality data for three seasons suggests domination of marine environment as pH remained above 8 and salinity above 35‰ throughout. Clay dominate the bottom sediments, except near mouth. Montmorillonite, illite and kaolinite are the major clay minerals in the sediments. In absence of any source rock in the catchment of the Meda creek, the presence of illite and kaolinite indicates their transportation and depositions from near coastal waters during high tides. Ammonia sp. is the most dominating foraminifera. Reworked forms as well as angular asymmetric forms of foraminifera were dominant in clay rich areas of the creek.  相似文献   

6.
The Tertiary basins of Gujarat have always been a potential target for their hydrocarbon resources. The lignite resources of the region have also been an important field of research. The present paper presents the results of the petrological study carried out on the lignites of the Saurashtra basin. For this purpose samples were collected from lower and upper lignite seams from the Surkha lignite mine of Bhavnagar, Saurashtra. These samples were subjected to detailed petrographic analysis (both maceral and microlithotype). The study reveals that these lignites are dominantly composed of huminite group macerals while liptinite and inertinite group macerals occur in subordinate amounts. These lignites have attained a thermal maturity up to 0.28-0.30 percent vitrinite reflectance (VRr) which classifies them as ‘low rank C’ coals. Moreover, Bhavnagar lower lignite seam shows relatively less gelification as compared to the upper seam which suffered relatively more biochemical degradation. These lignites are characterized by high gelification index (GI) and low tissue preservation index (TPI).With the help of petrography based facies models an attempt has been made to reconstruct the environment of the paleomire of these lignites.  相似文献   

7.
Seismic source parameters of small to moderate sized intraplate earthquakes that occurred during 2002–2009 in the tectonic blocks of Kachchh Rift Basin (KRB) and the Saurashtra Horst (SH), in the stable continental region of western peninsular India, are studied through spectral analysis of shear waves. The data of aftershock sequence of the 2001 Bhuj earthquake (\(M_{w}\) 7.7) in the KRB and the 2007 Talala earthquake (\(M_{w}\) 5.0) in the SH are used for this study. In the SH, the seismic moment (\(M_{o})\), corner frequency \((f_{c})\), stress drop (\(\varDelta \sigma \)) and source radius (r) vary from \(7.8\times 10^{11}\) to \(4.0\times \)10\(^{16}\) N-m, 1.0–8.9 Hz, 4.8–10.2 MPa and 195–1480 m, respectively. While in the KRB, these parameters vary from \(M_{o} \sim 1.24 \,\times \, 10^{11}\) to \(4.1 \times 10^{16}\) N-m, \(f_{c }\sim \) 1.6 to 13.1 Hz, \(\varDelta \sigma \sim 0.06\) to 16.62 MPa and \(r \sim 100\) to 840 m. The kappa (K) value in the KRB (0.025–0.03) is slightly larger than that in the SH region (0.02), probably due to thick sedimentary layers. The estimated stress drops of earthquakes in the KRB are relatively higher than those in SH, due to large crustal stress concentration associated with mafic/ultramafic rocks at the hypocentral depths. The results also suggest that the stress drop value of intraplate earthquakes is larger than the interplate earthquakes. In addition, it is observed that the strike-slip events in the SH have lower stress drops, compared to the thrust and strike-slip events.  相似文献   

8.
In this study, receiver function analysis is carried out at 32 broadband stations spread all over the Gujarat region, located in the western part of India to image the sedimentary structure and investigate the crustal composition for the entire region. The powerful Genetic Algorithm technique is applied to the receiver functions to derive S-velocity structure beneath each site. A detail image in terms of basement depths and Moho thickness for the entire Gujarat region is obtained for the first time. Gujarat comprises of three distinct regions: Kachchh, Saurashtra and Mainland. In Kachchh region, depth of the basement varies from around 1.5 km in the eastern part to 6 km in the western part and around 2–3 km in the northern part to 4–5 km in the southern part. In the Saurashtra region, there is not much variation in the depth of the basement and is between 3 km and 4 km. In Gujarat mainland part, the basement depth is 5–8 km in the Cambay basin and western edge of Narmada basin. In other parts of the mainland, it is 3–4 km. The depth of Moho beneath each site is obtained using stacking algorithm approach. The Moho is at shallower depth (26–30 km) in the western part of Kachchh region. In the eastern part and epicentral zone of the 2001 Bhuj earthquake, large variation in the Moho depths is noticed (36–46 km). In the Saurashtra region, the crust is more thick in the northern part. It varies from 36–38 km in the southern part to 42–44 km in the northern part. In the mainland region, the crust is more thick (40–44 km) in the northern and southern part and is shallow in Cambay and Narmada basins (32–36 km). The large variations of Poisson’s ratio across Gujarat region may be interpreted as heterogeneity in crustal composition. High values of σ (∼0.30) at many sites in Kachchh and few sites in Saurashtra and Mainland regions may be related to the existence of high-velocity lower crust with a mafic/ultramafic composition and, locally, to the presence of partial melt. The existing tectono-sedimentary models proposed by various researchers were also examined.  相似文献   

9.
We present the estimated source parameters from SH-wave spectral modeling of selected 463 aftershocks (2002–06) of the 26 January 2001 Bhuj earthquake, the well-recorded largest continental intraplate earthquake. The estimated seismic moment (Mo), corner frequency (fc), source radius (r) and stress drop (Δσ) for aftershocks of moment magnitude 1.7 to 5.6 range from 3.55×1011 to 2.84×1017 N-m, 1.3 to 11.83 Hz, 107 to 1515 m and 0.13 to 26.7 MPa, respectively, while the errors in fc and Δσ are found to be 1.1 Hz and 1.1 MPa, respectively. We also notice that the near surface attenuation factor (k) values vary from 0.02 to 0.03. Our estimates reveal that the stress drop values show more scatter (Mo0.5 to 1 is proportional to Δσ) toward the larger Mo values (≥1014.5 N-m), while they show a more systematic nature (Mo3 is proportional to Δσ) for smaller Mo values (<1014.5 N-m), which can be explained as a consequence of a nearly constant rupture radius for smaller aftershocks in the region. The large stress drops (= 10 MPa) associated with events on the north Wagad fault (at 15–30 km depth) and Gedi fault (at 3–15 km depth) can be attributed to the large stress developed at hypocentral depths as a result of high fluid pressure and the presence of mafic intrusive bodies beneath these two fault zones.  相似文献   

10.
The available petrochemical data indicate that volcanic rocks in the Sanshui basin of Guangdong Prov-ince are characteristic of the island-arc tholeiite-calc-alkaline series.Their K-Ar ages range from 43 to 64 Ma,corresponding to Early Tertiary.The Nd-Sr-Pb isotopic correlations give two binary mixing trends,indicating a mixed source of Leiqiong depleted mantle,seawater and altered sediments pertaining to subduction.Our studies have confirmed the existence of an ancient subduction zone beneath the South Chi-na continent,which is considered to have resulted from the suturing of various terrains in southern China.  相似文献   

11.
There is a tank hewn into coastal Pleistocene limestone near Diu city on the Saurashtra Peninsula of western India. Site survey and a review of similar structures worldwide provide evidence that this tank could have been used for holding fish or Murex snails. The approximately 5 × 5 m tank is connected to the sea by a 1‐m‐deep canal; today it would be impossible to use the tank, given that not even the high spring tides can fill it. It is suggested that the Diu coast was uplifted by ∼0.5 m after the tank was hewn in the coastal platform. Since that time, the carved surfaces have been modified by coastal karst dissolution and have developed deep gouge marks. Uplift of the Diu coast raises the possibility of a major seismic event in Diu during the latter part of the last millennium.  相似文献   

12.
Abstract Ganguvarpatti is part of a Precambrian terrane characterized by granulite facies rocks, including charnockites, mafic granulites, sapphirine-bearing granulites, leptynites and gneisses. A sequence of reactions deduced from the multiphase reaction textures provide information on the metamorphic history of this area, as they formed in response to decompression during uplift. Geothermobarometry and constraints from reaction textures define a segment of a P–T path traversed by the granulites of Ganguvarpatti. Near-peak metamorphic conditions of c. 800°C and 8 kbar were succeeded by a symplectitic stage at a significantly lower pressure ( c. 700°C and 4.5 kbar), documenting a nearly isothermal decompression P–T path and rapid uplift ( c. 12 km) followed by cooling. The presence of many fluid inclusions of extremely low density in the charnockites is consistent with a nearly isothermal uplift path. Attainment of a maximum pressure of c. 8 kbar indicates c. 27 km depth of burial during metamorphism. This would imply a total crustal thickness of c. 65–70 km at 2.6–2.5 Ga. Such a profound crustal thickness and a clockwise decompressive P–T path is interpreted as a consequence of tectonic thickening of crust, accomplished by collision tectonics of the southern granulite terrane against the Dharwar craton along the Palghat–Cauvery shear zone via northward subduction.  相似文献   

13.
A.P Singh  D.M Mall   《Tectonophysics》1998,290(3-4):285-297
In 1967 a major earthquake in the Koyna region attracted attention to the hitherto considered stable Indian shield. The region is covered by a thick pile of Deccan lava flows and characterized by several hidden tectonic features and complex geophysical signatures. Although deep seismic sounding studies have provided vital information regarding the crustal structure of the Koyna region, much remains unknown. The two available DSS profiles in the region have been combined along the trend of Bouguer gravity anomalies. Unified 2-D density modelling of the Koyna crust/mantle suggests a ca. 3 km thick and 40 km wide high velocity/high density anomalous layer at the base of the crust along the coastline. The thickness of this anomalous layer decreases gradually towards the east and ahead of the Koyna gravity low the layer ceases to be visible. Based on the seismic and gravity data interpretation in the geodynamical/rheological boundary conditions the anomalous layer is attributed to igneous crustal accretion at the base of the crust. It is suggested that the underplated layer is the imprint of the magmatism caused by the deep mantle plume when the northward migrating Indian plate passed over the Reunion hotspot.  相似文献   

14.
This study pertains to prediction of liquefaction susceptibility of unconsolidated sediments using artificial neural network (ANN) as a prediction model. The backpropagation neural network was trained, tested, and validated with 23 datasets comprising parameters such as cyclic resistance ratio (CRR), cyclic stress ratio (CSR), liquefaction severity index (LSI), and liquefaction sensitivity index (LSeI). The network was also trained to predict the CRR values from LSI, LSeI, and CSR values. The predicted results were comparable with the field data on CRR and liquefaction severity. Thus, this study indicates the potentiality of the ANN technique in mapping the liquefaction susceptibility of the area.  相似文献   

15.
Temperature and water content anomalies just above the 660-km discontinuity under the Japan Islands are estimated from seismological observations. Two sets of seismological observations of P-wave velocity perturbations and depth variations of the 660-km discontinuity are used, which are (1) long-wavelength (~ 500 km) variations from seismic tomography based on a grid parameterization and waveform analysis of ScS reverberations and (2) moderate-wavelength (~ 150 km) variations from seismic tomography with a block parameterization and receiver-function analysis. To estimate temperature and water content anomalies, partial derivatives of velocity and depth variations with respect to temperature and water content determined by mineral physics studies are used. Under Southwest Japan, low temperature and high water-content anomalies are obtained from both sets of seismological observations, which have already been found by a previous study. Under Northeast Japan, however, there are discrepancies between the results estimated from the two data sets, possibly due to the different resolution scales. This discrepancy is dismissed when examining distributions of the temperature and water content anomalies. These anomalies can be grouped into two geographical locations, one group under Southwest Japan, the other under Northeast Japan. The two groups are clearly separated and exhibit common features in both sets of the seismological observations. The grouping is interpreted by a compositional difference between the subducting Pacific slab under Southwest Japan and a normal mantle under Northeast Japan.  相似文献   

16.
The intertrappean sediments associated with Deccan Continental Flood Basalt (DCFB) sequence at Ninama in Saurashtra, Gujarat yielded palynoassemblage comprising at least 12 genera and 14 species including Paleocene taxa such as Intrareticulites brevis, Neocouperipollis spp., Striacolporites striatus, Retitricolpites crassimarginatus and Rhombipollis sp. The lava flows of Saurashtra represent the northwestern most DCFB sequence in India. It is considered that the Saurashtra lava flows represent the earliest volcanic activity in the Late Cretaceous of the Reunion Mantle Plume on the northward migrating Indian Plate. The present finding of the Paleocene palynoflora from Ninama sediments indicate Paleocene age for the associated lava flows occurring above the intertrappean bed which suggests that the Saurashtra plateau witnessed eruption of Deccan lava flows even during Paleocene. The clay mineral investigation of the Ninama sediments which are carbonate dominated shows dominance of low charge smectite (LCS) along with the presence of mica and vermiculite. Based on the clay mineral assemblage it is interpreted that arid climatic conditions prevailed during the sedimentation. The smectite dominance recorded within these sediments is in agreement with global record of smectite peak close to the Maastrichtian–Paleocene transition and climatic aridity.  相似文献   

17.
Granular carbonate deposits of Late Pleistocene to Early Holocene age, commonly referred to as ‘miliolite limestone’, occur in a linear belt, parallel to the southern coast of Saurashtra, India. In the present study area these carbonate deposits are found in select valleys between ridges and mounds of pyroclastic material present in the Deccan trap plateau. Two different depositional histories have been proposed for these sediments. The presence of marine bioclasts led to the postulation of a marine origin for these deposits. The second school of thought propounded redeposition of the coastal sediments by aeolian processes. Although a few features could not be explained by the proposed aeolian model, critical comparison of these two views favoured the aeolian origin. The mode of occurrence, lithological and structural attributes, and microscopic evidence presented here, also support a possible aeolian origin for these deposits. Experimental observation indicates that these carbonate aeolianites represent backflow deposits, which accumulated because of the flow separation caused by the presence of topographic highs. The conspicuous concave‐up geometry of the deposit conformed to the shape of the separation bulb. In view of the inferred depositional mechanism, the disposition of the deposits and the signature of the palaeoflow direction suggest that the carbonate particles were derived from the north‐western coast of Saurashtra by strong south‐easterly winds. Massive granular carbonates with outsized basement clasts appear to be the product of avalanching of granular material from the higher contours because of oversteepening of the primary deposit.  相似文献   

18.
In the Amba Dongar diatreme, “ferrocarbonatite” is not a single unit of late differentiate of calciocarbonatite magma but it is a family with variation on field occurrence, mineralogy and chemistry of each unit. The family includes dikes of ankeritic carbonatites (phase I and II), plugs of ankeritic carbonatite within sövite ring dike, dikes of sideritic carbonatite in ankeritic carbonatite plug and rödberg veins. Their intrusive relations are very clear in the field and each phase has characteristic mineralogy and trace and REE geochemistry. According to the nomenclature suggested by Harmer and Gittins (1997) majority of “ferrocarbonatites” of Amba Dongar plot in field of “ferruginous calciocarbonatite” and only siderite and rödberg plot in the field of “ferrocarbonatite”. Within these family members, their trace and REE show clear increase from early phase to last phase of sideritic carbonatite. The present short communication discusses various aspects of “ferrocarbonatites”.  相似文献   

19.
The occurrence of essexite in the Deccan volcanic province of Saurashtra, India, is reported here for the first time. The essexite body occurs as a large stock-like intrusion in horizontal flow basalts. Petrographically it is characterized by the presence of titanaugite, labradorite, olivine, iron oxides and accessory amounts of alkali feldspar, analcite, biotite and apatite. Chemically it is characterized by enrichment in LILE, HFSE and REE as compared to the other tholeiitic and alkaline basalts of the area. It is therefore concluded that the essexite magma has not formed by differentiation out of the tholeiitic magma predominantly encountered in the Deccan volcanic province, but possibly represents a separate melt derived as a 5 to 10% partial melt at shallower depth (15 kb pressure) within the upper mantle.  相似文献   

20.
Three metapelitic xenolith suites in the Neogene Volcanic Province (NVP) of SE Spain (from SW to NE: El Hoyazo, Mazarrón and Mar Menor) originated by partial melting at different crustal depths, decreasing from 20–25 km in the SW to 9–12 km in the NE. Peak temperatures reached c. 900 °C. The xenolith source level is equated with the base of a felsic upper crust of high melting potential (‘fertility’). At El Hoyazo, this matches a thin, intracrustal low‐velocity zone recently inferred from seismic studies. Isostatic calculations indicate that this zone increases in thickness from SW to NE. A model of increasing upper crustal thinning from SW to NE in the NVP, accompanied by mafic underplating, is consistent with the 9 Ma petrological data, with current heat flow, seismic data and gravimetry. It is concluded that significant crustal extension occurred in the NVP in the late Miocene, i.e. after the main phase of widespread extension, exhumation of high‐pressure rocks and formation of the Alborán Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号