首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The early (Devonian) collisional stage in SW Iberia has been investigated through the analysis of deformation in the Cubito‐Moura schists, the main lithology of an Allochthonous Complex putatively rooted in the suture between the Ossa‐Morena and South Portuguese zones. The first deformation in these schists (D1) is recorded as a S1‐L1 mylonitic fabric well preserved in early quartz veins. Subsequent D2 deformation caused the main folds and the main (S2) foliation. After restoration, the stretching lineation (L1) trends at a small angle with the Ossa‐Morena/South Portuguese suture. This trend, together with the top‐to‐the‐east kinematics determined from quartz microfabric is indicative of an oblique left‐lateral collisional scenario in SW Iberia. Chlorite–white K‐mica–quartz ± chloritoid multi‐equilibrium calculations yield P–T conditions in the range 0.9–1.2 GPa and 300–400 °C, during the first collisional stage. P–T conditions during D2 were 0.3–0.8 GPa and 400–450 °C, thus indicating an important stage of exhumation of the Allochthonous Complex during these two collisional events, after subduction of the Ossa‐Morena Zone margin under the South Portuguese Zone continental crust. In the general context of the Variscan orogen, dominated by dextral collision, the left‐lateral convergence in SW Iberia can be explained in terms of the Avalonian salient represented by the South Portuguese Zone, which would impinge between Iberia and Morocco.  相似文献   

2.
New U–Pb detrital zircon ages from (meta-)graywackes of the Blovice accretionary complex, Bohemian Massif, provide an intriguing record of expansion of the northern active margin of Gondwana during late Neoproterozoic and Cambrian. The late Neoproterozoic (meta-)graywackes typically contain a smaller proportion of Archean and Paleoproterozoic zircons and show a 1.6–1.0 Ga age gap and a prominent late Cryogenian to early Ediacaran age peak. The respective zircon age spectra match those described from other correlative Cadomian terranes with a West African provenance. On the other hand, some samples were dominated by Cambrian zircons with concordia ages as young as 499 Ma. The age spectra obtained from these samples mostly reflect input from juvenile volcanic arcs whereas the late Cambrian samples are interpreted as representing relics of forearc basins that overlay the accretionary wedge.The new U–Pb zircon ages suggest that the Cadomian orogeny, at least in the Bohemian Massif, was not restricted to the Neoproterozoic but should be rather viewed as a continuum of multiple accretion, deformation, magmatic and basin development events governed by oceanic subduction until late Cambrian times. Our new U–Pb ages also indicate that the Cadomian margin was largely non-accretionary since its initiation at ~ 650–635 Ma and that most of the material accreted during a short time span at around 527 Ma, closely followed by a major pulse of pluton emplacement. Based on the new detrital zircon ages, we argue for an unsteady, cyclic evolution of the Cadomian active margin which had much in common with modern Andean and Cordilleran continental-margin arc systems. The newly recognized episodic magmatic arc activity is interpreted as linked to increased erosion–deposition–accretion events, perhaps driven by feedbacks among the changing subducted slab angle, overriding plate deformation, surface erosion, and gravitational foundering of arc roots. These Cadomian active-margin processes were terminated by slab break-off and/or slab rollback and by a switch from convergent to divergent plate motions related to opening of the Rheic Ocean at around 490–480 Ma.The proposed tectonic evolution of the Teplá–Barrandian unit is rather similar to that of the Ossa Morena Zone in Iberia but shows significant differences to that of the North Armorican Massif and Saxothuringian unit in Western and Central Europe. This suggests that the Cadomian orogenic zoning was complexly disrupted during early Ordovician opening of the Rheic Ocean and Late Paleozoic Variscan orogeny so that the originally outboard tectonic elements are now in the Variscan orogen's interior and vice versa.  相似文献   

3.
This study combines geochemical and geochronological data in order to decipher the provenance of Carboniferous turbidites from the South Portuguese Zone (SW Iberia). Major and trace elements of 25 samples of graywackes and mudstones from the Mértola (Visean), Mira (Serpukhovian), and Brejeira (Moscovian) Formations were analyzed, and 363 U-Pb ages were obtained on detrital zircons from five samples of graywackes from the Mira and Brejeira Formations using LA-ICPMS. The results indicate that turbiditic sedimentation during the Carboniferous was marked by variability in the sources, involving the denudation of different crustal blocks and a break in synorogenic volcanism. The Visean is characterized by the accumulation of immature turbidites (Mértola Formation and the base of the Mira Formation) inherited from a terrane with intermediate to mafic source rocks. These source rocks were probably formed in relation to Devonian magmatic arcs poorly influenced by sedimentary recycling, as indicated by the almost total absence of pre-Devonian zircons typical of the Gondwana and/or Laurussia basements. The presence of Carboniferous grains in Visean turbidites indicates that volcanism was active at this time. Later, Serpukhovian to Moscovian turbiditic sedimentation (Mira and Brejeira Formations) included sedimentary detritus derived from felsic mature source rocks situated far from active magmatism. The abundance of Precambrian and Paleozoic zircons reveals strong recycling of the Gondwana and/or Laurussia basements. A peri-Gondwanan provenance is indicated by zircon populations with Neoproterozoic (Cadomian-Avalonian and Pan-African zircon-forming events), Paleoproterozoic, and Archean ages. The presence of late Ordovician and Silurian detrital zircons in Brejeira turbidites, which have no correspondence in the Gondwana basement of SW Iberia, indicates Laurussia as their most probable source.  相似文献   

4.
A 1000-km-long lithospheric transect running from the Variscan Iberian Massif (VIM) to the oceanic domain of the Northwest African margin is investigated. The main goal of the study is to image the lateral changes in crustal and lithospheric structure from a complete section of an old and stable orogenic belt—the Variscan Iberian Massif—to the adjacent Jurassic passive margin of SW Iberia, and across the transpressive and seismically active Africa–Eurasia plate boundary. The modelling approach incorporates available seismic data and integrates elevation, gravity, geoid and heat flow data under the assumptions of thermal steady state and local isostasy. The results show that the Variscan Iberian crust has a roughly constant thickness of 30 km, in opposition to previous works that propose a prominent thickening beneath the South Portuguese Zone (SPZ). The three layers forming the Variscan crust show noticeable thickness variations along the profile. The upper crust thins from central Iberia (about 20 km thick) to the Ossa Morena Zone (OMZ) and the NE region of the South Portuguese Zone where locally the thickness of the upper crust is <8 km. Conversely, there is a clear thickening of the middle crust (up to 17 km thick) under the Ossa Morena Zone, whereas the thickness of the lower crust remains quite constant (6 km). Under the margin, the thinning of the continental crust is quite gentle and occurs over distances of 200 km, resembling the crustal attitude observed further north along the West Iberian margins. In the oceanic domain, there is a 160-km-wide Ocean Transition Zone located between the thinned continental crust of the continental shelf and slope and the true oceanic crust of the Seine Abyssal Plain. The total lithospheric thickness varies from about 120 km at the ends of the model profile to less than 100 km below the Ossa Morena and the South Portuguese zones. An outstanding result is the mass deficit at deep lithospheric mantle levels required to fit the observed geoid, gravity and elevation over the Ossa Morena and South Portuguese zones. Such mass deficit can be interpreted either as a lithospheric thinning of 20–25 km or as an anomalous density reduction of 25 kg m−3 affecting the lower lithospheric levels. Whereas the first hypothesis is consistent with a possible thermal anomaly related to recent geodynamics affecting the nearby Betic–Rif arc, the second is consistent with mantle depletion related to ancient magmatic episodes that occurred during the Hercynian orogeny.  相似文献   

5.
Uranium–Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu–Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (εNd(t) range from + 3.1 to + 7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have < 1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu–Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium–Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu–Au deposits are ~ 372 Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu–Au mineralization are ~ 366 Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu–Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu–Au deposits from younger magmatic suites in the district.  相似文献   

6.
《Gondwana Research》2014,26(4):1484-1500
The southern Rheinisches Schiefergebirge, which is part of the Rhenohercynian zone of the Central European Variscides, exhibits several allochthonous units: the Gießen-, and the Hörre nappe, and parts of the Frankenbach imbrication zone. These units were thrust over autochthonous and par-autochthonous volcano-sedimentary complexes of the Lahn and Dill–Eder synclines. This paper reports a representative data set of U–Pb LA–SF–ICP–MS ages of 1067 detrital zircon grains from Devonian and Lower Carboniferous siliciclastic sediments of the autochthonous and the allochthonous areas, respectively. The cluster of U–Pb ages from the allochthonous units points to a provenance in the Saxothuringian zone. Zircon populations from the Saxothuringian zone are representative of a Gondwanan hinterland and are characterized by age clusters of ~ 530–700 Ma, ~ 1.8–2.2 Ga, ~ 2.5–2.7 Ga, and ~ 3.0–3.4 Ga. Further samples were taken from the autochthonous and par-autochthonous units of the Lahn–Dill and Kellerwald areas. A Lower Devonian sandstone sample from the Siegen anticline provides a reference for siliciclastic sediments derived from the Old Red Continent. These samples show a provenance representative of Laurussia with debris primarily derived from Baltica and Avalonia. U–Pb zircon age clusters occur at ~ 400–450 Ma, 540–650 Ma, 1.0–1.2 Ga, ~ 1.4–1.5 Ga, ~ 1.7–2.2 Ga, and 2.3–2.9 Ga. Provenance analysis and geochemical data of the Rhenohercynian zone provide new information on the evolution of magmatic arcs in the Mid-Paleozoic. The data set constrains top-SE and top-NW directed subduction of the oceanic crust of the Rheic Ocean. Subduction-related volcanism lasted from the Early Devonian to the Early Carboniferous and thus confirms the existence of the Rheic Ocean until the Early Carboniferous. The tectonic model outlined for the Rhenohercynian zone suggests a wide Rheic Ocean.  相似文献   

7.
《Gondwana Research》2014,25(1):309-337
The Trans-Altai Zone in southern Mongolia is characterized by thrusting of greenschist-facies Silurian oceanic rocks over Devonian and Lower Carboniferous volcano-sedimentary sequences, by E–W directed folding affecting the early Carboniferous volcanic rocks, and by the development of N–S trending magmatic fabrics in the Devonian–Carboniferous arc plutons. This structural pattern is interpreted as the result of early Carboniferous thick-skinned E–W directed nappe stacking of oceanic crust associated with syn-compressional emplacement of a magmatic arc. The southernmost South Gobi Zone represents a Proterozoic continental domain affected by shallow crustal greenschist-facies detachments of Ordovician and Devonian cover sequences from the Proterozoic substratum, whereas supracrustal Carboniferous volcanic rocks and Permian sediments were folded into N–S upright folds. This structural pattern implies E–W directed thin-skinned tectonics operating from the late Carboniferous to the Permian, as demonstrated by K–Ar ages ranging from ~ 320 Ma to 257 Ma for clay fractions separated from a variety of rock types. Moreover, the geographical distribution of granitoids combined with their geochemistry and SHRIMP U–Pb zircon ages form distinct groups of Carboniferous and Permian age that record typical processes of magma generation and increase in crustal thickness. The field observations combined with clay ages, the geochemical characteristics of the granitoids and their ages imply that the E–W trending zone affected by tectonism migrated southwards, leaving the Trans Altai Zone inactive during the late Carboniferous and Permian, suggesting that the two units were tectonically amalgamated along a major E–W trending strike slip fault zone. This event was related to late Carboniferous subduction that was responsible for the vast volume of granitoid magma emplaced at 300–305 Ma in the South Gobi and at 307–308 Ma in the Trans-Altai Zones. The formation and growth of the crust was initially due only to subduction and accretion processes. During the post-collisional period from 305 to 290 Ma the addition of heat to the crust led to the generation of (per-) alkaline melts. Once amalgamated, these two different crustal domains were affected by N–S compression during the Triassic and early Jurassic (185–173 Ma), resulting in E–W refolding of early thrusts and folds and major shortening of both tectonic zones.  相似文献   

8.
U–Pb dating of detrital zircons was performed on mélange-hosted lithic and basaltic sandstones from the Inthanon Zone in northern Thailand to determine the timing of accretion and arc activity associated with Paleo-Tethys subduction. The detrital zircons have peak ages at 3400–3200, 2600–2400, 1000–700, 600–400, and 300–250 Ma, similar to the peaks ages of detrital zircons associated with other circum-Paleo-Tethys subduction zones. We identified two types of sandstone in the study area based on the youngest detrital zircon ages: Type 1 sandstones have Late Carboniferous youngest zircon U–Pb ages of 308 ± 14 and 300 ± 16 Ma, older than associated radiolarian chert blocks within the same outcrop. In contrast, Type 2 sandstones have youngest zircon U–Pb ages of 238 ± 10 and 236 ± 15 Ma, suggesting a Middle Triassic maximum depositional age. The youngest detrital zircons in Type 1 sandstones were derived from a Late Carboniferous–Early Permian ‘missing’ arc, suggesting that the Sukhothai Arc was active during sedimentation. The data presented within this study provide information on the development of the Sukhothai Arc, and further suggest that subduction of the Paleo-Tethyan oceanic plate beneath the Indochina Block had already commenced by the Late Carboniferous. Significant Middle Triassic arc magmatism, following the Late Carboniferous–Early Permian arc activity, is inferred from the presence of conspicuous detrital zircon U–Pb age peaks in Type 2 sandstones and the igneous rock record of the Sukhothai Arc. In contrast, only minimal arc activity occurred during the Middle Permian–earliest Triassic. Type 1 sandstones were deposited between the Late Permian and the earliest Triassic, after the deposition of associated Middle–Late Permian cherts that occur in the same mélanges and during a hiatus in Sukhothai Arc magmatism. In contrast, Type 2 sandstones were deposited during the Middle Triassic, coincident with the timing of maximum magmatism in the Sukhothai Arc, as evidenced by the presence of abundant Middle Triassic detrital zircons. These two types of sandstone were probably derived from discrete accretionary units in an original accretionary prism that was located along the western margin of the Sukhothai Arc.  相似文献   

9.
The Peramora Mélange is part of an accretionary complex between the South Portuguese Zone (a fragment of Laurussia) and the Ossa Morena Zone (para-autochthonous Gondwana) and is an expression of the Pangean suture zone in southwestern Iberia. The suture zone is characterized by fault-bounded units of metasedimentary rocks, mélanges, and mafic complexes. Detailed geologic mapping of the Peramora Mélange reveals a complex pattern of imbricated schists and mafic block-in-matrix mélanges. Geochemical signatures of the Pulo do Lobo schist (PDL) are consistent with derivation from both mafic and continental sources. The mafic block-in-matrix mélange displays normal mid-ocean ridge basalt (NMORB) geochemical signature, juvenile Sm–Nd isotopic compositions, and a range of zircon ages similar to those observed in the PDL, suggesting a sedimentary component. Taken together, these data suggest a complex tectonic history characterized by erosion of a NMORB source, mélange formation, and imbrication during underplating occurring during the final stages of continent–continent collision.  相似文献   

10.
The Charysh–Terekta–Ulagan–Sayan suture zone was regarded as a tectonic boundary separating two distinct subduction–accretion systems in the Central Asian Orogenic Belt (CAOB). In the north, magmatic arcs, such as the Gorny Altai terrane, formed in the southwestern periphery of the Siberian continent, whereas in the south, arc-prism systems, such as the Altai–Mongolian terrane, formed around the so-called Kazakhstan–Baikal composite continent with Gondwana affinity. When did these two systems amalgamate and whether the metamorphic complexes in the suture zone represent Precambrian micro-continental slivers are critical for our understanding of the accretionary orogenesis and crustal growth rate in the CAOB. A combined geochemical and detrital zircon U–Pb–Hf isotopic study was conducted on the meta-sedimentary rocks from the Ulagan (also referred to Bashkaus) and Teletsk Complexes in the suture zone. The results indicate that the protoliths of these rocks were dominated by immature sediments deposited in a time period between 500 and 420 Ma. Thus, Precambrian micro-continental slivers may not exist in the suture zone and even in the whole Altai Orogen.The meta-sedimentary rocks from the Ulagan Complex yield geochemical compositions between those of common intermediate and felsic igneous rocks, implying that these kinds of rocks possibly served as dominant sources. Detrital zircons from this complex consist of a major population of ca. 620–500 Ma, a subordinate one of ca. 931–671 Ma and rare grains of ca. 2899–1428 Ma. This age spectrum is compatible with the magmatic records of the western Mongolia. We propose that the Ulagan Complex possibly represents part of a subduction–accretion complex built upon an active continental margin of the western Mongolia in the early Paleozoic. The remarkable similarities in source nature, provenance, and depositional setting to the early Paleozoic meta-sedimentary rocks from the northern Altai–Mongolian terrane imply that the Ulagan Complex was possibly fragmented from this terrane.The meta-sedimentary rocks from the Teletsk Complex show similar detrital zircon populations but contain higher proportions of mafic sediments and have more depleted whole-rock Nd isotopic compositions. Our data suggest that the detritus mostly came from the same source as that for the Ulagan Complex but those from the Gorny Altai terrane also contributed. This implies that the Gorny Altai and Altai-Mongolian terranes possibly amalgamated prior to the early Devonian rather than in the middle Devonian to early Carboniferous as previously thought. Thus, the widespread Devonian to early Carboniferous magmatism within these two terranes was possibly generated in a similar tectonic setting. Moreover, the dominant Neoproterozoic to early Paleozoic detrital zircons from the Teletsk Complex yield largely varied ɛHf(t) values of − 23.8 to 12.4, indicating that crustal growth and reworking are both important in the accretionary orogenesis.  相似文献   

11.
Metamorphic and magmatic rocks are present in the northwestern part of the Schwaner Mountains of West Kalimantan. This area was previously assigned to SW Borneo (SWB) and interpreted as an Australian-origin block. Predominantly Cretaceous U-Pb zircon ages (c. 80–130 Ma) have been obtained from metapelites and I-type granitoids in the North Schwaner Zone of the SWB but a Triassic metatonalite discovered in West Kalimantan near Pontianak is inconsistent with a SWB origin. The distribution and significance of Triassic rocks was not known so the few exposures in the Pontianak area were sampled and geochemical analyses and zircon U-Pb ages were obtained from two meta-igneous rocks and three granitoids and diorites. Triassic and Jurassic magmatic and metamorphic zircons obtained from the meta-igneous rocks are interpreted to have formed at the Mesozoic Paleo-Pacific margin where there was subduction beneath the Indochina–East Malaya block. Geochemically similar rocks of Triassic age exposed in the Embuoi Complex to the north and the Jagoi Granodiorite in West Sarawak are suggested to have formed part of the southeastern margin of Triassic Sundaland. One granitoid (118.6 ± 1.1 Ma) has an S-type character and contains inherited Carboniferous, Triassic and Jurassic zircons which indicate that it intruded Sundaland basement. Two I-type granitoids and diorites yielded latest Early and Late Cretaceous weighted mean ages of 101.5 ± 0.6 and 81.1 ± 1.1 Ma. All three magmatic rocks are in close proximity to the meta-igneous rocks and are interpreted to record Cretaceous magmatism at the Paleo-Pacific subduction margin. Cretaceous zircons of metamorphic origin indicate recrystallisation at c. 90 Ma possibly related to the collision of the Argo block with Sundaland. Subduction ceased at that time, followed by post-collisional magmatism in the Pueh (77.2 ± 0.8 Ma) and Gading Intrusions (79.7 ± 1.0 Ma) of West Sarawak.  相似文献   

12.
The Inner Mongolia Highland (IMH), along the northern edge of the North China Craton, was considered to be a long-standing topographic highland, whose exhumation history remains elusive. The aim of this study is to reveal Late Paleozoic exhumation processes of the IMH based on an integrated analysis of stratigraphy, petrography of clastic rocks, and U–Pb ages and Hf isotopes of detrital zircons from Permian–Triassic succession in the middle Yanshan belt. The results of the study show that the Benxi Formation, which was originally regarded as a Late Carboniferous unit, proves to be Early Permian in age because it contains detrital zircons as young as ∼298 Ma. The Lower Shihezi Formation is demonstrated to be a unit whose age spans the boundary of the Middle and Upper Permian, constrained by a U–Pb age of 260 ± 2 Ma from a dacite layer. Clastic compositions of conglomerate and sandstone change markedly, characterised by the predominance of sedimentary components in the Benxi–Shanxi Formations, by large amounts of volcanic clastics in the Lower and Upper Shihezi Formations, and by the presence of both metamorphic and igneous clastics in the Sunjiagou–Ermaying Formations. Sedimentary clastics include chert, carbonate, sandstone and quartzite, which may have been derived from Proterozoic to Lower Paleozoic sedimentary covers. Volcanic clasts were directly related to volcanic eruptions, while granite and gneiss grains were sourced from exhumed Late Paleozoic intrusive rocks and basement rocks. Detrital zircon U–Pb ages can be divided into five populations: 2.6–2.4 Ga, 1.9–1.7 Ga, 400–360 Ma, 325–290 Ma and 270–250 Ma. Precambrian detrital zircons are typically subrounded to rounded in shape, implying a recycling origin. Late Paleozoic zircons show oscillatory zones and their Th/U ratios >0.4, suggesting a magmatic origin. Most Phanerozoic zircons have negative εHf(T) values of −3.2 to −25.5, which are compatible with those of Late Paleozoic plutons in the IMH. The results indicate that the IMH may have been covered with Proterozoic to Lower Paleozoic sedimentary strata, which then underwent subsequent erosion and served as provenances for adjacent Late Paleozoic basins. Vertical changes in both clastic compositions and detrital zircon ages in Permian–Triassic strata imply an unroofing process of the IMH. Three phases of the IMH uplift are distinguished. The first-phase uplift commenced 325–312 Ma and resulted from magmatic intrusion related to southward subduction of the Paleo-Asian Ocean. The second-phase uplift took place in the Middle Permian and may be attributed to crustal contraction related to the collision of the North China Craton and the Southern Mongolia terrane. The third-phase uplift happened at the end of the Permian, and may have been induced by upwelling of calc-alkali magma under an extensional setting.  相似文献   

13.
《Geodinamica Acta》2013,26(2):115-129
The Variscides of Iberia have a bilateral symmetry with east vergence in the eastern branch and west vergence in the western, on both sides of a Centro-Iberian Zone (CIZ), with predominant steep axial planes. All the structures curve around the Ibero-Armorican Arc (IAA). Unconformities in the sedimentary sequences of Cambrian to Early Ordovician age were ascribed to “Sardic phase” by correlation with similar tectonosedimentary events in Sardinia. Recent studies showed diachronism between these events in Sardinia and Iberia but migration of major geodynamic regime in time may be due to regional variation of major events at plate tectonic scale. We studied in detail two critical areas in the CIZ, the Marão anticline in the NE and the Amêndoa-Carvoeiro synform in the SW. Two unconformities can be put in evidence, as elsewhere in CIZ. A stronger lower unconformity of a Volcano-Sedimentary Complex of Lower Arenig (and Tremadocian?) age on top of a Cambrian clastic sequence with flysch characteristics; and a milder upper unconformity of Armorican Quartzite of Arenig age on both the Volcano-Sedimentary Complex and the Cambrian sequences. The lithostratigraphy of the studied areas is described and correlated with other areas in Iberia. The Volcano-Sedimentary Complex and coeval magmatic bodies with bimodal composition are briefly described. The Sardic event corresponds to folds with steep axial planes at high angles to Variscan structures that produce the penetrative cleavage that cut across the unconformity surfaces. Sardic thrusts are also present and can be explained by thin-skinned compressive tectonics. Sardic folds and thrusts suggest a brief period of transient inversion between a major extensional regime from Cambrian to Devonian. The obliquity of Sardic structures to Variscan compression suggests a component of transpression during the Sardic tectonic event, corresponding to a tectonically enhanced unconformity near the Cambro-Ordovician boundary. The transient Sardic inversion is interpreted in terms of a break-up unconformity related to the migration of an intracratonic rift; in the Ordovician this rift moves into the SW of Ossa Morena Zone (OMZ) and since then become the SW Iberia suture during the Variscan Wilson cycle. This migration induced transient compression and dextral strike-slip in the major boundary between CIZ and OMZ due to presence of incipient primary curvature in this segment of IAA.  相似文献   

14.
An arcuate structure, comparable in size with the Ibero-Armorican arc, is delineated by Variscan folds and magnetic anomalies in the Central Iberian Zone of the Iberian Massif. Called the Central Iberian arc, its sense of curvature is opposite to that of the Ibero-Armorican arc, and its core is occupied by the Galicia-Trás-os-Montes Zone of NW Iberia, which includes the Rheic suture. Other zones of the Iberian Massif are bent by the arc, but the Ossa-Morena and South Portuguese zones are not involved. The arc formed during the Late Carboniferous, at final stages of thermal relaxation and collapse, and an origin related with right-lateral ductile transpression at the scale of the Variscan belt is proposed. The Central Iberian arc explains the width of the Central Iberian Zone, clarifies the position of the allochthonous terranes of NW Iberia, and opens new perspectives for correlations with the rest of the Variscan belt, in particular, with the Armorican Massif, whose central zone represents the continuation of the southwest branch of the arc detached by strike-slip tectonics.  相似文献   

15.
Volcanoplutonic complexes in NE Vietnam have recently been interpreted as intraplate products of the Emeishan plume. Alternatively, mafic–ultramafic rocks have been considered as dismembered Palaeotethyan ophiolites juxtaposed along a tectonic mélange zone. New U–Pb zircon geochronological and geochemical datasets presented here suggest a complex geological history that records collision between the Indochina–South China blocks. Mafic–ultramafic rocks exposed within a tectonic mélange (Song Hien Tectonic Zone) include sub-alkaline pillow basalts that define two geochemically distinct ophiolitic suites (SH-1: N-MORB-like, SH-2: transitional E-MORB-like). Both suites have geochemical signatures suggestive of crustal contamination, compatible with a volcanic passive margin/rift setting. We suggest that SH-1 basalts may correlate with the Devonian–Carboniferous Jinshajiang–Ailaoshan–Song Ma branch of the Palaeotethys and form part of the associated Dian–Qiong belt, whereas SH-2 basalts are co-magmatic with Middle–Late Permian mafic–ultramafic intrusive rocks (dolerites, gabbros, peridotites) that developed in a rift basin, most likely on the margin of the down-going South China plate during west-vergent subduction beneath Indochina. During continental orogenesis and thrust stacking, these ophiolitic rocks were juxtaposed with other lithotectonic blocks within the Song Hien Tectonic Zone. Post-collisional relaxation led to the development of a rift basin (Song Hien rift) comprising Late Permian–Triassic volcano-sedimentary strata including < 270–265 Ma terrigenous sandstones, < 252 Ma mudstones, and c. 254–248 Ma felsic effusives. Granites and granodiorites were emplaced across NE Vietnam between c. 252 and 245 Ma in a syn- to post-collisional setting. The Late Permian–Early Triassic felsic magmatic rocks best correlate with coeval rocks in SW Guangxi and the Central and Western Ailaoshan fold belts (China) and the Truong Son fold belt (Vietnam); together they signal the final to post-collisional stages of Indochina–South China collision. We demonstrate that the analysed magmatic rocks in the Lo-Gam–Song Hien domains of NE Vietnam are not genetically linked to the Emeishan Large Igneous Province in the Yangtze block of South China, as has been previously widely proposed.  相似文献   

16.
The SW England Rhenohercynian passive margin initiated with rift-related non-marine sedimentation and bimodal magmatism (Late Lockhovian). Continued lithospheric extension resulted in the exhumation of mantle peridotites and limited seafloor spreading (Emsian-Eifelian). Variscan convergence commenced during the Late Eifelian and was coeval with rifting further north. Collision was marked by the Early Carboniferous emergence of deep marine sedimentary/volcanic rocks from the distal continental margin, oceanic lithosphere, pre-rift basement and upper plate gneisses (correlated with the Mid-German Crystalline High of the Saxothuringian Zone). Progressive inversion of the passive margin was strongly influenced by rift basin geometry. Convergence ceased in the Late Carboniferous and was replaced by an extensional regime that reactivated basin controlling/thrust faults and reorientated earlier fabrics (Start-Perranporth Zone). The resultant exhumation of the lower plate was accompanied by emplacement of the Early Permian SW England granites and was contemporaneous with upper plate sedimentary basin formation above the reactivated Rhenohercynian suture. The Rhenohercynian passive margin probably developed in a marginal basin north of the Rheic Ocean or, possibly, a successor basin following its closure. The Lizard ophiolite is unlikely to represent Rheic Ocean floor or associated forearc (SSZ) crust. The Rheic and Rhenohercynian sutures may be coincident or the Rheic suture may be located further south in the Léon Domain.  相似文献   

17.
This paper reports U–Pb–Hf isotopes of detrital zircons from Late Triassic–Jurassic sediments in the Ordos, Ningwu, and Jiyuan basins in the western-central North China Craton (NCC), with the aim of constraining the paleogeographic evolution of the NCC during the Late Triassic–Jurassic. The early Late Triassic samples have three groups of detrital zircons (238–363 Ma, 1.5–2.1 Ga, and 2.2–2.6 Ga), while the latest Late Triassic and Jurassic samples contain four groups of detrital zircons (154–397 Ma, 414–511 Ma, 1.6–2.0 Ga, and 2.2–2.6 Ga). The Precambrian zircons in the Late Triassic–Jurassic samples were sourced from the basement rocks and pre-Late Triassic sediments in the NCC. But the initial source for the 238–363 Ma zircons in the early Late Triassic samples is the Yinshan–Yanshan Orogenic Belt (YYOB), consistent with their negative zircon εHf(t) values (−24 to −2). For the latest Late Triassic and Jurassic samples, the initial source for the 414–511 Ma zircons with εHf(t) values of −18 to +9 is the Northern Qinling Orogen (NQO), and that for the 154–397 Ma zircons with εHf(t) values of −25 to +12 is the YYOB and the southeastern Central Asian Orogenic Belt (CAOB). In combination with previous data of late Paleozoic–Early Triassic sediments in the western-central NCC and Permian–Jurassic sediments in the eastern NCC, this study reveals two shifts in detrital source from the late Paleozoic to Jurassic. In the Late Permian–Early Triassic, the western-central NCC received detritus from the YYOB, southeastern CAOB and NQO. However, in the early Late Triassic, detritus from the CAOB and NQO were sparse in basins located in the western-central NCC, especially in the Yan’an area of the Ordos Basin. We interpret such a shift of detrital source as result of the uplift of the eastern NCC in the Late Triassic. In the latest Late Triassic–Jurassic, the southeastern CAOB and the NQO restarted to be source regions for basins in the western-central NCC, as well as for basins in the eastern NCC. The second shift in detrital source suggests elevation of the orogens surrounding the NCC and subsidence of the eastern NCC in the Jurassic, arguing against the presence of a paleo-plateau in the eastern NCC at that time. It would be subsidence rather than elevation of the eastern NCC in the Jurassic, due to roll-back of the subducted paleo-Pacific plate and consequent upwelling of asthenospheric mantle.  相似文献   

18.
We have identified late Early Cambrian metaigneous rocks very poorly exposed at the Estancia El Carancho, in central La Pampa province, Argentina. They comprise calc–alkaline metadiorite and metagranite, and tholeiitic metapyroxenite and metagabbro. They are jointly referred to as the El Carancho Igneous Complex, and regarded to pertain to the Pampean magmatic arc and backarc, respectively. Titanite U–Pb SHRIMP dating of the metapyroxenite yielded 528 ± 5 Ma, and zircon U–Pb SHRIMP dating of the metadiorite yielded 520 ± 1.4 Ma. Hafnium isotope determinations on the dated zircons show 176Hf/177Hf ratios corresponding to positive εHf values from + 7.18 to + 9.37; Hf model ages of the Cambrian zircons yielded 884 Ma. It is interpreted that the metadiorites of the Complex crystallized from an Early Neoproterozoic (Tonian) juvenile source. We argue that the inferred occurrence of juvenile Tonian magmatic rocks in the (otherwise, mostly Paleo-Mesoproterozoic) substratum of the southern Pampia terrane could indicate a zone of thinned basement possibly associated with the early stage of Rodinia's breakup. In addition, the studied segment of the Pampean magmatic arc is contaminated by also juvenile, Late Mesoproterozoic crust, as evidenced by the presence of xenocrystic cores of 1140–1194 Ma – TDM-Hf 1720 Ma and εHf values of + 3.24 to + 4.85 – in the Cambrian zircons, hence suggesting that the studied segment of the Pampean magmatic arc was intruded into juvenile Late Mesoproterozoic magmatic arc rocks. The El Carancho Igneous Complex would be located at the tectonic boundary between the Pampia terrane and the Río de la Plata craton. This boundary stands out in the aeromagnetic data as a change in the structural orientation about a roughly N-S line located approximately at 65° W and representing the suture zone between the Pampia terrane and the Río de la Plata craton. Our geotectonic model envisages westward dipping subduction of oceanic crust beneath the Pampia terrane; the El Carancho Igneous Complex would, therefore, have been originated on the Pampia side (upper plate) of the suture. Slivers of the arc- and backarc-type rocks would have been tectonically imbricated in the suture zone during the Pampean orogeny.  相似文献   

19.
We conducted field investigations, whole-rock geochemical, Sr-Nd and zircon U-Pb-Lu-Hf isotopic analyses on a suite of intrusive complex in the southern Nalati Range, SW Chinese Tianshan in order to better understand the Paleozoic tectonic and magmatic evolution of the belt. The intrusive complex comprises weakly foliated diorite, low-grade altered diabase, and deformed monzogranite; these plutonic rocks were in turn crosscut by undeformed coarse-grained diorite, granodiorite as well as granite stock. Foliated Late Silurian diorites (421 ± 4 Ma) show arc-type geochemical features, slightly negative whole-rock εNd(t) value (− 1.7; TDM-Nd = 1.52 Ga) and variably positive zircon εHf(t) values (2.34 to 7.27; TDM-Hf: 0.95– 1.26 Ga). Deformed Early Devonian porphyritic monzogranites (411 ± 4 Ma) show geochemical features similar to A-type granite, and their zircon εHf(t) values range from − 6.63 to 1.02, with TDM-Hf ages of 1.82 to 1.33 Ga. Metamorphosed Early Devonian diabases (ca. 410 Ma) have OIB-like REE patterns, εNd(t) values of − 2.0 ~  0.8 and TDM-Nd ages of 1.37– 1.25 Ga. The undeformed Early Carboniferous diorite and granodiorite (353– 344 Ma) exhibit arc-type geochemical features, positive εHf(t) values of 6.11– 7.91 with TDM-Hf ages of 0.97– 0.86 Ga, and positive εNd(t) value of 1.9 with TDM-Nd age of 1.04 Ga. The Early Permian granite stock (292 ± 5 Ma) has highly differentiated REE pattern, slightly negative εNd(t) value (− 4.4) and variable zircon εHf(t) values of − 9.73– 6.36. Combining with available data, Early Paleozoic (500– 410 Ma) arc-related magmatic rocks occurring on both sides of the suture zone along the southern Nalati Range, likely resulted from a bi-directional subduction of the Paleo-Tianshan Ocean beneath the Yili Block to the north and the Central Tianshan to the south. Occurrences of A-type granites and OIB-like diabases (ca. 410 Ma) along the Nalati Range likely indicate a hot extensional regime probably induced by the break off of the northward subducting slab of the Paleo-Tianshan Ocean. The closure of the Paleo-Tianshan Ocean and subsequent amalgamation during Early Carboniferous resulted in the regional deformation and metamorphism of the Early Paleozoic arc-related magmatic rocks. From Early to Late Carboniferous, a magmatic arc that corresponded to the well-developed Late Paleozoic Balkhash-Yili active continental margin, superimposed upon the southern Yili Block, most likely resulted from the southward subduction of the Junggar-North Tianshan Ocean. After the closure of the North Tianshan Ocean in Late Carboniferous, the study area was dominated by post-orogenic magmatism.  相似文献   

20.
New geological, geochronological and isotopic data reveal a previously unknown arc system that evolved south of the Kyrgyz Middle Tianshan (MTS) microcontinent during the Middle and Late Ordovician, 467–444 Ma ago. The two fragments of this magmatic arc are located within the Bozbutau Mountains and the northern Atbashi Range, and a marginal part of the arc, with mixed volcanic and sedimentary rocks, extends north to the Semizsai metamorphic unit of the southern Chatkal Range. A continental basement of the arc, indicated by predominantly felsic volcanic rocks in Bozbutau and Atbashi, is supported by whole-rock Nd- and Hf-in-zircon isotopic data. εNd(t) of + 0.9 to − 2.6 and εHf(t) of + 1.8 to − 6.0 imply melting of Neo- to Mesoproterozoic continental sources with Nd model ages of ca. 0.9 to 1.2 Ga and Hf crustal model ages of ca. 1.2 to 1.7 Ga. In the north, the arc was separated from the MTS microcontinent by an oceanic back-arc basin, represented by the Karaterek ophiolite belt. Our inference of a long-lived Early Palaeozoic arc in the southwestern MTS suggests an oceanic domain between the MTS microcontinent and the Tarim craton in the Middle Ordovician.The time of arc-continent collision is constrained as Late Ordovician at ca. 450 Ma, based on cessation of sedimentation on the MTS microcontinent, the age of an angular unconformity within the Karaterek suture zone, and the age of syncollisional metamorphism and magmatism in the Kassan Metamorphic Complex of the southern Chatkal Range. High-grade amphibolite-facies metamorphism and associated crustal melting in the Kassan Metamorphic Complex restricts the main tectonic activity in the collisional belt to ca. 450 Ma. This interpretation is based on the age of a synkinematic amphibolite-facies granite, intruded into paragneiss during peak metamorphism. A second episode of greenschist- to kyanite–staurolite-facies metamorphism is dated between 450 and 420 Ma, based on the ages of granitoid rocks, subsequently affected or not affected by this metamorphism. The latest episode is recorded by greenschist-facies metamorphism in Silurian sandstones and granodiorites and by retrogression of the older, higher-grade rocks. This may have occurred at the Silurian to Devonian transition and reflects reorganization of a Middle Palaeozoic convergent margin.Late Ordovician collision was followed by initiation of a new continental arc in the southern MTS. This arc was active in the Early Silurian, latest Silurian to Middle Devonian, and Late Carboniferous, whereas during the Givetian through Mississippian (ca. 385–325 Ma) this area was a passive continental margin. These arcs, previously well constrained west of the Talas-Ferghana Fault, continued eastwards into the Naryn and Atbashi areas and probably extended into the Chinese Central Tianshan. The disappearance of a major crustal block with transitional facies on the continental margin and too short a distance between the arc and accretionary complex suggest that plate convergence in the Atbashi sector of the MTS was accompanied by subduction erosion in the Devonian or Early Pennsylvanian. This led to a minimum of 50–70 km of crustal loss and removal of the Ordovician arc as well as the Silurian and Devonian forearcs in the areas east of the Talas-Ferghana Fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号