首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many observations and studies indicate that pore fluid pressure in the crustal rocks plays an important role in deformation, faulting, and earthquake processes. Conventional models of pore pressure effects often assume isotropic porous rocks and yield the nondeviatoric pressure effects which seem insufficient to explain diverse phenomena related to pore pressure variation, such as fluid-extraction induced seismicity and crustal weak faults. We derive the anisotropic effective stress law especially for transversely-isotropic and orthotropic rocks, and propose that the deviatoric effects of pore fluid pressure in anisotropic rocks not only affect rock effective strength but also cause variation of shear stresses. Such shear stress variations induced by either pore pressure buildup or pore pressure decline may lead to faulting instability and trigger earthquakes, and provide mechanisms for the failure of crustal weak faults with low level of shear stresses. We believe that the deviatoric effects of pore fluid pressure in anisotropic rocks are of wide application in studies of earthquake precursors and aftershocks, oil and gas reservoir characterization, enhanced oil recovery, and hydraulic fracturing.  相似文献   

2.
The M w 3.2-induced seismic event in 2006 due to fluid injection at the Basel geothermal site in Switzerland was the starting point for an ongoing discussion in Europe on the potential risk of hydraulic stimulation in general. In particular, further development of mitigation strategies of induced seismic events of economic concern became a hot topic in geosciences and geoengineering. Here, we present a workflow to assess the hazard of induced seismicity in terms of occurrence rate of induced seismic events. The workflow is called Forward Induced Seismic Hazard Assessment (FISHA) as it combines the results of forward hydromechanical-numerical models with methods of time-dependent probabilistic seismic hazard assessment. To exemplify FISHA, we use simulations of four different fluid injection types with various injection parameters, i.e. injection rate, duration and style of injection. The hydromechanical-numerical model applied in this study represents a geothermal reservoir with preexisting fractures where a routine of viscous fluid flow in porous media is implemented from which flow and pressure driven failures of rock matrix and preexisting fractures are simulated, and corresponding seismic moment magnitudes are computed. The resulting synthetic catalogues of induced seismicity, including event location, occurrence time and magnitude, are used to calibrate the magnitude completeness M c and the parameters a and b of the frequency-magnitude relation. These are used to estimate the time-dependent occurrence rate of induced seismic events for each fluid injection scenario. In contrast to other mitigation strategies that rely on real-time data or already obtained catalogues, we can perform various synthetic experiments with the same initial conditions. Thus, the advantage of FISHA is that it can quantify hazard from numerical experiments and recommend a priori a stimulation type that lowers the occurrence rate of induced seismic events. The FISHA workflow is rather general and not limited to the hydromechanical-numerical model used in this study and can therefore be applied to other fluid injection models.  相似文献   

3.
首先讨论龙滩库区水库蓄水与地震活动之间的关系,发现龙滩水库诱发地震特征十分明显,地震共分5丛呈丛集分布.利用库区架设的24个固定和流动台站记录的数字记录资料,在研究得到龙滩库区非弹性衰减和台站场地响应的基础上,精确测定得到了该地区总共1616个ML≥0.1级地震的震源参数,比较了水库诱发地震与构造地震震源参数特征的差异,得到了以下主要结论:1)龙滩水库地震活动与水库蓄水关系密切,不同蓄水阶段5丛的地震活动状态不同,局部断裂构造发育以及岩石透水性能影响着地震活动对蓄水过程的响应.2)龙滩水库诱发地震的地震矩M0随震级ML的增大而增大,两者之间存在较好的线性关系,统计关系为LogM0=1.07 ML+10.17.应力降与地震大小之间的关系和Nuttli的板内地震为增加应力降(ISD)模型的结果比较吻合,统计关系为LogΔσ=0.71 ML-2.89.3)龙滩水库地区地震辐射能量和地震视应力均随震级的增大而增大,后者意味着大地震是比小地震更高效率的地震能量辐射体.4)总体上不同丛地震应力降水平存在差异.地震应力降空间分布上与库水深度有较好的一致性,即库水深的区域应力降水平高.5)与同震级的构造地震相比,水库诱发地震的应力降值比前者明显偏低,大约小10倍.这可能是由于水库蓄水造成地下介质孔隙压力增大或者水的润滑作用,从而导致在一个比较低的构造应力情况下发生水库诱发地震.  相似文献   

4.
利用中尺度岩石摩擦实验开展了应力扰动对断层摩擦滑动过程中声发射活动影响的实验研究,据此讨论同震应力变化引起的小震活动特征及其预测意义.实验结果表明方波状应力扰动对粘滑失稳前的声发射活动有明显影响,即触发了一些声发射事件,使得粘滑发生前声发射活动增强并使出现的时间提前.这种影响随平均正应力的提高和扰动振幅的增大而增强,其...  相似文献   

5.
龚钢延  谢原定 《地震学报》1991,13(3):364-371
本文根据新丰江水库地震的主要成因是水渗透的结果,采用了地震活动的震中分布面积扩散法,利用新丰江水库蓄水以后 MS2.0的地震资料,研究了主震区的水力扩散率.研究结果表明,在新丰江水库地震活动中的前震活动中,原地水力扩散率基本上稳定在6.2m2/S,而主震发生以后震源区的原地水力扩散率增大约50%,即为9.7m2/S.在主震发生后的较长时间里.原地水力扩散率出现了明显的各向异性及受水位涨落等因素的影响,没有一定的规律可循.本文还用室内岩石渗透实验的结果与原地水力扩散率估计值进行了比较,说明室内含破裂面岩样的渗透率同原地渗透率吻合得较好,而完整岩样的渗透率要比原地渗透率低3个数量级.最后将本文地震活动的震中分布面积扩散法的局限性进行了讨论.   相似文献   

6.
Reservoir behavior due to injection and circulation of cold fluid is studied with a shear displacement model based on the distributed dislocation technique, in a poro‐thermoelastic environment. The approach is applied to a selected volume of Soultz geothermal reservoir at a depth range of 3600 to 3700 m. Permeability enhancement and geothermal potential of Soultz geothermal reservoir are assessed over a stimulation period of 3 months and a fluid circulation period of 14 years. This study—by shedding light onto another source of uncertainty—points toward a special role for the fracture surface asperities in predicting the shear dilation of fractures. It was also observed that thermal stress has a significant impact on changing the reservoir stress field. The effect of thermal stresses on reservoir behavior is more evident over longer circulation term as the rock matrix temperature is significantly lowered. Change in the fracture permeability due to the thermal stresses can also lead to the short circuiting between the injection and production wells which in turn decreases the produced fluid temperature significantly. The effect of thermal stress persists during the whole circulation period as it has significant impact on the continuous increase in the flow rate due to improved permeability over the circulation period. In the current study, taking into account the thermal stress resulted in a decrease of about 7 °C in predicted produced fluid temperature after 14 years of cold fluid circulation; a difference which notably influences the potential prediction of an enhanced geothermal system.  相似文献   

7.
We provide a comparative analysis of the spatio-temporal dynamics of hydraulic fracturing-induced microseismicity resulting from gel and water treatments. We show that the growth of a hydraulic fracture and its corresponding microseismic event cloud can be described by a model which combines geometry- and diffusion-controlled processes. It allows estimation of important parameters of fracture and reservoir from microseismic data, and contributes to a better understanding of related physical processes. We further develop an approach based on this model and apply it to data from hydraulic fracturing experiments in the Cotton Valley tight gas reservoir. The treatments were performed with different parameters such as the type of treatment fluid, the injection flow rate, the total volume of fluid and of proppant. In case of a gel-based fracturing, the spatio-temporal evolution of induced microseismicity shows signatures of fracture volume growth, fracturing fluid loss, as well as diffusion of the injection pressure. In contrast, in a water-based fracturing the volume creation growth and the diffusion controlled growth are not clearly separated from each other in the space-time diagram of the induced event cloud. Still, using the approach presented here, the interpretation of induced seismicity for the gel and the water treatments resulted in similar estimates of geometrical characteristics of the fractures and hydraulic properties of the reservoir. The observed difference in the permeability of the particular hydraulic fractures is probably caused by the different volume of pumped proppant.  相似文献   

8.
In this paper, the effect of pre-existing discrete fracture network (DFN) connectivity on hydraulic fracturing is numerically investigated in a rock mass subjected to in-situ stress. The simulation results show that DFN connectivity has a significant influence on the hydraulic fracture (HF) & DFN interaction and hydraulic fracturing effectiveness, which can be characterized by the total interaction area, stimulated DFN length, stimulated HF length, leak-off ratio, and stimulated total length. In addition, even at the same fluid injection rate, simulation models exhibit different responses that are strongly affected by the DFN connectivity. At a low injection rate, total interaction area decreases with increasing DFN connectivity; at a high injection rate, total interaction area increases with the increase of DFN connectivity. However, for any injection rate, the stimulated DFN length increases and stimulated HF length decreases with the increase of connectivity. Generally, this work shows that the DFN connectivity plays a crucial role in the interaction between hydraulic fractures, the pre-existing natural fractures and hydraulic fracturing effectiveness; in return, these three factors affect treating pressure, created microseismicity and corresponding stimulated volume. This work strongly relates to the production technology and the evaluation of hydraulic fracturing effectiveness. It is helpful for the optimization of hydraulic fracturing simulations in naturally fractured formations.  相似文献   

9.
Induced stresses due to fluid extraction from axisymmetric reservoirs   总被引:1,自引:0,他引:1  
Earthquakes can be induced by fluid extraction, as well as by fluid injection.Segall (1989) proposed that poroelastic stresses are responsible for inducing earthquakes associated with fluid extraction. Here, I present methods for computing poroelastic stress changes due to fluid extraction for general axisymmetric reservoir geometries. The results ofGeertsma (1973) for a thin disk reservoir with uniform pressure drop are recovered as a special case. Predicted surface subsidence agrees very well with measured leveling changes over the deep Lacq gas field in southwestern France. The induced stresses are finite if the reservoir pressure changes are continuous. Computed stress changes are on the order of several bars, suggesting that the preexisting stress states in regions of extraction induced seismicity are very close to frictional instability prior to production.  相似文献   

10.
Ubiquitous splitting of seismic shear-waves indicates that most rocks in the upper half of the crust are pervaded by stress-aligned fluid-filled inclusions, called EDA-cracks. These inclusions are expected to be aligned perpendicular to the minimum compressional stress by stress relationships similar to those aligning industrial hydraulic fractures. At depths where the overburden stress is sufficiently large (typically below a few hundred metres), this minimum stress is usually horizontal, so that the EDA-cracks and hydraulic fractures are typically aligned vertically, striking parallel, or subparallel, to the direction of maximum compression. This is confirmed by the polarizations of the split shear-waves along raypaths at depth in the crust. At the free surface, however, the vertical stress is zero (or approximately zero) and cracks (and hydraulic fractures) at shallow depths in intact rock tend to be horizontal. Thus, the directions of minimum stress, and the orientations of hydraulic fractures, are likely to swing through 90° near the surface of the Earth. Since the behaviour of cracks and stress is often crucial to drilling operations, the rotation of the crack- and stress-geometry near-surface has important implications, particularly for optimizing hydrocarbon production and geothermal reservoir management. Consequently, evidence gained from experiments, for example in hot-dry-rock geothermal heat extraction, in inappropriate crack geometries at shallow depths, may not be valid when applied to other crack- and stress-geometries at depth in hot rock.  相似文献   

11.
The behaviour of a magma plumbing system during a cycle of volcanic edifice growth is investigated with a simple physical model. Loading by an edifice at Earth's surface changes stresses in the upper crust and pressures in a magma reservoir. In turn, these changes affect magma ascent from a deep source to the reservoir and from reservoir to Earth's surface. The model plumbing system is such that a hydraulic connection is maintained at all times between the reservoir and a deep magma source at constant pressure. Consequently the input rate of magma into the reservoir is predicted by the model rather than imposed as an input parameter. The open hydraulic connection model is consistent with short-term measurements of deformation and seismicity at several active volcanoes. Threshold values for the reservoir pressure at the beginning and end of eruption evolve as the edifice grows and lead to long-term changes of eruption rate. Depending on the dimensions and depth of the reservoir, the eruption rate follows different trends as a function of time. For small reservoirs, the eruption rate initially increases as the edifice builds up and peaks at some value before going down. The edifice size at the peak eruption rate provides a constraint on the reservoir shape and depth. Edifice decay or destruction leads to resumption of eruptive activity and a new eruption cycle. A simple elastic model for country rock deformation is valid over a whole eruptive cycle extending to the cessation of eruptive activity. For large reservoirs, an elastic model is only valid over part of an eruptive cycle. Long-term stress changes eventually lead to reservoir instability in the form of either roof collapse and caldera formation or reservoir enlargement in the horizontal direction.  相似文献   

12.
According to the fact that the Xinfengjiang reservoir earthquakes are caused mainly by water seepage, this paper using the data ofM s?2. 0 earthquakes, studies the hydraulic diffusivity of the mainshock zone by the expansion of the distribution area of epicenters. It is indicated thatin-situ hydraulic diffusivity during the preshock activity of the Xinfengjiang reservoir region was about 6. 2 m2/s. However, after the main shock, thein-situ hydraulic diffusivity in the main shock region increased by fifty percent, that is to say, to 9. 7 m2/s. During the long period after main shock occurrence thein-situ hydraulic diffusivity was affected by significant anisotropy of the medium and fluctuation of water level. No regularity can be found. In addition, we compare the diffusivity found by experiment with rock samples collected with thein-situ hydraulic diffusivity estimated. It is shown that the diffusivity of rock samples with fractures is about the same as the diffusivity estimatedin-situ. However, the diffusivity of whole rock samples is 3 orders of magnitudes smaller than that estimatedin-situ. Finally, we discuss the limits on the method by the expansion of distribution area of epicenters in the study of reservoir induced seismicity.  相似文献   

13.
随着二氧化碳地质封存、深部地热开采、地下储气库建设、页岩气开发、二次驱油/驱气等工业应用的快速发展,与地下流体注入有关的诱发地震活动呈现一定的增加趋势.利用声发射实验观测油气田典型岩石在三轴压缩条件下变形破坏过程与声发射活动特征,对研究注水诱发地震过程有着重要意义.本文利用四川盆地现场采集的震旦系白云岩及页岩,采用实验室声发射技术观测研究岩石三轴压缩变形破坏过程中地震波速度等物性参数及声发射事件时空分布特征.实验结果表明:震旦系白云岩及页岩在变形破坏过程中均有一定的声发射活动.根据声发射定位结果,声发射主要集中在破坏前后的较短时间内,页岩的层理面为结构弱面,控制最终破坏面的形态及声发射特征.根据应力-应变结果,白云岩在压缩的后期阶段有一定的扩容现象,但页岩在整个压缩阶段均没有明显扩容现象.研究结果表明四川盆地较古老的白云岩及页岩具有脆性破坏特征,地下流体注入容易诱发微震活动,形成裂缝,有利于页岩气压裂开采.微震活动有利于监测裂缝的发生发展,但同时在页岩气开发及二氧化碳地质封存时应采取相应的预防控制措施进行安全合理的储盖层管理,避免灾害性诱发地震的发生.  相似文献   

14.
本文从水力学的观点分析了新丰江水库区水力扩散与诱发地震活动的影响因素,讨论了新丰江水库区水力扩散与诱发地震活动的时空特点及其形成原因。最后用地震面积扩展法分析讨论了新丰江水库区水力扩散率的动态变化及其大地震的发展趋势。指出新丰江库区基底断裂网络是影响其水力扩散与诱发地震活动最决定的因素,也是形成新丰江水库区水力扩散与诱发地震活动时空特,点最主要的原因,并提出6.1级主震发生一年半以后,水力扩散诱发大地震的可能性不复存在。  相似文献   

15.
卡里巴水库蓄水引起库区应力场变化影响分析   总被引:3,自引:0,他引:3  
程惠红  张怀  朱伯靖  郑亮  石耀霖 《地震》2013,33(4):32-42
水库地震是近几年国际上地震学和地球动力学领域研究的热点问题。 作为世界上库容最大的卡里巴(Kariba)水库在其蓄水后库区地震活动性不断增加, 并于1963年9月23日发生M6.1地震, 是世界上公认发生过6级以上水库地震的四大水库之一。 对该水库蓄水引起库区应力场变化进行量化估算, 有助于对特大—大型水库蓄水后库区应力场变化及应力触发地震这一基础性科学问题的深入了解。 本文分别应用解析解和数值解方法对卡里巴水库蓄水引起库区弹性应力场、 不排水和排水孔隙压力变化进行了计算分析。 结果表明, 卡里巴水库蓄水引起M6.1地震震源处孔压变化为0.015~0.22 MPa, 库仑应力变化约0.03~0.17 MPa, 触发了此次地震的发生。  相似文献   

16.
孔隙压力扩散与水库诱发地震活动性的初步研究   总被引:4,自引:0,他引:4       下载免费PDF全文
水库诱发地震活动与水的渗透有密切关系,本文认为水库诱发地震中,前震活动主要是由于水的渗透引起孔隙压力扩散,岩石强度弱化所致。由于水库区地下岩石渗透性质的复杂性,将库区岩石介质分为均匀、非均匀渗透的两种情况,利用两相(固、液)多孔介质中孔隙压力扩散理论,分别对水库蓄水所引起的孔隙压力场进行了数值模拟计算,计算结果表明,非均匀渗透模型中水渗透所形成的孔隙压力分布与水库地震发生的空间位置对应得较好,孔隙压力峰值扩散到水库诱发地震的前震震源处的时间(1.8天~45天)与水库蓄水后引起前震活动的滞后时间大体一致。  相似文献   

17.
人工诱发地震现象已经有很久的历史.水库蓄水、采矿、地热开发、从地下提取液体或气体,或将液体注入地球内部都可能诱发地震.大量地震监测数据与科学分析结果显示:美国俄克拉何马州的地震剧增主要与页岩油气开采的废水回注量相关;加拿大阿尔伯塔省的地震剧增主要与页岩油气开采水力压裂的工作量相关;而荷兰罗宁根天然气田的传统天然气开采也同样诱发了较强的地震活动.在中国四川盆地的页岩油气开发区域,地震活动近几年也大幅度增强,但目前监测与科研工作较少,对某些地震成因尚有争议.目前研究诱发地震问题已成为学术界与工业界的一门专业学科.推断诱发地震,除了分析时空分布与工业活动的相关性之外,本文综述了该领域基于地震学、地质动力学、构造地质学的多种分析方法.如何在油气开采过程中减少诱发地震的灾害影响成为当前相关各界极为关注的科研问题,本文介绍了多个国家或地区建立的控制诱发地震的管理系统、基于地震大数据的诱发地震概率预测方法,以及基于地球物理与地质信息的综合诱发地震风险评估方法,并对我国控制诱发地震问题提出建设性意见.  相似文献   

18.
We investigate the relationship between the impoundment and seismicity in the Longtan reservoir, southwestern China and find evidence that the seismicity was reservoir induced. After the reservoir impoundment, a pronounced increase in seismicity was observed in five clusters mainly concentrated in the areas where few earthquakes had occurred before the first filling. The observed induced seismicity shows a strong correlation with the filling cycles. The activity levels in the five clusters are different due to differences in the structures and permeabilities of the faults. Source parameters for 1,616 earthquakes with M L 0.1–4.2 recorded by 24 fixed and temporary stations deployed around the reservoir were calculated after applying corrections for geometrical spreading, frequency-dependent Q, and site effects. The static stress drop and apparent stress in this area both appear to increase with increasing seismic moment over the entire magnitude range. Our results show that reservoir induced earthquakes have ten times lower average stress drop than natural tectonic earthquakes. These results may indicate that the reservoir induced seismicity can occur with a lower tectonic stress due to the high pore pressures of the underground medium, and that the effect of the water decreases the coefficient of friction.  相似文献   

19.
Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in which the shale plays, core observations indicate abundant random non-tectonic micro- fractures in the producing shales. The non-tectonic micro-fractures are different from tectonic fractures and are characterized by being irregular, curved, discontinuous, and randomly distributed. The role of micro-fractures in hydraulic fracturing for shale gas development is currently poorly understood yet potentially critical. Two-dimensional computational modeling studies have been used in an initial attempt toward understanding how naturally random fractured reservoirs respond during hydraulic fracturing. The aim of the paper is to investigate the effect of random non-tectonic fractures on hydraulic fracturing. The numerical models with random non-tectonic micro-fractures are built by extracting the fractures of rock blocks after repeated heating and cooling, using a digital image process. Simulations were conducted as a function of: (1) the in-situ stress ratio; (2) internal friction angle of random fractures; (3) cohesion of random fractures; (4) operational variables such as injection rate; and (5) variable injection rate technology. A sensitivity study reveals a number of interesting observations resulting from these parameters on the shear stimulation in a natural fracture system. Three types of fracturing networks were observed from the studied simulations, and the results also show that variable injection rate technology is most promising for producing complex fracturing networks. This work strongly links the production technology and geomechanical evaluation. It can aid in the understanding and optimization of hydraulic fracturing simulations in naturally random fractured reservoirs.  相似文献   

20.
According to the fact that the Xinfengjiang reservoir earthquakes are caused mainly by water seepage, this paper using the data ofM s⩾2. 0 earthquakes, studies the hydraulic diffusivity of the mainshock zone by the expansion of the distribution area of epicenters. It is indicated thatin-situ hydraulic diffusivity during the preshock activity of the Xinfengjiang reservoir region was about 6. 2 m2/s. However, after the main shock, thein-situ hydraulic diffusivity in the main shock region increased by fifty percent, that is to say, to 9. 7 m2/s. During the long period after main shock occurrence thein-situ hydraulic diffusivity was affected by significant anisotropy of the medium and fluctuation of water level. No regularity can be found. In addition, we compare the diffusivity found by experiment with rock samples collected with thein-situ hydraulic diffusivity estimated. It is shown that the diffusivity of rock samples with fractures is about the same as the diffusivity estimatedin-situ. However, the diffusivity of whole rock samples is 3 orders of magnitudes smaller than that estimatedin-situ. Finally, we discuss the limits on the method by the expansion of distribution area of epicenters in the study of reservoir induced seismicity. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 364–371, 1991. This subject is sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号