共查询到20条相似文献,搜索用时 28 毫秒
1.
The data of the two long seismic profiles crossing Iceland (Nasp 1972 andRrisp 1977) have revealed its deeper structure and its relation to the Reykjanes and the Faeroe-Iceland Ridge. All deep velocity levels dip down from the ocean towards Iceland. The maximum velocity found on Iceland does not exceed 7.6–7.7 km/s. The 7.0 km/s velocity level is of complex shape. Due to a disagreement of first arrivals at the crosspoint of the two profiles crustal velocity anisotropy may exist.Two different models can be derived from the seismic cross sections. The first model contains a thin oceanic crust being 10–15 km thick. This layer is followed directly by the asthenosphere with velocities near 7.0–7.4 km/s. The top of this diapir-like asthenosphere should be in a partly molten stage. The other version, favoured by the authors, suggests a crust of 30 km thickness which is underlain by mantle material with velocities of 7.5–7.7 km/s. The top of the asthenosphere is assumed to exist in a depth of about 50 km. In the upper crust at 10–15 km depth there occurs a local zone of rocks being in a partly molten stage, as evidenced by the reduced shear wave velocity and the high electrical conductivity. Due to this configuration Iceland forms combined structure with the Faeroe-Iceland Ridge. Despite of its great thickness the crust of Iceland must be regarded as belonging to the oceanic type because of its basic rock composition, thus it is classified as suboceanic.
Zusammenfassung Die Daten der beiden seismischen Langprofile auf Island (Nasp 1972 undRrisp 1977) erlauben Aussagen über die tiefere Struktur Islands und deren Zusammenhang mit dem Reykjanes und dem Faeroe-Island-Rücken. Alle tieferen Geschwindigkeitshorizonte fallen vom Ozean her unter Island ein. Die größte unter Island beobachtete Geschwindigkeit beträgt 7.6–7.7 km/s. Einen komplizierten Verlauf zeigt die 7.0 km/s Geschwindigkeitslinie. Andererseits kann auch Anisotrophie nicht ausgeschlossen werden.Die berechneten seismischen Profile erlauben zwei Interpretationen für die Krustenstruktur Islands. Die erste Deutung geht von einer dünnen (10–15 km mächtigen) ozeanischen Kruste aus, die direkt von der domartig aufdringenden Asthenosphere unterlagert wird. Der oberste Bereich der Asthenosphäre ist partiell geschmolzen und zeigt Geschwindigkeiten von über 7.0–7.4 km/s. Die andere, von den Autoren vertretene Deutung, geht von einer etwa 30 km mächtigen Kruste aus, die auf Mantelmaterial mit Geschwindigkeiten von 7.5–7.7 km/s liegt. Die Asthenosphäre folgt erst in 50 km Tiefe. Innerhalb der Kruste ist in 10–15 km Tiefe eine begrenzte Zone mit partiell geschmolzenem Gestein eingelagert, die sich durch eine verringerte Geschwindigkeit der Scherwellen und eine hohe elektrische Leitfähigkeit zu erkennen gibt. Die Kruste Islands bildet mit der Faeroe-Island-Rückens eine Einheit. Ungeachtet der Krustendicke von 30 km gehört die Kruste Islands aufgrund der basischen Zusammensetzung zum ozeanischen Typ und nicht zum kontinentalen.
Résumé Les données sur les deux longs profils sismiques en Islande (Nasp 1972 etRrisp 1977) permettent de déterminer la structure profonde et la relation avec le Seuil de Reykanes et des ïles Färoe. Tous les horizons à vitesse faible viennent du côté de l'Océan sous l'Islande. La vitesse la plus élevée observée sous l'Islande est de 7.6 à 7.7 km/sec. La courbe des vitesses montre une allure compliquée. D'autre part l'anisotropie ne peut être exclue. Les profils sismiques permettent deux interprétations de la structure de la croûte sous l'Islande. La première est celle d'un croûte mince (10–15 km) océanique, placée directement au-dessus de l'asthénosphère qui y pénétre à la manière d'un arceau. La couche supérieure de l'asthénosphère est partiellement fondue et montre des vitesses de plus de 7.0–7.4 km/sec. L'autre interprétation, d'après les auteurs, part d'une croûte de presque 30 km. au-dessus d'une espèce de manteau où la vitesse irait de 7.5 à 7.7 km/sec. L'asthénosphère se trouverait à 50 km. de profondeur. A l'intérieur de la croûte, à une profondeur de 10–15 km. se trouverait une zone restreinte, partiellement fondue, que revèle une vitesse réduite des ondes de cisaillement et sa haute conductibilité. La croûte d'Islands et celle du Seuil des Iles Färoe ne forment qu'une seule unité. Malgré la valeur de 30 km. la croûte d'Islande appartient au type oc"anique, et non pas au type continental à cause de sa constitution basique.
(—1972 —1977) - . , 7,7 /. . . 10–15 , 7,0–7,4 /. . , , 30 7,5–7,7 /. 50 . 12–18 , . , .相似文献
2.
Crustal structure of mainland China from deep seismic sounding data 总被引:18,自引:0,他引:18
Since 1958, about ninety seismic refraction/wide angle reflection profiles, with a cumulative length of more than sixty thousand kilometers, have been completed in mainland China. We summarize the results in the form of (1) a new contour map of crustal thickness, (2) fourteen representative crustal seismic velocity–depth columns for various tectonic units, and, (3) a Pn velocity map. We found a north–south-trending belt with a strong lateral gradient in crustal thickness in central China. This belt divides China into an eastern region, with a crustal thickness of 30–45 km, and a western region, with a thickness of 45–75 km. The crust in these two regions has experienced different evolutionary processes, and currently lies within distinct tectonic stress fields. Our compilation finds that there is a high-velocity (7.1–7.4 km/s) layer in the lower crust of the stable Tarim basin and Ordos plateau. However, in young orogenic belts, including parts of eastern China, the Tianshan and the Tibetan plateau, this layer is often absent. One exception is southern Tibet, where the presence of a high-velocity layer is related to the northward injection of the cold Indian plate. This high-velocity layer is absent in northern Tibet. In orogenic belts, there usually is a low-velocity layer (LVL) in the crust, but in stable regions this layer seldom exists. The Pn velocities in eastern China generally range from 7.9 to 8.1 km/s and tend to be isotropic. Pn velocities in western China are more variable, ranging from 7.7 to 8.2 km/s, and may display azimuthal anisotropy. 相似文献
3.
4.
In orogenic zones it is often considered appropriate to use a continuum rheology to model the deformation of the upper continental crust. In this paper we derive an applicable rheology utilizing fiber-bundle and continuum-damage models. We show that the results are identical and yield a power relation between stress σ and strain rate
of the form σ=
ρ−1. We constrain the applicable values of ρ utilizing Omori's law for the decay of aftershocks and conclude that ρ−1 is in the range of 5–15. With this strong nonlinear viscous rheology the behavior of the deforming upper crust approaches that of a perfect-plastic material. 相似文献
5.
The origin of regional sedimentary basins is being investigated by the ESTRID project (Explosion Seismic Transects around a Rift In Denmark). This project investigates the mechanisms of the formation of wide, regional basins and their interrelation to previous rifting processes in the Danish–Norwegian Basin in the North Sea region. In May 2004 a 143 km long refraction seismic profile was acquired along the strike direction of a suspected major mafic intrusion in the crust in central Denmark. The data confirms the presence of a body with high seismic velocity (> 6.5 km/s) extending from a depth of 10–12 km depth into the lower crust. There is a remarkable Moho relief between 27 and 34 km depth along this new along-strike profile as based on ray-tracing modelling of PmP reflections. The lack of PmP reflections at a zone of very high velocity in the lowest crust (7.3–7.5 km/s) suggests a possible location of a feeder channel to the batholith. The presence of volcanic rocks of Carboniferous–Permian age above the intrusion (mafic batholith) suggests a similar age of the intrusion. An older obliquely crossing profile and two new fan profiles deployed perpendicular to the main ESTRID profile, show that the batholith is about 30–40 km wide. The existence of this large mafic batholith supports the hypothesis that the origin of the Danish–Norwegian Basin is related to cooling and contraction after intrusion of large amounts of mafic melts into the crust during the late Carboniferous and early Permian. The data and interpretations from project ESTRID will form the basis for subsidence modelling. Tentatively, we interpret the formation of the Danish–Norwegian Basin as a thermal subsidence basin, which developed after widespread rifting of the region. 相似文献
6.
7.
The crustal P-wave velocity structure beneath the Loess Plateau and surrounding regions, which is a transition zone between the Tibetan Plateau and the Huabei and Huanan Blocks of China, was tomographically imaged for the first time down to the depth of 80 km. The seismic sources comprised both local and regional earthquakes and the reconstruction was accomplished using a newly developed simultaneous inversion procedure, which solves for both the earthquake hypocentres and the 3-D velocity field. Special features of the procedure include a modified shortest path algorithm for the bent ray tracing, an analytic Jacobian matrix for solution updating, and a damped, minimum norm, constrained non-linear solver based on a CG approach. The velocity structure obtained is more complex than previously thought. The lateral velocity variations are consistent with the U-shaped seismic ring structure but the vertical variations along the Fenwei seismic belt are consistent with the mechanism of the Mountain-Basin generalized system formation. The velocity images of Loess Plateau, the transition zone may help to build a geodynamic mechanism for inland China, to explain the formation of ground fissures so prevalent in the Loess Plateau. 相似文献
8.
9.
As part of the Sino-French earth science programme in Tibet, magnetotelluric and geomagnetic soundings were carried out in
the southwestern part of Tibet.
Eight magnetotelluric sounding sites and nineteen geomagnetic stations were occupied along roughly north-south profiles. The
magnetotelluric profile runs from Lhozag to the south of Yangbajain to the north. The geomagnetic profile runs from Lang Kartse
to Gulu.
These experiments indicate a conductive layer at about 25 km in depth. This layer corresponds to the isotherm 1100°C. Shallow
conductive structures related to the presence of significant partial melting were evidenced to the south of the Zangbo suture.
A conductive structure was also evidenced at about 15 km in depth below the Nyainquentanglha range. This structure may correspond
to partial melting due to the presence of fluids at the dipping plane between two overthrusting crustal blocks. 相似文献
10.
S. S. Rai P. V. S. S. Rajagopala Sarma K. S. Prakasam V. K. Rao 《Journal of Earth System Science》1996,105(4):431-439
The deep crustal structure of eastern Dharwar craton has been investigated through τ-p extremal inversion of P-wave travel times from a network of seismographs recording quarry blasts. Travel times have been
observed in the distance range 30–250 km in a laterally homogeneous lithospheric segment Main features of the inferred velocity-depth
relationship include: (a) 29 km thick combined upper and middle crust velocity varying from 6 km/s to 7 km/s, with no observable
velocity discontinuity in this depth range; (b) a lower crust (∼ 29–41 km) with velocity increasing from 7.0 to 7.3 km/s;
(c) an average upper mantle velocity of 8.1 km/s; and (d) presence of a 12 km thick high velocity crustal layer (7.4 – 7.8
km/s) in the depth range 41–53 km, with a distinct velocity gradient marking a velocity increase of 0.4 km/s. The anomalous
53 km thick crust is viewed as a consequence of magmatic underplating at the base of the crust in the process of cratonization
of the eastern Dharwar craton during late Archaean. The underplated material reflects here with the velocity of 7–3 to 7–8
km/s below the depth of 40 km. Our proposition of magmatic underplating is also supported by the presence of large scale I-granitoid,
a product of partial melting of the upper mantle material. 相似文献
11.
An average crust-mantle model has been derived for the East African Rift system based on a number of presently available seismic data. The inversion of experimentally determined spectral transfer ratios of long-period body waves recorded at stations AAE (Addis Ababa, Ethiopia), NAI (Nairobi, Kenya) and LWI (Lwiro, Zaïre) requires at least a two-layer crust. Except for station AAE. the observed P-wave delays can be accounted for by differences in the deduced crustal structure. Phase- and group-velocity measurements of Rayleigh waves along the path AAE-NAI provide additional information on the gross structure of the crust and upper mantle. Only a well-developed asthenosphere channel can explain the observed surface-wave dispersion. It is shown that the average model MS-71 permits a satisfactory interpretation of all the data presented in this paper. 相似文献
12.
We present the first detailed seismic velocity models of the crust and uppermost mantle around the Mirnyi kimberlite field in Yakutia, Siberia. We have digitized vintage seismograms that were acquired in 1981 and 1983 by use of Taiga analogue seismographs along two perpendicular seismic profiles. The 370-km long, northwest striking profile I across the kimberlite pipe was covered by 41 seismographs, which recorded seismic signals from 21 chemical shots along the line, including one off-end shot. The perpendicular, 340-km long profile II across profile I ca. 30 km to the south of the Mirnyi kimberlite field was covered by 45 seismographs, which recorded seismic signals from 22 chemical shots, including four off-end shots. Each shot involved detonation of between 1.5 and 6.0 tons of TNT, distributed in individual charges of 100–200 kg in shallow water (< 2 m deep). The data is of high quality with high signal/noise ratio to the farthest offsets. We present the results from two-dimensional ray tracing, forward modelling.Both velocity models show normal cratonic structure of the ca. 45-km-thick crust with only slight undulation of the Moho. However, relatively small seismic velocity is detected to 25-km depth in a ca. 60-km wide zone around the kimberlite pipe, surrounded by elevated velocity (> 6.3 km/s) in the upper crust. The lower crust has a relatively constant velocity of 6.8–6.9 km/s. It appears relatively unaffected by the presence of the kimberlite field. Extremely large P-wave velocity (> 8.7 km/s) of the sub-Moho mantle is interpreted along profile I, except for a 70-km wide zone with a “normal” Pn velocity of 8.1 km/s below the kimberlite. Profile II mainly shows Pn velocities of 8.0–8.2 km/s, with unusually large velocity (> 8.5 km/s) in two, ca. 100-km wide zones, at its southwestern end, one zone being close to the kimberlite field. The nature of these exceptionally large, sub-Moho mantle velocities is not yet understood. The difference in velocity in the two profile directions indicates anisotropy, but the effect of unusual rock composition, e.g. from a high concentration of garnet, cannot be excluded. 相似文献
13.
Element Abundances of China‘s Continental Crust and Its Sedimentary Layer and Upper Continental Crust 总被引:4,自引:0,他引:4
Li Tong 《中国地球化学学报》1995,14(1):26-32
China’s continental crust (CCC) has an average thickness of 47km, with the upper continental crust (CUCC) being 31 km and
the sedimentary layer(CSL) 5 km in thickness. The CCC, CUCC and CSL measure 12.437 × 10−17, 8.005 × 10−17 and 1.146 × 1017 metric tons in mass, respectively. The mass ratio of the upper continental crust to the lower one is 1.8:1. The element abundances
were calculated for the CCC, CUCC and CSL respectively in terms of the chemical compositions of 2246 samples of various types
and some complementary trace element data. The total abundance of 13 major elements accounts for 99.6% of the CCC mass while
the other minor elements only account for 0.4%. REE characteristics, the abundance ratios of element pairs and the amounts
of ore-forming elements are also discussed in the present paper. 相似文献
14.
The previously published results of a deep seismic refraction study of the Dead Sea—Gulf of Elat rift show crustal thinning underneath the rift and the presence of a 5 km thick velocity transition zone in the lower crust along the rift. The structural interpretation of the first-arrival data was revised using the detailed velocity-depth distribution.The revised crustal thicknesses are 35 km near Elat and 27 km, 160 km south of Elat.The crustal thinning and the presence of the velocity transition zone are interpreted as being the result of intrusion of upper mantle material into the lower crust, possibly representing the initial shape of the processes which have been active further south in the Red Sea since earlier times. 相似文献
15.
16.
M. Malinowski A. ela
niewicz M. Grad A. Guterch T. Janik CELEBRATION Working Group 《Tectonophysics》2005,401(1-2):55-77
The CELEBRATION 2000 together with the earlier POLONAISE'97 deep seismic sounding experiments was aimed at the recognition of crustal structure in the border zone between the Precambrian East European Craton (Baltica) and Palaeozoic Europe. The CEL02 profile of the CELEBRATION family is a 400-km long SW–NE transect, running in Poland from the Upper Silesia Block (USB), across the Małopolska Block (MB) and the Trans-European Suture Zone (TESZ) to the East European Craton (EEC). The structure along CEL02 was interpreted using both 2D tomography and forward ray-tracing techniques as well as 2D gravity modelling.The crustal thickness along CEL02 varies from 32–35 km in the USB to 45–47 km beneath the TESZ and the EEC. The USB is a clearly distinctive crustal block with the characteristic high velocity lower crust (7.1–7.2 km/s), interpreted as a fragment of Gondwana. The Kraków–Lubliniec Fault is a terrane boundary produced by soft docking of the USB with the MB. The Małopolska crust fundamentally differs from the USB and has a strong connection with Baltica. It is a transitional, 150- to 200-km wide unit composed of the extended Baltican lower crust and the overlying low velocity (5.15–5.9 km/s) Neoproterozoic metasediments in the up to 18-km thick upper crust. The Łysogóry Unit has its crustal structure identical with that of Małopolska, thus it is connected with Baltica and cannot be interpreted as a Gondwana-derived terrane. Higher velocity and density bodies found below the Mazovia–Lublin Graben at a depth of 12 km and at the base of the lower crust, might be a result of mantle-derived mafic intrusions accompanying the extension of Baltica. By the preliminary 2D gravity modelling, we have reconfirmed the need for considering the increased TESZ mantle density in comparison to the EEC and USB mantle. 相似文献
17.
18.
侏罗纪地壳转动与中国东部岩石圈转型 总被引:8,自引:0,他引:8
对中国东部侏罗纪时期地壳增厚和岩石圈显著变薄的现象,提出一个新的形成机制假说.基于古地磁和地质学的证据认为,鄂霍次克板块朝西和伊佐奈岐板块朝西北方向运移、俯冲和碰撞,造成西伯利亚东部边缘的强烈构造变形,使东亚大陆地壳产生20°~30°的逆时针转动,形成东亚大陆北部地壳朝西运移,而东亚大陆南部(中国东部)地壳相对向东运移.这种滑移作用使中国东部发生强烈的构造-岩浆活动、地壳增厚,同时也使中国大陆东部的上地壳从大陆型岩石圈地幔滑移到大洋型岩石圈地幔之上,出现岩石圈类型的转变和厚度显著变薄的现象.看来,中国东部岩石圈变薄并不是深部地幔羽或大陆伸展作用的结果. 相似文献
19.
Shaocheng Ji Kazuko Saruwatari David Mainprice Richard Wirth Zhiqin Xu Bin Xia 《Tectonophysics》2003,370(1-4):49-76
Ultra high-pressure (UHP) eclogites from Sulu region (China) represent mafic components of the continental crust, which were first subducted to mantle depths greater than 100 km and then exhumed to the earth's surface. Detailed investigation of microstructures, chemical compositions, petrofabrics and seismic properties of the UHP eclogites can provide important information on the operating deformation mechanisms and rheology of subducted continental crust and on the origin of seismic reflections within the upper mantle. We present here results from field, optical and TEM observations, electron back-scattered diffraction (EBSD) measurements and numerical computations of the seismic properties of UHP eclogites collected from fresh surface outcrops at the drill site (Maobei, Donghai County, Jiangsu Province) of the Chinese Continental Scientific Drilling Program (CCSD). Two types of eclogites have been distinguished: Type-1 (coarse-grained) eclogites deformed by recovery-accommodated dislocation creep at the peak metamorphic conditions, and Type-2 (fine-grained) eclogites which are composed of reworked Type-1 materials during recrystallization-accommodated dislocation creep in shear zones which were active during the exhumation of the UHP metamorphic rocks. Both garnet and omphacite in these eclogites deformed plastically and the flow strength contrast between these two constituent minerals is apparently much less than an order of magnitude under the UHP metamorphic conditions. Plasticity of eclogites under UHP conditions can effectively facilitate channeled flow along the interplate shear zone. The preservation of the relict crustal materials within the continental lithosphere may produce regionally extensive, strong, seismic reflections in the upper mantle. This may explain the origin of mantle reflections observed in many areas of the world. 相似文献
20.
A. A. Peyve 《Geotectonics》2009,43(2):87-99
The accretion of oceanic crust under conditions of oblique spreading is considered. It is shown that deviation of the normal to the strike of mid-ocean ridge from the extension direction results in the formation of echeloned basins and ranges in the rift valley, which are separated by normal and strike-slip faults oriented at an angle to the axis of the mid-ocean ridge. The orientation of spreading ranges is determined by initial breakup and divergence of plates, whereas the within-rift structural elements are local and shallow-seated; they are formed only in the tectonically mobile rift zone. As a rule, the mid-ocean ridges with oblique spreading are not displaced along transform fracture zones, and stresses are relaxed in accommodation zones without rupture of continuity of within-rift structural elements. The structural elements related to oblique spreading can be formed in both rift and megafault zones. At the initial breakup and divergence of continental or oceanic plates with increased crust thickness, the appearance of an extension component along with shear in megafault zones gives rise to the formation of embryonic accretionary structural elements. As opening and extension increase, oblique spreading zones are formed. Various destructive and accretionary structural elements (nearly parallel extension troughs; basin and range systems oriented obliquely relative to the strike of the fault zone and the extension axis; rhomb-shaped extension basins, etc.) can coexist in different segments of the fault zone and replace one another over time. The Andrew Bain Megafault Zone in the South Atlantic started to develop as a strike-slip fault zone that separated the African and Antarctic plates. Under extension in the oceanic domain, this zone was transformed into a system of strike-slip faults divided by accretionary structures. It is suggested that the De Geer Megafault Zone in the North Atlantic, which separated Greenland and Eurasia at the initial stage of extension that followed strike-slip offset, evolved in the same way. 相似文献