首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On voyages in the Iceland Basin in 2007 and 2009, we observed low (ca. 0.1 nM) total dissolved iron concentrations [dFe] in surface waters (<150 m), which increased with depth to ca. 0.2–0.9 nM. The surface water [dFe] was low due to low atmospheric Fe inputs combined with biological uptake, with Fe regeneration from microbial degradation of settling biogenic particles supplying dFe at depth. The organic ligand concentrations [LT] in the surface waters ranged between 0.4 and 0.5 nM, with conditional stability constants (log KFeL) between 22.6 and 22.7. Furthermore, [LT] was in excess of [dFe] throughout the water column, and dFe was therefore largely complexed by organic ligands (>99%). The ratio of [LT]/[dFe] was used to analyse trends in Fe speciation. Enhanced and variable [LT]/[dFe] ratios ranging between 1.6 and 5.8 were observed in surface waters; the ratio decreased with depth to a more constant [LT]/[dFe] ratio in deep waters. In the Iceland Basin and Rockall Trough, enhanced [LT]/[dFe] ratios in surface waters resulted from decreases in [dFe], likely reflecting the conditions of Fe limitation of the phytoplankton community in the surface waters of the Iceland Basin and the high productivity in the Rockall Trough.Below the surface mixed layer, the observed increase in [dFe] resulted in a decrease of the [LT]/[dFe] ratios (1.2–2.6) with depth. This indicated that the Fe binding ligand sites became occupied and even almost saturated at enhanced [dFe] in the deeper waters. Furthermore, our results showed a quasi-steady state in deep waters between dissolved organic Fe ligands and dFe, reflecting a balance between Fe removal by scavenging and Fe supply by remineralisation of biogenic particles with stabilisation through ligands.  相似文献   

2.
The Drake Passage region near Elephant Island in the Southern Ocean displays patchy phytoplankton blooms. To test the hypothesis that natural Fe addition from localized sources promoted phytoplankton growth here, a grid of stations (59°S to 62°S, 59°W to 53°W, as well as four stations in the eastern Bransfield Strait) were occupied from 12 February–24 March 2004. Phytoplankton abundance was measured using shipboard flow cytometry (70 stations), with abundances conservatively converted to biomass, and compared with measurements of dissolved iron (dFe) at a subset of stations (30 stations). Based on T–S property plots, stations were divided into Antarctic Circumpolar Current (ACC), Water On Shelf (WOS), Bransfield Strait (BS), and Mixed water stations, the latter representing locations with T–S properties intermediate between ACC and WOS stations. The highest integrated phytoplankton biomass was found at Mixed water stations, however, the highest integrated abundance was found at WOS stations, demonstrating that abundance and biomass do not necessarily show the same patterns. The distributions of nano- and micro-phytoplankton (<20 and >20 μm diameter cells, respectively) were also examined, with nano- and micro-plankton contributing equally to the total biomass at WOS and BS stations, but micro-plankton representing ∼2/3 of the biomass at Mixed and ACC stations. Increased inventories of dFe did not always correspond to increases in phytoplankton biomass – rather stations with lower mean light levels in the mixed layer (<110 μEinsteins m−2 s−1) had lower biomass despite higher ambient dFe concentrations. However, where the mean light levels in the mixed layer were >110 μEinsteins m−2 s−1, total biomass shows a positive trend with dFe, as does micro-phytoplankton biomass, but neither regression is significant at the 95% level. In contrast, if just nano-phytoplankton biomass is considered as a function of dFe, there is a significant correlation (r2=0.62). These data suggest a dual mechanism for the patterns observed in biomass: an increasing reservoir of dFe allows increased phytoplankton biomass, but biomass can only accumulate where the light levels are relatively high, such that light is not limiting to growth.  相似文献   

3.
《Marine Chemistry》2001,76(3):175-187
Iron (Fe) is an essential element for the biochemical and physiological functioning of terrestrial and oceanic organisms, including phytoplankton, which are responsible for the primary productivity in the world's oceans. However, due to the low solubility of Fe in seawater, phytoplankton are often limited by their inability to incorporate enough Fe to allow for optimal growth rates in regions with dissolved Fe concentrations below 1 nM. It has been postulated that certain phytoplankton may produce compounds to facilitate the uptake of Fe from seawater to overcome this limitation. Dissolved Fe in the oceans is overwhelmingly complexed (>99%) by strong organic ligands that may control the uptake of Fe by microbiota; however, the identity, origin, and chemical characteristics of these organic chelates are largely unknown. Although it has been implied that some components of natural Fe-binding ligands are siderophores, no direct analyses of such compounds from natural seawater have been conducted. Here, we present a simple solid-phase extraction technique employing Biobeads SM-2 and Amberlite XAD-16 resins for concentrating naturally occurring dissolved iron-binding compounds from large volumes (>200 l) of seawater. Additionally, we report on the first successful determination of molecular weight size classes and preliminary iron-binding functional group characterization within those size classes for isolates collected from the surface and below the photic zone (150 m) in the central California coastal upwelling system. Electrochemical analyses using competitive ligand equilibration/adsorptive cathodic stripping voltammetry (CLE-ACSV) showed that isolated compounds had conditional Fe-binding affinities (with respect to inorganic iron—Fe′) of KFeL,Fe′cond=1011.5–1011.9 M−1, similar to purified marine siderophores produced in laboratory cultures and to the ambient Fe-binding ligands observed in seawater. In addition, 63% of the extracted compounds from surface-collected samples fall within the defined size range of siderophores (300–1000 Da). Hydroxamate or catecholate Fe-binding functional groups were present in each compound for which Fe binding was detected. These results illustrate that the functional groups previously shown to be present in marine and terrestrial siderophores extracted and purified from laboratory cultures are also present in the natural marine environment. These data provide evidence that a significant fraction of the organic Fe-binding compounds we collected contain Fe-binding functional groups consistent with biologically produced siderophores. These results provide further insight into characteristics of the Fe-binding ligands that are thought to be important in controlling the biological availability of Fe in the oceans.  相似文献   

4.
南大洋浮游植物现存量对颗粒有机碳的贡献   总被引:5,自引:1,他引:5  
根据中国第15、16次南极考察观测的颗粒有机碳、叶绿素a浓度的数据,探讨浮游植物现存量对南大洋颗粒有机碳的贡献。结果表明,普里兹湾内浮游植物碳对颗粒有机碳的贡献高于湾北部的大洋区,真光层上部浮游植物碳对颗粒有机碳的贡献高于深层水。同时分析两个航次测区叶绿素a浓度和航程途中叶绿素a浓度的分布,以期了解浮游植物在南大洋颗粒有机碳来源中的作用。  相似文献   

5.
1IntroductionThefluxesofcarbon,nutrients,andassoci-atedelementsinvolvedinthebiogeochemicalcyclesoutoftheeuphoticzoneareimportantinthestudyofglobalCO2 change.Someworkershaveproposedthatatthesteadystatethefluxofparticulateorganiccarbonoutoftheeuphoticzoneequalsthenewproduction(EppleyandPe-terson,1979;Eppley,1989).Generallytwometh-odscanbeemployedtoobtainthefluxdata.Oneistousesedimenttrapsintheupperocean(<200m)orfloatingsedimenttraps.Thoughthesedimenttraptechnologyhasshowntobeuse-fulfortimeser…  相似文献   

6.
Iron has been found to limit primary productivity in high nutrient, low chlorophyll regions of the oceans, including the Southern Ocean. Here we assess the relative magnitudes and geographical distributions of the sources of iron (sedimentary, atmospheric, icebergs and sea ice) to the Southern Ocean, and their impact on productivity. We present an iron cycling model, based on the assumptions of iron and light limitation of primary production, which is embedded in an eddy resolving ocean general circulation model. We find that the injection depth of the various iron inputs determines their availability for driving production because dissolved iron may be scavenged prior to it entering the illuminated mixed layer where it can drive primary production. The model suggests that production is predominantly regulated by sediment-derived iron sources rather than icebergs, sea ice or atmospheric dust. We note non-linear response in productivity to changes in the strength of one or more iron sources due to scavenging. Sea ice influences productivity by modifying the timing of iron supply to the euphotic zone. We also show that in the Scotia Sea the majority of productivity is driven by sediment-sourced iron from the Antarctic Peninsula, with additional local hotspots driven by island sources.  相似文献   

7.
The waters near the Antarctic Peninsula have always been a study hot spot because of their variable and unique oceanographic conditions.To determine the distribution and possible influencing factors on phytoplankton size and abundance near the Antarctic Peninsula,a large-scale survey was conducted during the austral summer of2018.Samples were collected in 27 stations located in the Drake Passage(DP),South Shetland Islands(SSI),and South Orkney Islands(SOI).Phytoplankton communities were described using chlorophyll a(Chl a),flow cytometry and light microscopy to cover a size range from pico-to microphytoplankton.Nanophytoplankton,especially small nanophytoplankton(2-6 μm) with abundance ranging from 0.66 ×10~3 cells/mL to 8.46 ×10~3 cells/mL,was predominant throughout the study area.Among different regions,there was an obvious size shift.The proportion of picophytoplankton near the Elephant Island(EI) and DP was higher than other regions,and larger cells were found mainly in east of SOI.The distribution of phytoplankton abundance detected by flow cytometry was not completely consistent with Chl a concentrations due to the contribution of larger cells to Chl a.Possible influencing factors on the phytoplankton size distribution were discussed.The properties of water masses such as temperature and salinity can influence the phytoplankton size distribution.Correlation analysis revealed that only picophytoplankton is significantly correlated with salinity.Light and Fe availability might affect phytoplankton abundance and size distribution especially near the waters of SSI and EI in this study.It was also speculated that the abundance of cryptophytes is possibly related to ice melting.  相似文献   

8.
This paper discusses the seasonal evolution of the hydrographic and biogeochemical properties in the Antarctic Circumpolar Current (ACC) during the US Joint Global Ocean Flux (JGOFS) Antarctic Environment and Southern Ocean Process Study (AESOPS) in 1997–1998. The location of the study region south of New Zealand along 170°W was selected based on the zonal orientation and meridional separation of the physical and chemical fronts found in that region. Here we endeavor to describe the seasonal changes of the macronutrients, fluorescence chlorophyll, particulate organic carbon (POC), and carbon dioxide (CO2) in the upper 400 m of the ACC during the evolution of the seasonal phytoplankton bloom found in this area. While the ACC has extreme variability in the meridional sense (due to fronts, etc.), it appears to be actually quite uniform in the zonal sense. This is reflected by the fact that a good deal of the seasonal zonal changes in nutrients distributions at 170°W follow a pattern that reflects what would be expected if the changes are associated with seasonal biological productivity. Also at 170°W, the productivity of the upper waters does not appear to be limited by availability of phosphate or nitrate. While there is a significant decrease (or uptake) of inorganic nitrogen, phosphate and silicate associated with the seasonal phytoplankton bloom, none of the nutrients, except perhaps silicate (north of the silicate front) are actually depleted within the euphotic zone. At the end of the growing season, nutrient concentrations rapidly approached their pre-bloom levels. Inspection of the ratios of apparent nutrient drawdown near 64°S suggests N/P apparent drawdowns to have a ratio of 10 and N/Si apparent drawdowns to have a ratio of >4. These ratios suggest a bloom that was dominated by Fe limited diatoms. In addition, the surface water in the Polar Front (PF) and the Antarctic Zone (AZ) just to the south of the PF take up atmospheric CO2 at a rate 2–3 times as fast as the mean global ocean rate during the summer season but nearly zero during the rest of year. This represents an important process for the transport of atmospheric CO2 into the deep ocean interior. Finally, the net CO2 utilization or the net community production during the 2.5 growing months between the initiation of phytoplankton blooms and mid-January increase southward from 1.5 mol C m−2 at 55°S to 2.2 mol C m−2 to 65°S across the Polar Frontal Zone (PFZ) into the AZ.  相似文献   

9.
Dissolved Fe, Mn and Al concentrations (dFe, dMn and dAl hereafter) in surface waters and the water column of the Northeast Atlantic and the European continental shelf are reported. Following an episode of enhanced Saharan dust inputs over the Northeast Atlantic Ocean prior and during the cruise in March 1998, surface concentrations were enhanced up to 4 nmol L− 1 dFe, 3 nmol L− 1 dMn and 40 nmol L− 1 dAl and returned to 0.6 nmol L− 1 dFe, 0.5 nmol L− 1 dMn and 10 nmol L− 1 dAl towards the end of the cruise three weeks later. A simple steady state model (MADCOW, [Measures, C.I., Brown, E.T., 1996. Estimating dust input to the Atlantic Ocean using surface water aluminium concentrations. In: Guerzoni. S. and Chester. R. (Eds.), The impact of desert dust across the Mediterranean, Kluwer Academic Publishers, The Netherlands, pp. 301–311.]) was used which relies on surface ocean dAl as a proxy for atmospheric deposition of mineral dust. We estimated dust input at 1.8 g m− 2 yr− 1 (range 1.0–2.9 g m− 2 yr− 1) and fluxes of dFe, dMn and dAl were inferred. Mixed layer steady state residence times for dissolved metals were estimated at 1.3 yr for dFe (range 0.3–2.9 yr) and 1.9 yr for dMn (range 1.0–3.8 yr). The dFe residence time may have been overestimated and it is shown that 0.2–0.4 yr is probably more realistic. Using vertical dFe versus Apparent Oxygen Utilization (AOU) relationships as well as a biogeochemical two end member mixing model, regenerative Fe:C ratios were estimated respectively to be 20 ± 6 and 22 ± 5 μmol Fe:mol C. Combining the atmospheric flux of dFe to the upper water column with the latter Fe:C ratio, a ‘new iron’ supported primary productivity of only 15% (range 7%–56%) was deduced. This would imply that 85% (range 44–93%) of primary productivity could be supported by regenerated dFe. The open ocean surface data suggest that the continental shelf is probably not a major source of dissolved metals to the surface of the adjacent open ocean. Continental shelf concentrations of dMn, dFe, and to a lesser extent dAl, were well correlated with salinity and express mixing of a fresher continental end member with Atlantic Ocean water flowing onto the shelf. This means probably that diffusive benthic fluxes did not play a major role at the time of the cruise.  相似文献   

10.
The weekly mass flux of C and phytoplankton pigments at five depths in the main basin of Puget Sound, a deep (200 m) fjordlike estuary, was sampled for a year with moored sequentially-sampling sediment traps. Flux measurements were compared with weekly samples of suspended pigments in the euphotic zone and bi-monthly samples of total suspended matter and particulate C throughout the water column at the mooring site.Seasonal changes in the total mass flux at all depths were small; instead, physical (river runoff, bottom resuspension) and biological (phytoplankton blooms) events caused occasional sharp increases on a weekly scale. The dry weight concentration of pigments in the trap samples mirrored the concentration of pigments in the euphotic zone suspended matter, increasing from 0·01% in winter to a maximum of 0·65% in late summer. Bloom-induced changes in the pigment concentration were observed almost simultaneously in the euphotic zone and in the traps to a depth of 160 m, indicating a rapid vertical transfer of surface-originating particles by organic aggregates. In contrast to the strong seasonal signal in the pigment concentration, C concentration varied by only a factor of three during the year.The seasonal trend of C/pigment ratios in the C flux arises from at least two sources: (1) a balance between terrestrial sources of C during the high-runoff winter season and in-situ primary production in spring and summer, and (2) cycling of C through the zooplankton population. Budget calculations suggest that the loss of primary-produced C and pigment from the euphotic zone by settling is 5% regardless of season. On an annual basis, this C flux (16 g m−2) is sufficient to support previously measured values of benthic aerobic respiration at the mooring site. To account for other C sinks such as burial, predation and chemical oxidation, however, terrestrial C sources and alternate transport pathways, such as vertical advection and sediment movement down the steep basin walls, are necessary.  相似文献   

11.
A one-dimensional, vertically resolved, physical–biochemical upper ocean model is utilized to study plankton productivity and nitrogen cycling in the central Black Sea region characterized by cyclonic gyral circulation. The model is an extension of the one given by Oguz et al. (1996, J. Geophys. Res. 101, 16585–16599) with identical physical characteristics but incorporating a multi-component plankton structure in its biological module. Phytoplankton are represented by two groups, typifying diatoms and flagellates. Zooplankton are also separated into two groups: microzooplankton (nominally <200 μm) and mesozooplankton (0.2–2 mm). The other components of the biochemical model are detritus and nitrogen in the forms of nitrate and ammonium. The model incorporates, in addition to plankton productivity and organic matter generation, nitrogen remineralization (ammonification) and ammonium oxidation (nitrification) in the water column. Numerical simulations are described and compared with the available data from the central Black Sea. The main seasonal and vertical characteristics of phytoplankton and nutrient dynamics inferred from observations appear to be reasonably well represented by the model. Fractionation of the biotic community structure is shown to lead to increased plankton productivity during the summer period following the diatom-based early spring (March) bloom. The annual nitrogen budget for the euphotic zone reveals the substantial role of recycled nitrogen in the surface waters of the Black Sea.  相似文献   

12.
This study characterized stormwater plume development and associated phytoplankton dynamics in a coastal marine ecosystem through shipboard monitoring. We focused on plumes within Santa Monica Bay, California (USA), a coastal system that is subject to rapid pulses of untreated runoff from the urbanized watershed of Los Angeles during the winter rainy season. The physical, chemical, and biological signatures of stormwater plumes were tracked over time after each of 4 precipitation events ranging in magnitude from 1.5 cm to 9 cm. Low salinity surface plumes persisted in Santa Monica Bay for at least 2 to 5 days over spatial scales of up to 15 km. This is consistent with a 6-day residence time for surface water plume parcels, which was estimated from a drifter trajectory in the bay. Shipboard sampling and salinity measurements in the surf zone showed that plumes often persisted even longer nearshore. Plume waters were generally characterized by higher concentrations of dissolved nitrogen, colored dissolved organic matter, and higher light attenuation than non-plume waters. The magnitude of the effect of stormwater runoff on phytoplankton dynamics was dependent on the size of each storm and subsequent residence time of runoff within the bay. Rain events led to increases in primary productivity, phytoplankton biomass, and specifically, increases in diatom biomass, as measured by concentrations of biogenic silica.  相似文献   

13.
The distribution of dissolved iron and its chemical speciation (organic complexation and redox speciation) were studied in the northeastern Atlantic Ocean along 23°W between 37 and 42°N at depths between 0 and 2000 m, and in the upper-water column (upper 200 m) at two stations further east at 45°N10°W and 40°N17°W in the early spring of 1998. The iron speciation data are here combined with phytoplankton data to suggest cyanobacteria as a possible source for the iron binding ligands. The organic Fe-binding ligand concentrations were greater than that of dissolved iron by a factor of 1.5–5, thus maintaining iron in solution at levels well above it solubility. The water column distribution of the organic ligand indicates in-situ production of organic ligands by the plankton (consisting mainly of the cyanobacteria Synechococcus sp.) in the euphotic layer and a remineralisation from sinking biogenic particles in deeper waters. Fe(II) concentrations varied from below the detection limit (<0.1 nM) up to 0.55 nM but represented only a minor fraction of 0% to occasionally 35% of the dissolved iron throughout the water column. The water column distribution of the Fe(II) suggests biologically mediated production in the deep waters and photochemical production in the euphotic layer. Although there was no evidence of iron limitation in these waters, the aeolian iron input probably contributed to a shift in the phytoplankton assemblage towards increased Synechococcus growth.  相似文献   

14.
The greater Agulhas Current system has several components with high mesoscale turbulence. The phytoplankton distribution in the southwest Indian Ocean reflects this activity. We have used a regional eddy-permitting, coupled physical–biological model to study the physical–biological interactions and to address the main processes responsible for phytoplankton distribution in three different biogeochemical provinces: the southwest Subtropical Indian Gyre (SWSIG), the subtropical convergence zone (SCZ) and the subantarctic waters (SAW) south of South Africa. The biological model with four compartments (Nitrate–Phytoplankton–Zooplankton–Detritus) adequately reproduces the observed field of chlorophyll a. The phase of the strong modelled seasonality in the SWSIG is opposite to that of the SCZ that forms the southern boundary of the subtropical gyre. Phytoplankton concentrations are governed by the source-minus-sink terms, which are one order of magnitude greater than the dynamical diffusion and advection terms.North of 35°S, in the SWSIG, phytoplankton growth is limited by nutrients supply throughout the year. However, deeper stratification, enhanced cross-frontal transport and higher detritus remineralization explain the simulated higher concentrations of phytoplankton found in winter in the SWSIG. The region between 35° and 40°S constitutes a transition zone between the SCZ and the oligotrophic subtropical province. Horizontal advection is the main process bringing nutrients for phytoplankton growth. The front at 34°S represents a dynamical barrier to an extension further to the north of this advection of nutrients.Within the SCZ, primary production is high during spring and summer. This high productivity depletes the nutrient standing stock built up during winter time. In winter, nutrients supply in the convergence zone is indeed large, but the deep mixing removes phytoplankton from the euphotic zone and inhibits photosynthesis, yielding lower surface chlorophyll a concentrations.Waters south of the Subantarctic Front have a summer biomass close to that of frontal waters and higher than for subtropical waters. However, these simulated concentrations are slightly higher than the observed ones suggesting that limitation by iron and/or silica may play a role.  相似文献   

15.
Seasonal variations in the primary production regime in the upper water column were assessed by shipboard observations using hydrocasts and natural fluorescence profiling at a fixed station in the central part of Sagami Bay, Japan. The observations were conducted as a part of ‘Project Sagami’ dedicated to the interdisciplinary study of seasonality in bathyal benthic populations and its coupling with water column processes. Based on the time-series observations at intervals of about 1 to 2 months, primary productivity in terms of chlorophyll abundance appeared to be elevated during the spring of 1997, but the observed peaks of biomass were much less significant in the spring of 1998. Meanwhile, the organic matter flux, as indicated by sediment trap data and benthic observations, had a significant peak in the spring of 1998 as well, and its magnitude was comparable to that in 1997. Satellite images of ocean color obtained during the spring of 1997 indicate the importance of events with time scales much shorter than a month, and suggest qualitative differences in the phytoplankton community in the euphotic zone for each bloom event during this period. The possible mechanisms that could yield the spring maximum of material input to the benthic community are discussed.  相似文献   

16.
本文讨论了2013年5月南海东沙天然气水合物区浮游植物生物量和生产力粒级结构特征及其环境影响因素。结果表明,研究海域表现出典型的低营养盐、低叶绿素a、低生产力特征,浮游植物叶绿素a和初级生产力具有明显的次表层最大值现象。东沙海域生物量和初级生产力粒级结构差异性显著,从生物量和生产力贡献度来看,表现为微微型浮游植物> 微型浮游植物> 小型浮游植物。生物量的垂直分布结果表明,春季不同粒级类群浮游植物在真光层内的分布存在明显不同,比如小型浮游植物在真光层内分布较均匀;微型浮游植物则主要分布于近表层或真光层中部,而微微型浮游植物则主要分布于真光层中部和底部。微微型浮游植物在纬度较低的热带贫营养海区之所以能够占主导优势,最主要的原因是其极小的细胞体积和较大的表面积使其有利于营养竞争。相关性分析表明,南海东沙浮游植物各粒级生物量与温度、pH显著正相关,与硅酸盐、磷酸盐显著负相关;浮游植物各粒级生产力与温度显著正相关,与盐度、磷酸盐显著负相关。磷酸盐含量是影响东沙海域浮游植物粒级结构差异的重要因素之一,同时,光辐照度和水体的真光层深度对东沙天然气水合物区不同粒径浮游植物的垂直分布起着更为重要的调控作用。  相似文献   

17.
It has long been seen from satellite ocean color data that strong zonal gradients of phytoplankton biomass persistently occur in the southern Drake Passage during austral summer and fall, where the low productivity Antarctic Surface Water (ASW) within the Antarctic Circumpolar Current (ACC) region transforms to the high productivity water. An interdisciplinary cruise was conducted in February and March 2004 to investigate potential physical and biogeochemical processes, which are responsible for transporting nutrients and metals and for enhancing primary production. To explore physical processes at both the meso- and large-scales, surface drifters, a shipboard Acoustic Doppler Current Profiler and conductivity–temperature–depth sensors were used. Analyzing meso- and large-scale hydrography, circulation and eddy activities, it is shown that the topographic rise of the Shackleton Transverse Ridge plays the key role in steering an ACC branch southward west of the ridge, forming an eastward ACC jet through the gap between the ridge and Elephant Island and causing the offshelf transport of shelf waters approximately 1.2 Sv from the shelf near Elephant Island. High mesoscale eddy activities associated with this ACC southern branch and shelf waters transported off the shelf were found. The mixing between the iron-poor warmer ASW of the ACC and iron-rich waters on the shelf through horizontal transport and vertical upwelling processes provides a physical process which could be responsible for the enhanced primary productivity in this region and the southern Scotia Sea.  相似文献   

18.
At 3000 m depth the downward flux of particulate matter shows substantial seasonal and interannual variation. Complete annual records for eight of the past 14 years have been examined in the light of mixing depths derived from the OCCAM general circulation model and euphotic zone chlorophyll concentration and productivity, which were derived from the SeaWiFS satellite colour sensor. The annual flux was particularly high in 2001 due to a late summer deposition exceeding previous records several fold and this year was also characterised by very early shoaling of the mixing depth in spring and a very high surface spring chlorophyll concentration. Other years that were somewhat unusual in having either high or low flux at depth were not in general associated with unusual patterns of mixing or productivity. The percentage of the annual organic carbon primary production which reaches 3000 m varies from 0.6 to 1.2% except in 2001 when it reached 3.4%. A mechanistic relationship between upper-ocean processes and deep-ocean particle flux remains elusive and various explanations are suggested for this which need now to be addressed. In the spring, the timing of first shoaling of mixing, enhancement of productivity and increased particle flux at depth have all advanced during the 14 years of study by about 2 days per year, suggesting a similar trend as has been observed for surface phytoplankton, mesozooplankton, fish and seabirds probably caused by wide-scale environmental changes.  相似文献   

19.
The export of organic matter from the oceanic euphotic zone is a critical process in the global biogeochemical cycling of bioelements (C, N, P, Si). Much of this export occurs in the form of sinking particles, which rain down into the unlit waters of the deep sea. Classical models of oceanic production and export balance this gravitational loss of particulate bioelements with an upward flux of dissolved nutrients, and they describe reasonably well those areas of the ocean where deep winter mixing occurs. The surface waters of the North Pacific Subtropical Gyre (NPSG), however, are strongly stratified and chronically nutrient-depleted, especially in summer. Nevertheless, there is ample evidence that blooms of phytoplankton and subsequent pulses of particle export occur during the height of summer stratification in these waters, especially to the northeast of the Hawaiian Islands. These blooms impact regional bioelemental cycling and act as a food source to the deep-sea benthos. We review here numerous published observations of these events in the NPSG, and present new data collected at Station ALOHA (22.75°N, 158°W) during the first 176 cruises of the Hawaii Ocean Time-series program (1988-2005), along with results from transect cruises conducted in the region in 1996 and 2005. We suggest that the summer phytoplankton bloom can be considered a frequent, perhaps annual feature in the northeastern NPSG, and that its perceived stochastic nature is a manifestation of chronic undersampling in time and space. The bloom is typically dominated by only a few genera of large diatoms and the cyanobacterium Trichodesmium. It appears to be consistently supported by dinitrogen fixation, but the fate of the organic matter produced during the summer depends critically on the species composition of the responsible diazotrophs. We estimate that the summer bloom is responsible for up to 38% of N2 fixation and up to 18% of N-based new production annually at Station ALOHA. We hypothesize that the spatial distribution, timing and magnitude of the bloom may be determined largely by the physical and biological processes controlling new phosphorus delivery into the euphotic zone during the summer and the preceding winter.  相似文献   

20.
As a result of ubiquitous excretion by micro-organisms, extracellular polymeric substances are reported in high concentrations in marine systems. The majority of this material is exopolysaccharide (EPS). Despite previous studies showing that EPS can affect carbon as well as trace metal cycling, little is known about the effect on Fe – a critical nutrient limiting primary productivity in up to 40% of the ocean. Here, we have characterised an EPS purified from bacteria isolated from the pelagic Southern Ocean (Pseudoalteromonas sp.) and investigated its role in Fe chemical speciation, solubility, as well as bioavailability for two keystone Southern Ocean phytoplankton strains. This EPS has an average molecular weight of 4.6 MDa, exhibiting mainly –OH, COO– and –NH2 functional groups. An asymmetrical flow field-flow fractionation coupled online with UV-spectrophotometer, differential refractive index, and multiangle laser light scattering (aFlFFF-UV-DRI-MALS) demonstrates that this EPS is polydisperse with three, not well resolved, size populations having molar masses in the range from 0.57 to 15.8 MDa. Fe was exclusively associated with the medium size fraction of this EPS and was the most abundant trace metal with 2.2 nM Fe per nM EPS. Only a third of this Fe was chemically labile, and the strength of Fe-EPS complexes increased with equilibration time. 1 nM EPS is efficient to retain Fe in solution, mainly in the colloidal phase (0.02–0.2 μm). Fe bound to the EPS was highly bioavailable (25% as much as for inorganic Fe). Due to combined effect of EPS on Fe solubility and bioavailability, it can increase the residence time of bioavailable Fe in the euphotic zone, therefore possibly sustaining and controlling primary productivity in sensitive oceanic regions, such as the Southern Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号