首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Although orogeny tapers off in western Taiwan large and small earthquakes do occur in the Taiwan Strait, a region largely untouched in previous studies owing mostly to logistical reasons. But the overall crustal structure of this region is of particular interest as it may provide a hint of the proto-Taiwan before the orogeny.By combining time domain empirical Green’s function (TDEGF) from ambient seismic noise using station-pairs and traditional surface wave two-station method (TS) we are able to construct Rayleigh wave phase velocity dispersion curves between 5 and 120 s. Using Broadband Array in Taiwan for Seismology (BATS) stations in Taiwan and in and across the Strait we are able to derive average 1-D Vs structures in different parts of this region. The results show significant shear velocity differences in the upper 15 km crust as expected. In general, the highest Vs in the upper crust observed in the coastal area of Mainland China and the lowest Vs appears along the southwest offshore of the Taiwan Island; they differ by about 0.6–1.1 km/s. For different parts of the Strait, the upper crust Vs structures are lower in the middle by about 0.1–0.2 km/s relative to those in the northern and southern parts. The upper mantle Vs structure (Moho – 150 km) beneath the Taiwan Strait is about 0.1–0.3 km/s lower than the AK135 model. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island. The inversion of seismic velocity structures using shorter period band dispersion data in the sea areas with water depth deeper than 1000 m should take water layer into consideration except for the continental shelves.  相似文献   

2.
We investigated the seismic shear-wave velocity structure of the crust beneath nine broadband seismological stations of the Shillong–Mikir plateau and its adjoining region using teleseismic P-wave receiver function analysis. The inverted shear wave velocity models show ∼34–38 km thick crust beneath the Shillong Plateau which increases to ∼37–38 km beneath the Brahmaputra valley and ∼46–48 km beneath the Himalayan foredeep region. The gradual increase of crustal thickness from the Shillong Plateau to Himalayan foredeep region is consistent with the underthrusting of Indian Plate beyond the surface collision boundary. A strong azimuthal variation is observed beneath SHL station. The modeling of receiver functions of teleseismic earthquakes arriving the SHL station from NE backazimuth (BAZ) shows a high velocity zone within depth range 2–8 km along with a low velocity zone within ∼8–13 km. In contrast, inversion of receiver functions from SE BAZ shows high velocity zone in the upper crust within depth range ∼10–18 km and low velocity zone within ∼18–36 km. The critical examination of ray piercing points at the depth of Moho shows that the rays from SE BAZ pierce mostly the southeast part of the plateau near Dauki fault zone. This observation suggests the effect of underthrusting Bengal sediments and the underlying oceanic crust in the south of the plateau facilitated by the EW-NE striking Dauki fault dipping 300 toward northwest.  相似文献   

3.
We constructed the S-wave velocity structure of the crust and uppermost mantle (10–100 km) beneath the North China based on the teleseismic data recorded by 187 portable broadband stations deployed in this region. The traditional two-step inversion scheme was adopted. Firstly, we measured the interstation fundamental Rayleigh wave phase velocity of 10–60 s and imaged the phase velocity distributions using the Tarantola inversion method. Secondly, we inverted the 1-D S-wave velocity structure with a grid spacing of 0.25° × 0.25° and constructed the 3-D S-wave velocity structure of the North China. The 3-D S-wave velocity model provides valuable information about the destruction mechanism and geodynamics of the North China Craton (NCC). The S-wave velocity structures in the northwestern and southwestern sides of the North–South Gravity Lineament (NSGL) are obviously different. The southeastern side is high velocity (high-V) while the northeastern side is low velocity (low-V) at the depth of 60–80 km. The upwelling asthenosphere above the stagnated Pacific plate may cause the destruction of the Eastern Block and form the NSGL. A prominent low-V anomaly exists around Datong from 50 to 100 km, which may due to the upwelling asthenosphere originating from the mantle transition zone beneath the Western Block. The upwelling asthenosphere beneath the Datong may also contribute to the destruction of the Eastern Block. The Zhangjiakou-Penglai fault zone (ZPFZ) may cut through the lithosphere and act as a channel of the upwelling asthenosphere. A noticeable low-V zone also exists in the lower crust and upper mantle lid (30–50 km) beneath the Beijing–Tianjin–Tangshan (BTT) region, which may be caused by the upwelling asthenosphere through the ZPFZ.  相似文献   

4.
Eastern Anatolia is a region in the early stages of continent–continent collision and so provides a unique opportunity to study the early development of continental plateau. Located within the Alpine–Himalayan fold-thrust fault belt, the Anatolian plateau is geologically very complex, with over half of the surface area covered with late Cenozoic volcanics of diverse composition. The plateau is also seismically active and is dissected by numerous seismogenic faults predominantly of strike-slip motion. In this study, we determine 3-D tomographic images of the crust beneath eastern Anatolia by inverting a large number of arrival time data of P- and S-waves. From the obtained P- and S-wave velocity models, we estimated the Poisson’s ratio structures for a more reliable interpretation of the obtained velocity anomalies. Our tomographic results are generally consistent with the major tectonic features of the region. High P- and S-wave velocity anomalies are recognized near the surface, while at deeper crustal layers, low seismic wave velocities are widely distributed. Poisson’s ratio exhibits significant structural heterogeneities compared to the imaged velocity structure. The seismic activity is intense along highly heterogeneous zones and is closely associated with pre-existing faults in the central and western parts of the study area. Results of the checkerboard resolution test indicate that the imaged anomalies are reliable features down to a depth of about 40 km. The low-velocity/high Poisson’s ratio zones in the middle to lower crust are consistent with many geophysical observations such as strong Sn attenuation, low Pn and Sn velocity, and the absence of mantle lid, implying the presence of partial melt in the uppermost mantle.  相似文献   

5.
We here present the results of the inverse modeling of crustal S-phases recorded from a 400-km-long seismic profile, with azimuth nearly N30W, from Lianxian, near Hunan Province, to Gangkou Island, near Guangzhou City, Guangdong Province, in the southern margin of South China continent. The finding in this case is that many shot gathers provided by this wide-angle seismic experiment show relatively strong reflected and refracted S-phases, in particular some crustal refractions (Sg waves) and Moho reflections (SmS waves or simply Sm waves). The P-wave velocity structure of the crust and uppermost mantle was already obtained through the interpretation of vertical-component shot gathers. Now, with constraints introduced by the P-wave velocity architecture and after picking up S-wave traveltime data on the seismograms, we have obtained the S-velocity model of the crust by adjusting these traveltimes but keeping the geometry of the crustal reflectors. Our results demonstrate: (1) the average crustal S-velocity is about 3.64 km/s to the northwest of the Wuchuan-Sihui fault, and 3.62 km/s to the southeast of this fault; (2) relatively constant S-velocity of about 3.42 km/s for the upper crust, 3.55 km/s for the middle crust and laterally varying shear velocity around 3.82 km/s for the lower crust; (3) correspondingly, Vp/Vs ratio is 1.73 for the upper crust, 1.71 for the middle crust and 1.74 for the lower crust. Both shear velocities and Vp/Vs ratio correlate well with the major active faults that break the study area, and show significant changes especially in the upper crust. High Poisson’s ratio (1.8) is observed at shallow depth beneath the Minzhong depression to the southeast of the Wuchuan-Sihui fault and the Huiyuan depression in the southern margin of South China continent. In contrast, a very low Vp/Vs ratio (1.68) is observed between 8 and 14 km depth beneath Huiyuan. At deeper depth, a high Vp/Vs ratio (1.76) is observed in the lower crust beneath the Minzhong depression.  相似文献   

6.
In 2001, a special issue of the Bulletin of the Seismological Society of America (BSSA) featured seismological research for the 1999 Chi–Chi Taiwan earthquake. This study uses source parameters suggested by the first author in this special issue to estimate static stress drop associated with the Chi–Chi earthquake. The waveform simulation method was used to carefully examine these source parameters. The simulation results indicate that source parameters, inferred from near-fault observations, are well determined. According to the rupture area and slip, the static stress drops (Δσs) obtained were distributed between a small value of 47 bars near the epicentral region and a much larger value (>200 bars) to the north. Similar trends in dynamic stress drop (Δσd) were also recognized by the first author in his paper published in 2001 BSSA special issue. Comparing the Δσs with Δσd, satisfies the relation Δσsσd  1. This relation suggests that fault motion is mostly spent releasing seismic wave energy during the rupture process of the Chi–Chi earthquake. The consistency between static and dynamic stress drops thus provides a measure of energy-moment (Es/M0) ratios, which range from 9.0 × 10−5 to 6.5 × 10−4. The average Es/M0 ratio estimated for the northern portions of the fault is 3.4 × 10−4, which is about 3 times that of the south. Such a high Es/M0 ratio can be interpreted as having low strength in the rupture for the northern portions of the fault, where the fault would release less energy per unit rupture surface to create the new rupture.  相似文献   

7.
利用中国地震台网和ISC台站记录的P波到时数据,采用球坐标系有限差分地震层析成像方法反演了南海东北部及其邻近地区壳幔三维P波速度结构,并分析了不同地质单元的构造差异及其深部特征。结果表明:南海东北部表现出陆架地区的岩石层特性,属于华南大陆向海区的延伸,岩石层厚度较大,现今不存在大规模的地幔热流活动,推测大陆边缘张裂作用仅限于地壳内部而没有延伸进入上地幔,具有非火山型大陆边缘的深部特点。中央海盆附近上地幔P波速度明显降低,与海盆下方地幔热流活动密切相关。不同的速度异常特征表明:华南大陆暨台湾地区属于欧亚大陆的正常地壳或是与菲律宾海板块相互作用产生的增厚型地壳,冲绳海槽则是弧后扩张产生的减薄型地壳。滨海断裂带作为华南大陆高速异常和南海北部高速异常的分界,代表了一定地质时期华南地块和南海地块的拼合边界。断裂附近的上地幔低速异常揭示了闽粤沿海岩浆作用的深层动力机制。吕宋岛弧、马尼拉海沟、东吕宋海槽的速度异常与其所处的特殊构造位置有密切的关系,清晰地反映出岛弧俯冲带的地壳结构差异;台湾南部至吕宋岛弧的上地幔低速异常揭示了两个重要火山链的深部构造特征,北吕宋海脊下方100 km深度的条带状高速异常有可能代表了俯冲下沉的岩石层板片。  相似文献   

8.
Microfossils and a U–Pb age dating on zircon grains in the tuff beds exposed in the axial part of the Tsukeng anticline along the Pinglin River in the Western Foothills near Nantou, central Taiwan, show an occurrence of the Eocene volcanics unconformably beneath the uppermost part of the Latest Oligocene Wuchihshan Formation. This is the first discovery of the Eocene tuff exposed in the Western Foothills.The proposed Miocene “Tsukeng Formation” and “Takeng Formation” of Ho et al. (1956) named for sequences exposed in the Nantou area, Western Foothills, have to be abandoned and the standard Oligocene–Miocene lithostratigraphy used commonly in the Western Foothills of northern Taiwan is properly applicable in central Taiwan. The thick pink–brown–green colored volcanics unconformably beneath the uppermost Wuchihshan Formation is named for the first time as the Pinglin Tuff which contains Late Middle Eocene calcareous nannofossils (Zone NP16) consistent with a U–Pb age dating (38.8 ± 1 Ma) on zircon grains in the tuff. The Pinglin Tuff is overlying the Middle Eocene Chungliao Formation which contains indigenous larger foraminifera Discocyclina dispansa ex. interc. sella-dispansa and calcareous nannofossils of Zones NP14–15. The Middle Eocene Pinglin Tuff and Chungliao Formation represent the Paleogene syn-rift sequence unconformably overlain by the Latest Oligocene–Miocene post-rift sequence. This is the first document with conclusive paleontological data and age dating showing an occurrence of Paleogene marine rift basin exposed in the Western Foothills. This study also confirms similar Tertiary basin architecture between the Taiwan Strait–Pearl River Mouth Basin in the NE South China Sea and the Western Foothills onland central Taiwan.  相似文献   

9.
Distant earthquake data recorded by seven sub-arrays of the ongoing WOMBAT rolling seismic array deployment in southeast Australia are combined for the first time to constrain 3-D variations in upper mantle P-wavespeed via teleseismic tomography. The seven arrays comprise a total of 276 short period recorders spaced at intervals of approximately 50 km, thus allowing unprecedented resolution of the upper mantle over a large region. In the mantle lithosphere immediately below the crust (~ 50 km depth), dominant variations in velocity tend to strike east–west, and share little resemblance to Palaeozoic boundaries in the shallow crust inferred from surface geology and potential field data. A broad region of elevated wavespeed beneath northern Victoria may represent the signature of underplated igneous rocks associated with detachment faulting during the break-up of Australia and Antarctica. A distinct low velocity anomaly in southern Victoria appears to correlate well with the Quaternary Newer Volcanic Provinces. Towards the base of the mantle lithosphere, the dominant structural trend becomes north–south, and five distinct velocity zones become apparent. Of particular note is a transition from higher wavespeed in the west to lower wavespeed in the east beneath the Stawell Zone, implying that the Proterozoic lithosphere of the Delamerian Orogen protrudes eastward beneath the Western subprovince of the Lachlan Orogen. This transition zone extends northwards from southern Victoria into central New South Wales (the northward limit of the arrays), and is one of the dominant features of the model. Further east, there is a transition from lower to higher wavespeeds in the vicinity of the boundary between the Western and Central subprovinces of the Lachlan Orogen, which has several plausible explanations, including the existence of a Proterozoic continental fragment beneath the Wagga–Omeo Zone. The presence of elevated wavespeeds beneath the Melbourne Zone in Victoria, although not well constrained due to limited data coverage, provides some support to the Selwyn Block model, which proposes a northward extension beneath Bass Strait of the Proterozoic core of Tasmania.  相似文献   

10.
The Chia-Nan (Chiayi-Tainan) area is in the southwestern Taiwan, and is located at the active deformation front of the collision of the Eurasian continental plate and the Philippine Sea plate, which causes complex folds as well as thrust fault systems in the area. The Chukuo fault zone is a boundary between the Western Foothill and the Western Coastal Plain in the Chia-Nan area. The nature of the crustal structure beneath the fault zone, especially the eastern part of the fault zone with mountain topography, has not been well known in detailed due to lack of drilling data as well as its limitation in using other geophysical methods, such as active source survey. In this study, we deployed an array with 11 broadband seismic stations to monitor the seismicity of the Chukuo fault zone. The array has recorded more than 1000 microearthquakes around this area. It provides an opportunity to use P- and S-wave travel time data to investigate the both the crustal P- and S-velocity in the fault zone, however due to the nature of the earthquake distribution, the ray density is relatively low at depth between 0 and 7 km. In addition, the uncertainty of S-wave reading for small earthquake also a limit in building precise S-velocity profile, Thus, we take the advantages of using cross-correlation of seismic ambient noise to investigate crustal S-velocity profile in the Chukuo fault area, especially in the mountain area where crustal faulting is a dominated phenomenon. The results indicate that S-wave velocity in the uppermost crust in the Chukuo fault zone is shown to be slower than previous studies. A low velocity layer exists at depth between 1 and 2 km in the east of the Chukuo Fault. The low S-velocity is related to a highly fractured upper crust due to intensive deformation caused by the orogenic process.  相似文献   

11.
During the 1st decade of the 21st century, the study area of Talala, Saurashtra of western India witnessed three damaging earthquakes of moderate magnitude, year 2007 [Mw 5.0; Mw 4.8] and in the year 2011 [Mw 5.1] that generated public panic in the region. The last damaging moderate earthquake of the 20th October 2011 in Talala region (21.09°N;70.45°E), located at about 200 km south to the devastating 2001 Bhuj (23.412°N, 70.232°E) mainshock (Mw 7.6), jolted the entire Saurashtra region of Gujarat. A long series of aftershocks followed hereafter, recorded at nine seismograph/accelerograph stations. Hypocenters of aftershocks were relocated accurately using absolute and relative travel time (double-difference) method. In this study, we, for the first time, determined 3-D tomographic images of the upper crust beneath the 2011 Talala earthquake source zone by inverting about 1135 P and 1125 S wave arrival time data. Estimates of seismic velocities (Vp, Vs) and Poisson’s ratio (σ) structures offer a reliable interpretation of crustal heterogeneities and their bearing on geneses of moderate earthquakes and their aftershock sequences beneath the source zone. It is found that the 2011 Talala mainshock hypocenter depth (6 km) is located near the boundary of the low and high velocity (Vp, Vs) and the source zone is associated with low-σ anomalies guarded by the prominent high-σ anomalies along the active fault zone having strike-slip motion beneath the earthquake source zone. The pattern of distribution of (Vp, Vs, σ) and its association with occurrences of aftershocks provide seismological evidence for the neo-tectonics in the region having left lateral strike-slip motion of the fault.  相似文献   

12.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

13.
Following the 1999 Mw 7.6 Chi-Chi earthquake, a large amount of seismicity occurred in the Nantou region of central Taiwan. Among the seismic activities, eight Mw  5.8 earthquakes took place following the Chi-Chi earthquake, whereas only four earthquakes with comparable magnitudes took place from 1900 to 1998. Since the seismicity rate during the Chi-Chi postseismic period has never returned to the background level, such seismicity activation cannot simply be attributed to modified Omori’s Law decay. In this work, we attempted to associate seismic activities with stress evolution. Based on our work, it appears that the spatial distribution of the consequent seismicity can be associated with increasing coseismic stress. On the contrary, the stress changes imparted by the afterslip; lower crust–upper mantle viscoelastic relaxation; and sequent events resulted in a stress drop in most of the study region. Understanding seismogenic mechanisms in terms of stress evolution would be beneficial to seismic hazard mitigation.  相似文献   

14.
The seismicity, deformation rates and associated erosion in the Taiwan region clearly demonstrate that plate tectonic and orogenic activities are at a high level. Major geologic units can be neatly placed in the plate tectonic context, albeit critical mapping in specific areas is still needed, but the key processes involved in the building of the island remain under discussion. Of the two plates in the vicinity of Taiwan, the Philippine Sea Plate (PSP) is oceanic in its origin while the Eurasian Plate (EUP) is comprised partly of the Asian continental lithosphere and partly of the transitional lithosphere of the South China Sea basin. It is unanimously agreed that the collision of PSP and EU is the cause of the Taiwan orogeny, but several models of the underlying geological processes have been proposed, each with its own evolutionary history and implied subsurface tectonics.TAIGER (TAiwan Integrated GEodynamics Research) crustal- and mantle-imaging experiments recently made possible a new round of testing and elucidation. The new seismic tomography resolved structures under and offshore of Taiwan to a depth of about 200 km. In the upper mantle, the steeply east-dipping high velocity anomalies from southern to central Taiwan are clear, but only the extreme southern part is associated with seismicity; toward the north the seismicity disappears. The crustal root under the Central Range is strongly asymmetrical; using 7.5 km/s as a guide, the steep west-dipping face on the east stands in sharp contrast to a gradual east-dipping face on the west. A smaller root exists under the Coastal Range or slightly to the east of it. Between these two roots lies a well delineated high velocity rise spanning the length from Hualien to Taitung. The 3-D variations in crustal and mantle structures parallel to the trend of the island are closely correlated with the plate tectonic framework of Taiwan. The crust is thickest in the central Taiwan collision zone, and although it thins toward the south, the crust is over 30 km thick over the subduction in the south; in northern Taiwan, the northward subducting PSP collides with Taiwan and the crust thins under northern Taiwan where the subducting indenter reaches 50 km in depth. The low Vp/Vs ratio of around 1.6 at a mid-crustal depth of 25 km in the Central Range indicates that current temperatures could exceed 700 °C. The remarkable thickening of the crust under the Central Range, its rapid uplift without significant seismicity, its deep exhumation and its thermal state contribute to make it the core of orogenic activities on Taiwan Island.The expanded network during the TAIGER deployment captured broadband seismic data yielding enhanced S-splitting results with mainly SKS/SKKS data. The polarization directions of the fast S-waves follow very closely the structural trends of the island, supporting the concept of a vertically coherent Taiwan orogeny in the outer few hundred kilometers of the Earth.  相似文献   

15.
Temperature measurements carried out on 9 hydrocarbon exploration boreholes together with Bottom Simulating Reflectors (BSRs) from reflection seismic images are used in this study to derive geothermal gradients and heat flows in the northern margin of the South China Sea near Taiwan. The method of Horner plot is applied to obtain true formation temperatures from measured borehole temperatures, which are disturbed by drilling processes. Sub-seafloor depths of BSRs are used to calculate sub-bottom temperatures using theoretical pressure/temperature phase boundary that marks the base of gas hydrate stability zone. Our results show that the geothermal gradients and heat flows in the study area range from 28 to 128 °C/km and 40 to 159 mW/m2, respectively. There is a marked difference in geothermal gradients and heat flow beneath the shelf and slope regions. It is cooler beneath the shelf with an average geothermal gradient of 34.5 °C/km, and 62.7 mW/m2 heat flow. The continental slope shows a higher average geothermal gradient of 56.4 °C/km, and 70.9 mW/m2 heat flow. Lower heat flow on the shelf is most likely caused by thicker sediments that have accumulated there compared to the sediment thickness beneath the slope. In addition, the continental crust is highly extended beneath the continental slope, yielding higher heat flow in this region. A half graben exists beneath the continental slope with a north-dipping graben-bounding fault. A high heat-flow anomaly coincides at the location of this graben-bounding fault at the Jiulong Ridge, indicating vigorous vertical fluid convection which may take place along this fault.  相似文献   

16.
New deep reflection seismic, bathymetry, gravity and magnetic data have been acquired in a marine geophysical survey of the southern South China Sea, including the Dangerous Grounds, Northwest Borneo Trough and the Central Luconia Platform. The seismic and bathymetry data map the topography of shallow density interfaces, allowing the application of gravity modeling to delineate the thickness and composition of the deeper crustal layers. Many of the strongest gravity anomalies across the area are accounted for by the basement topography mapped in the seismic data, with substantial basement relief associated with major rift development. The total crustal thickness is however quite constant, with variations only between 25 and 30 km across the Central Luconia Platform and Dangerous Grounds. The Northwest Borneo Trough is underlain by thinned crust (25–20 km total crustal thickness) consistent with the substantial water depths. There is no evidence of any crustal suture associated with the trough, nor any evidence of relict oceanic crust beneath the trough. The crustal thinning also does not extend along the complete length of the trough, with crustal thicknesses of 25 km and more modeled on the most easterly lines to cross the trough. Modeled magnetic field variations are also consistent with the study area being underlain by continental crust, with the magnetic field variations well explained by irregular magnetisations consistent with inhomogeneous continental crust, terminating at the basement unconformity as mapped from the seismic data.  相似文献   

17.
A passive seismic experiment across the Longmenshan (LMS) fault belt had been conducted between August 2006 and July 2007 for the understanding of geodynamic process between the Eastern Tibet and Sichuan basin. We herein collected 3677 first P arrival times with high precision from seismograms of 288 teleseismic events so as to reconstruct the upper mantle velocity structure. Our results show that the depth of the Lithosphere–asthenosphere boundary (LAB) changes from 70 km beneath Eastern Tibet to about 110 km beneath Longquanshan, Sichuan Basin, which is consistent with the receiver function imaging results. The very thin mantle part of the lithosphere beneath Eastern Tibet may suggest the lithosphere delamination due to strong interaction between the Tibetan eastward escaping flow and the rigid resisting Sichuan basin, which can be further supported by the existences of two high-velocity anomalies beneath LAB in our imaging result. We also find there are two related low-velocity anomalies beneath the LMS fault belt, which may indicate magmatic upwelling from lithosphere delamination and account for the origin of tremendous energy needed by the devastating Wenchuan earthquake.  相似文献   

18.
Cheng-Horng Lin   《Tectonophysics》2007,443(3-4):271
In 1999, a large earthquake (Mw = 7.6) occurred along the Chelungpu fault in the fold-and-thrust belt of western Taiwan. To shed more light on the subsurface structures and the seismogenic layers, three-dimensional velocity structures were inverted by using the travel times of both P- and S-waves from 2391 aftershocks recorded by the Central Weather Bureau during the 15 months that followed. From tomography, a typical image of the large-scale thrusting structures in the upper crust across the Chelungpu fault was obtained. In general, high velocities beneath the Western Foothills and Central Ranges are separated from low velocities beneath the Coastal Plain by an east-dipping boundary that is roughly consistent with the Chelungpu fault on the surface. The contrast in velocity on either side of the Chelungpu fault is indicative of about a 7- to 9-km vertical offset in the upper crust. The relocated hypocenter for the Chi-Chi earthquake shifts by 2.2 km toward the northwest, and its focal depth decreases by 0.7 km. A plot of focal depths versus rock velocities where the aftershocks occurred shows earthquakes are more inclined to occur in rock with a velocity of around 5.6 km/s. This strongly suggests the seismogenic layer in the fold-and-thrust belt of Taiwan is more structure-dependent than depth-dependent.  相似文献   

19.
《Gondwana Research》2014,25(3-4):1172-1202
The Shandong Province along the southeastern margin of the North China Craton is the largest gold producing region in China. The nature and extent of gold metallogeny between the Western Shandong (Luxi) and Eastern Shandong (Jiaodong) sectors display marked contrast. In this paper, we synthesize the information on mineralization and magmatism, S–Pb–H–O–C–He–Ar isotopic data of the ores and Sr–Nd–Pb–Hf isotopic data of the Mesozoic plutons from the Shandong region. Combined with the salient regional geophysical data, we discuss the geodynamic setting of the gold mineralization in Shandong. The age data converge to indicate that the peak of gold metallogeny in this region occurred at ca. 120 ± 10 Ma. The mineralization in Luxi area shows links with sources in the Tongjing and Yinan complexes. The ore-forming materials in the Jiaodong area were derived from multiple sources and show clear evidence for crust–mantle mixing. The Moho depth on both sides of the Tan–Lu fault is broadly similar with only a minor variation across the Tan–Lu fault. The LAB (lithosphere–asthenosphere boundary) in the Jiaodong region is shallower than that in the Luxi area. The Tan–Lu fault is identified as a major corridor for asthenosphere upwelling. Geochemical features show that the mantle beneath the Luxi area is mainly of EM1 type, whereas the mantle in the eastern part, close to the Tan–Lu fault shows mixed EM1 and EM2 features. In contrast, the mantle beneath the Jiaodong area is mainly of EM2 type, suggesting the existence of more ancient lithospheric mantle beneath the Luxi area, in comparison to the extensively modified lithospheric mantle and asthenosphere beneath the Jiaodong area. The gold metallogeny in Shandong Province occurred in the geodynamic setting of lithospheric thinning. The differences in the character and intensity of gold mineralization between the Western and Eastern Shandong regions might be a reflection of the contrasting tectonic histories. The Western Shandong region preserves imprints of destruction through the Yangtze plate collision which probably marks the prelude for gold metallogeny in Jiaodong area. Subsequent magmatic input and cratonic destruction through Pacific plate subduction provided the settings for the later widespread mineralization in multiple phases.  相似文献   

20.
Based on the Crust2.0 model and the topography data of Chinese continent and its adjacent regions, a three-dimensional finite element model is constructed in terms of the spherical coordinate system. In our numerical model, the average annual ground temperature from 195 meteorological stations and temperature of upper mantle derived from the seismic velocities are adopted as the top and bottom boundary conditions, respectively. The observed thermal conductivity and heat production from P wave velocity based on empirical formula are employed in our numerical model as well. The comparison between the calculated and observed surface heat flow proved that our results are reliable. The temperature beneath the Precambrian cratons is lower than that of other areas for 100–300 °C also. The typical temperature rang at the Moho is estimated to be 800–1000 °C beneath the Tibetan plateau and 500–700 °C beneath the Precambrian cratons (such as Indian plate, Sichuan basin, South China, North China and Tarim), respectively. The thermal state in the eastern part of Sino-Korean craton at the depth deeper than 60 km indicates that it was destructed. The thermal structure in center of Tibetan plateau (especially beneath Qiangtang area) supports the proposed flow of lower crustal or upper mantle material to the east. Generally, the distribution of volcanoes in Chinese continent is consistent with the high temperature areas in the crust or upper mantle. There are many obvious thermal transition zones across the orogenic belts. The thermal transition zone between eastern and western parts in the crust of Chinese continent is consistent with the north–south seismic zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号