共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The Hargreaves–Samani (HS) evapotranspiration equation is very useful for the on‐site irrigation management in data‐short situations such as small and midsize farms and landscaped areas. Although much work has been performed to improve the precision of the evapotranspiration (ETo) estimates for use at new locations, the results have not been consistent and many have not been confirmed by other works. The purpose of this study was to review and to evaluate the seven most promising parameters used for the calibration of the HS evapotranspiration equation, using two different regions: California and Bolivia. The results of this study show that annual correlations between HS and Penman–Monteith can be misleading because the correlation is poor in the humid months and improves progressively along the dry season until the first rains. The average monthly wind speed can be used for both spatial and seasonal calibration of the HS equation, especially during the irrigation season. Elevation and precipitation can be used to calibrate the HS equation when no reference ETo values are available at nearby stations. The monthly value of KT calculated from solar radiation follows a parabolic function along the year and should not be used for improving the estimates of the HS equation because the clearness index produces better results than actual solar radiation measurements. The results also indicate that the use of distance to coast, temperature range and temperature parameter does not improve the precision of the HS equation. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
4.
This paper examines a model for estimating canopy resistance rc and reference evapotranspiration ETo on an hourly basis. The experimental data refer to grass at two sites in Spain with semiarid and windy conditions in a typical Mediterranean climate. Measured hourly ETo values were obtained over grass during a 4 year period between 1997 and 2000 using a weighing lysimeter (Zaragoza, northeastern Spain) and an eddy covariance system (Córdoba, southern Spain). The present model is based on the Penman–Monteith (PM) approach, but incorporates a variable canopy resistance rc as an empirical function of the square root of a climatic resistance r* that depends on climatic variables. Values for the variable rc were also computed according to two other approaches: with the rc variable as a straight‐line function of r* (Katerji and Perrier, 1983, Agronomie 3 (6): 513–521) and as a mechanistic function of weather variables as proposed by Todorovic (1999, Journal of Irrigation and Drainage Engineering, ASCE 125 (5): 235–245). In the proposed model, the results show that rc/ra (where ra is the aerodynamic resistance) presents a dependence on the square root of r*/ra, as the best approach with empirically derived global parameters. When estimating hourly ETo values, we compared the performance of the PM equation using those estimated variable rc values with the PM equation as proposed by the Food and Agriculture Organization, with a constant rc = 70 s m?1. The results confirmed the relative robustness of the PM method with constant rc, but also revealed a tendency to underestimate the measured values when ETo is high. Under the semiarid conditions of the two experimental sites, slightly better estimates of ETo were obtained when an estimated variable rc was used. Although the improvement was limited, the best estimates were provided by the Todorovic and the proposed methods. The proposed approach for rc as a function of the square root of r* may be considered as an alternative for modelling rc, since the results suggest that the global coefficients of this locally calibrated relationship might be generalized to other climatic regions. It may also be useful to incorporate the effects of variable canopy resistances into other climatic and hydrological models. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
5.
Evapotranspiration is a major component of the interaction between land-surface processes and the atmosphere. Climate Forecast System Reanalysis (CFSR) data offer a promising database for overcoming the limitations in availability and reliability of climatological data and, hence, for understanding the evapotranspiration process. Using these data on grid-by-grid daily, seasonal and yearly scales, the present study attempts to advance the spatio-temporal evaluation of two radiation-based and three temperature-based methods for estimating potential evapotranspiration (PET) against estimates of grass reference evapotranspiration (ETo) by FAO Penman–Monteith method (FAO-PM). The analysis was performed for the period 1979–2013, considering the second largest (79 000 km2) river system in Ethiopia, that is, Omo-Gibe basin, which accommodates national parks and vast hydropower, cultivation and afforestation developments and discharges its flow to Lake Turkana in Kenya. Despite the large regional variations in climate and elevation, the results in overall emphasize the outperformance of the simple temperature method, viz. Hargreaves–Samani method, in capturing both the annual and seasonal FAO-PM estimates. Calibration of the Hargreaves–Samani equation is, however, a requisite for spectacular improvement of its performance. Accordingly, new coefficients of the equation are proposed. The annual trends in the basin's ETo increased with rising temperature and decreasing relative humidity, wind speed, and solar radiation, but with decreasing (increasing) rainfall in the upper region (the middle and lower regions). It is deduced that trends in simple methods do not necessarily reflect the true trends in ETo. Annual ETo decreases with increasing elevation and annual rainfall. The present findings are discussed in the context of a worldwide literature, thereby improving the understanding of the best performing PET methods in similar data-scarce national or transboundary rivers basin in Ethiopia, the region or worldwide. The wider implications regarding water loss from reservoirs and the rain-fed food and sugar production in the basin under study are also highlighted. 相似文献
6.
The scenario assumed for this study was that of a region with a complete or first‐order weather station surrounded by a network of second‐order stations, where only monthly air temperature data were available. The objective was to evaluate procedures to estimate the monthly α parameter of the Priestley–Taylor equation in the second‐order stations by adjusting and extrapolating α values determined at the first‐order station. These procedures were applied in two climatic zones of north‐east Spain with semi‐arid continental and semi‐arid Mediterranean climates, respectively. Procedure A assumed α to be constant over each zone for each month (direct extrapolation). Procedure B accounted for differences in vapour pressure deficit and available energy for evapotranspiration between the first‐ and second‐order stations. Procedure C was based on equating the Penman–Monteith (P–M) and Priestley–Taylor (P–T) equations on a monthly basis to solve for α. Methods to estimate monthly mean vapour pressure deficit, net radiation and wind speed were developed and evaluated. A total of 11 automated first‐order weather stations with a minimum period of record of 6 years (ranging from 6 to 10 years) were used for this study. Six of these stations were located in the continental zone and five in the Mediterranean zone. One station in each zone was assumed to be first‐order whereas the remainder were taken as second‐order stations. Monthly α parameters were calibrated using P–M reference crop evapotranspiration (ET0) values, calculated hourly and integrated for monthly periods, which were taken as ‘true’ values of ET0. For the extrapolation of monthly α parameters, procedure A was found to perform slightly better than procedure B in the Mediterranean zone. The opposite was true in the continental zone. Procedure C had the worst performance owing to the non‐linearity of the P–M equation and errors in the estimation of monthly available energy, vapour pressure deficit and wind speed. Procedures A and B are simpler and performed better. Overall, monthly P–T ET0 estimates using extrapolated α parameters and Rn?G values were in a reasonable agreement with P–M ET0 calculated on an hourly basis and integrated for monthly periods. The methods presented for the spatial extrapolation of monthly available energy, vapour pressure deficit and wind speed from first‐ to second‐order stations could be useful for other applications. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
7.
Many applications in diverse disciplines require estimates of evapotranspiration (ET) at hourly or smaller time steps. The primary objectives of this study were to compare the American Society of Civil Engineers (ASCE) and FAO-56 Penman–Monteith equations for 15-min ET0 (ET0,15-min,ASCE and ET0,15-min,FAO) estimations for humid climate conditions and to compare the 24 h sum of ASCE (ET0,24 h,ASCE) and FAO-56 15-min ET0 (ET0,24 h,FAO) with the daily ET0 (ET0,d,FAO) computed from the daily FAO-56 equation, which is identical to ASCE daily ET0 equation. Ten-year, i.e., 1997–2006 continuous 15-min and daily weather data for 11 representative and well-distributed sites throughout Georgia, USA were used. It was evident that during the day, ET0,15-min,ASCE was higher than ET0,15-min,FAO due to a lower surface resistance parameter value, while at night ET0,15-min,ASCE was lower than ET0,15-min,FAO due to a higher surface resistance parameter value. The ET0,15-min,FAO was about 5% less than ET0,15-min,ASCE and ET0,24 h,FAO was about 5% lower than ET0,24 h,ASCE. The difference between ET0,15-min,ASCE and ET0,15-min,FAO during the day and night was highly dependent on wind speed. During the three summer months, i.e., June, July and August, on average, ET0,24 h,FAO was only 1% higher than ET0,d,FAO while ET0,24 h,ASCE was 5% higher than ET0,d,FAO. For the entire year, ET0,24 h,FAO was 8% higher than ET0,d,FAO while ET0,24 h,ASCE was 13% higher than ET0,d,FAO. The ET0,24 h,FAO and ET0,d,FAO had a better agreement than ET0,24 h,ASCE and ET0,d,FAO throughout the year and during the summer months. It is also worth noting that the daily calculations for FAO-56 and ASCE were identical. These results demonstrated that for applications that require 15-min time steps or daily ET0 for the entire year, the use of ET0,15-min,FAO and ET0,24 h,FAO, respectively, will yield more consistent outcomes. The use of ET0,d,FAO during the summer months can be as accurate as the use of ET0,24 h,FAO for applications that require daily time steps, such as irrigation scheduling. 相似文献
8.
9.
Spatiotemporal variation and driving forces of reference evapotranspiration in Jing River Basin,northwest China 总被引:1,自引:0,他引:1 下载免费PDF全文
Lihong Xu Zhongjie Shi Shulan Zhang Xinzheng Chu Pengtao Yu Wei Xiong Haijun Zuo Yunni Wang 《水文研究》2015,29(23):4846-4862
Evapotranspiration is an important component of the hydrological cycle, which integrates atmospheric demands and surface conditions. Research on spatial and temporal variations of reference evapotranspiration (ETo) enables understanding of climate change and its effects on hydrological processes and water resources. In this study, ETo was estimated by the FAO‐56 Penman–Monteith method in the Jing River Basin in China, based on daily data from 37 meteorological stations from 1960 to 2005. ETo trends were detected by the Mann–Kendall test in annual, seasonal, and monthly timescales. Sensitivity coefficients were used to examine the contribution of important meteorological variables to ETo. The influence of agricultural activities, especially irrigation on ETo was also analyzed. We found that ETo showed a decreasing trend in most of the basin in all seasons, except for autumn, which showed an increasing trend. Mean maximum temperature was generally the most sensitive parameter for ETo, followed by relative humidity, solar radiation, mean minimum temperature, and wind speed. Wind speed was the most dominant factor for the declining trend in ETo. The more significant decrease in ETo for agricultural and irrigation stations was mainly because of the more significant decrease in wind speed and sunshine hours, a mitigation in climate warming, and more significant increase in relative humidity compared with natural stations and non‐irrigation stations. Changes in ETo and the sensitivity coefficient of meteorological variables in relation to ETo were also affected by topography. Better understanding of ETo response to climate change will enable efficient use of agricultural production and water resources, which could improve the ecological environment in Jing River Basin. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
In large river basins, there may be considerable variations in both climate and land use across the region. The evapotranspiration that occurs over a basin may be drastically different from one part of the region to another. The potential influence of these variations in evapotranspiration estimated for the catchment is weakened by using a spatially based distributed hydrological model in such a study. Areal evapotranspiration is estimated by means of approaches requiring only meteorological data: the combination equation (CE) model and the complementary relationship approach—the complementary relationship areal evapotranspiration (CRAE) and advection–aridity (AA) models. The capability of three models to estimate the evapotranspiration of catchments with complex topography and land‐use classification is investigated, and the models are applied to two catchments with different characteristics and scales for several representative years. Daily, monthly, and annual evapotranspiration are estimated with different accuracy. The result shows that the modified CE model may underestimate the evapotranspiration in some cases. The CRAE and AA models seem to be two kinds of effective alternatives for estimating catchment evapotranspiration. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
11.
Floodplain wetlands are common features of rivers in southern Africa, but they have been little studied from a geological or geomorphological perspective. Study of the upper Klip River, eastern Free State, South Africa, indicates strong geological controls on the formation of alluvial meanders and associated floodplain wetlands. Along this river, pronounced and abrupt changes in valley width are strongly linked to lithological variations. Where weakly cemented sandstone crops out, the Klip has laterally eroded bedrock and carved valleys up to 1500 m wide. In these valleys, the river meanders (sinuosity up to ~1·75) on moderate gradients (<0·001) within extensive floodplains marked by numerous oxbow lakes, backswamps and abandoned channels, many of which host substantial wetlands. In contrast, where highly resistant dolerite crops out, lateral erosion of bedrock is restricted, with the Klip tending instead to erode vertically along joints or fractures. Here, valleys are narrower (<200 m), channel‐bed gradients are steeper (>0·003), the river follows a much straighter course (sinuosity ~1·10–1·34), and floodplains are restricted in width. Long‐term landscape development in the Klip and numerous similar catchments depends on the interaction between fluvial processes in the sandstone and dolerite valleys. In the sandstone valleys, vertical erosion rates are controlled by erosion rates of the more resistant dolerites downstream. Hence, in the short‐ to medium‐term (decades to tens of thousands of years), lateral erosion dominates over vertical erosion, with the river concomitantly planing sandstone in the channel floor and reworking floodplain sediments. The thickness of alluvial fill in the sandstone valleys is limited (<4 m), but the resultant meanders are naturally dynamic, with processes such as point bar deposition, cutoff formation and channel avulsion resulting in an assemblage of fluvial landforms. In the longer term (greater than tens of thousands of years), however, vertical erosion will occur in the sandstone valleys as the downstream dolerites are lowered by erosion, resulting in channel incision, floodplain abandonment, and desiccation of the wetlands. Identification of the geological controls on meander and wetland formation provides information vital for the design of effective management guidelines for these ecologically rich habitats, and also contributes to a better understanding of rivers that are intermediate between fully alluvial and fully bedrock. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
12.
Variation of reference evapotranspiration and its contributing climatic factors in the Poyang Lake catchment,China 总被引:1,自引:0,他引:1 下载免费PDF全文
By using linear regression (parametric), Mann–Kendall (nonparametric) and attribution analysis methods, this study systematically analysed the changing properties of reference evapotranspiration (ETr) calculated using the Penman–Monteith method over the Poyang Lake catchment during 1960–2008 and investigated the contribution of major climatic variables to ETr changes and their temporal evolution. Generally, a significant decreasing trend of annual ETr is found in the catchment. The decrease of annual ETr in the Poyang Lake basin is mostly affected by the decline of summer ETr. Over the study period, climatic variables, i.e. sunshine duration (SD), relative humidity (RH), wind speed (WS) and vapour pressure all showed decreasing trends, whereas mean daily temperature (DT) increased significantly. Multivariate regression analysis indicated that SD is the most sensitive climatic variable to the variability of ETr on annual basis, followed by RH, WS and DT, whereas the effect of vapour pressure is obscure. Although recent warming trend and decrease of relative humidity over the catchment could have increased ETr, the combined effect of shortened SD and reduced WS negated the effect and caused significant decrease of ETr. Our investigation reveals that the relative contributions of climatic variables to ETr are temporally unstable and vary considerably with large fluctuation. In consideration of the changes of climatic variables over time, further analysis indicated that changes of mean annual ETr in 1970–2008 were primarily affected by SD followed by WS, RH and DT with reference to 1960s. However, WS became the predominant factor during the period 2000–2008 compared with reference period 1960s, and followed by SD. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
13.
Abstract Estimates of groundwater recharge are often needed for a variety of groundwater resource evaluation purposes. A method for estimating long-term groundwater recharge and actual evapotranspiration not known in the English literature is presented. The method uses long-term average annual precipitation, runoff, potential evaporation, and crop-yield information, and uses empirical parameter curves that depend on soil and crop types to determine long-term average annual groundwater recharge (GWR). The method is tested using historic lysimeter records from 10 lysimeters at Coshocton, Ohio, USA. Considering the coarse information required, the method provides good estimates of groundwater recharge and actual evapotranspiration, and is sensitive to a range of cropping and land-use conditions. Problems with practical application of the technique are mentioned, including the need for further testing using given parameter curves, and for incorporating parameters that describe current farming practices and other land uses. The method can be used for urban conditions, and can be incorporated into a GIS framework for rapid, large-area, spatially-distributed estimations of GWR. An example application of the method is given. 相似文献
14.
Teeth are usually targeted for dating archaeological sites because they are less prone to dissolution, in comparison with bones. However, despite this apparent resistance, teeth do undergo diagenesis, which needs to be accounted for in order to obtain accurate ages. In particular, the uptake of trace elements such as uranium in dental tissues needs to be considered for dose rate determination when dated using electron spin resonance (ESR). Characterising the mineralogy and structural integrity of samples prior to dating may thus provide important information related to their state of preservation, especially in the case of teeth whose U content can significantly affect the dose rate.In this study, we dated five teeth of small-sized bovids using combined ESR/U-series dating. They were collected at the Middle Stone Age site of Lovedale, located in the central interior of South Africa. Micromorphology provided sedimentary context to the samples, which were recovered from a layer of gravel rich in faunal remains. Using cathodoluminescence, laser-induced fluorescence, Fourier transform infrared spectroscopy and Raman micro-spectroscopy we assessed the degree of preservation of the enamel. Results reveal that carbonate hydroxyapatite underwent post-depositional alteration, based on its molecular structure and elemental composition. Although the teeth all originate from the same layer and were sampled in the same 1-m square and at a similar elevation, U-content in the enamel differs highly from one tooth to the other, with values ranging from 1.7 to 29.6 ppm. These values are correlated with equivalent doses (De) from 228 to 923 Gy and are consistent with variations in crystallinity determined with vibrational spectroscopy. We also investigated the possible saturation of the ESR signal, by repeating measurements with microwave power values from 1 to 20 mW.Despite such diversity in U-content, the ages calculated assuming an early uptake of U all fall within the same range, from 63 ± 8 ka to 68 ± 15 ka and may only represent a minimum estimate. 相似文献
15.
Evapotranspiration is an important component of hydrological cycle and a key input to hydrological models. Therefore, analysis of the spatiotemporal variation of potential evapotranspiration (PET) will help a better understanding of climate change and its effect on hydrological cycle and water resources. In this study, the Penman–Monteith method was used to estimate PET in the Wei River basin (WRB) in China based on daily data at 21 meteorological stations during 1959–2008. Spatial distribution and temporal trends of annual and seasonal PET were analysed by using the Spline interpolation method and the Mann–Kendall test method. Abrupt changes were detected by using the Pettitt test method. In order to explore the contribution of key meteorological variables to the variation of PET, the sensitivity coefficients method was employed in this study. The results showed that: (1) mean annual and seasonal PET in the WRB was generally decreasing from northeast to southwest. Summer and spring made the major contributions to the annual values; (2) annual and seasonal PET series in most part of the WRB exhibited increasing trends; (3) abrupt changes appeared in 1993 for annual and spring PET series for the entire basin, while summer value series was detected in the late 1970s. (4) Relative humidity was the most sensitive variable for PET in general for the WRB, followed by wind speed, air temperature and solar radiation. In the headwater and outlet of the WRB, relative humidity and air temperature were the most sensitive variables to PET, while relative humidity and wind speed were more influential in most part of the middle‐lower region. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
17.
AbstractEnvironmental flow provisions are a legal obligation under South Africa’s National Water Act (1998) where they are known as the “ecological reserve”, which is now being realized in river operations. This article presents a semi-quantitative method, based on flow–duration curve (FDC) analysis, used to assess the compliance of the Crocodile (East) River with the reserve in an historical context. Using both monthly and daily average flow data, we determine the extent and magnitude of non-compliant flows against environmental water requirements (EWRs) for three periods (1960–1983, 1983–2000, and 2000–2010). The results suggest a high degree of non-compliance, with the reserve increasing with each of these periods (14%, 35%, and 39% of the time), respectively, where effects were most pronounced in the low-flow season. The results also suggest that, whilst the magnitudes of reserve infringements for the latter period are relatively high, there appears to have been some improvement since the implementation of the river’s operating rules.
Editor Z.W. Kundzewicz; Guest editor M. AcremanCitation Riddell, E., Pollard, S., Mallory, S., and Sawunyama, T., 2014. A methodology for historical assessment of compliance with environmental water allocations: lessons from the Crocodile (East) River, South Africa. Hydrological Sciences Journal, 59 (3–4), 831–843. 相似文献
18.
Aly I. El-Kadi 《Advances in water resources》1985,8(3):148-153
A new empirical equation to estimate hydraulic conductivity is proposed, based on a large set of measured data for hydraulic properties of soil. The equation is simpler and more accurate than the series-parallel model. Under conditions of insufficient data, the new equation provides a good estimation of hydraulic conductivity for sands. For the same class of soils, another empirical equation is proposed to estimate the power N in the Averjanov-Irmay function. 相似文献
19.
Performance of the White method for estimating groundwater evapotranspiration under conditions of deep and fluctuating groundwater 总被引:1,自引:0,他引:1 下载免费PDF全文
The White method is a simple but the most frequently applied approach to estimate groundwater evapotranspiration (ETg) from groundwater level diurnal signals. Because of a lack of direct measurements of ETg, it is difficult to evaluate the performance of the White method, particularly in field environments with variable groundwater fluctuations. A 2‐year field observation in a hyper‐arid riparian tamarisk (Tamarix spp.) stand with deep groundwater depth in the lower Tarim River basin of China was conducted to measure the surface evapotranspiration (ETs) and groundwater table. The performance of the White method and the influences of the variable groundwater fluctuations on the determinations of the specific yield (Sy) and recharge rate of groundwater (r) in the White method were investigated. The results showed that the readily available Sy determined by Loheide's method was feasible but must be finely determined based on the soil textures in the layers in which the groundwater level fluctuated. A constant Sy value for a defined porous medium could be assumed regardless of the discharge or recharge processes of groundwater. The time span of 0000 h to 0600 h for r estimation for the White method worked best than other time spans. A 2‐day moving average of r values further enhance ETg estimation. Slight effects of environmental or anthropogenic disturbances on the diurnal fluctuations of groundwater level did not influence the ETg estimations by the White method. Our results provide valuable references to the application of the White method for estimating daily ETg in desert riparian forests with deep groundwater depth. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
20.
Ramesh Dhungel Robert Aiken Paul D. Colaizzi Xiaomao Lin Dan O'Brien R. Louis Baumhardt David K. Brauer Gary W. Marek 《水文研究》2019,33(15):2110-2130
The backward‐averaged iterative two‐source surface temperature and energy balance solution (BAITSSS) model was developed to calculate evapotranspiration (ET) at point to regional scales. The BAITSSS model is driven by micrometeorological data and vegetation indices and simulates the water and energy balance of the soil and canopy sources separately, using the Jarvis model to calculate canopy resistance. The BAITSSS model has undergone limited testing in Idaho, United States. We conducted a blind test of the BAITSSS model without prior calibration for ET against weighing lysimeter measurements, net radiation, and surface temperature of drought‐tolerant corn (Zea mays L. cv. PIO 1151) in a semiarid, advective climate (Bushland, Texas, United States) in 2016. Later in the season (20 days), BAITSSS consistently overestimated ET by up to 3 mm d?1. For the entire growing season (127 days), simulated versus measured ET resulted in a 7% error in cumulative ET, RMSE = 0.13 mm h?1, and 1.70 mm d?1; r2 = 0.66 (daily) and r2 = 0.84 (hourly); MAE = 0.08 mm h?1 and 1.24 mm d?1; and MBE = 0.02 mm h?1 and 0.58 mm d?1. The results were comparable with thermally driven instantaneous ET models that required some calibration. Next, the initial soil water boundary condition was reduced, and model revisions were made to resistance terms related to incomplete cover and assumption of canopy senescence. The revisions reduced discrepancies between measured and modelled ET resulting in <1% error in cumulative ET, RMSE = 0.1 mm h?1, and 1.09 mm d?1; r2 = 0.86 (daily) and r2 = 0.90 (hourly); MAE = 0.06 mm h?1 and 0.79 mm d?1; and MBE = 0.0 mm h?1 and 0.17 mm d?1 and generally mitigated the previous overestimation. The advancement in ET modelling with BAITSSS assists to minimize uncertainties in crop ET modelling in a time series. 相似文献