首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Based on the observational data obtained at eleven stations along a geomagnetic meridian (Φm = 45–63°), the characteristics of pc 3, 4 pulsations are investigated. It has been shown that pc 3, 4 pulsations possess two amplitude maxima: one in the high latitudes and the other in middle latitudes. Consequently, the amplitude minimum between the two maxima is observed in subauroral latitudes (Φm ≈ 60°). Examining the peculiarities of the polarization behaviour of pc 3, 4 pulsations along the meridian array, two different regions, where the pulsations are generated, are noticed. One is situated in the middle latitudes of about 55–60°, and the other in the auroral area of about 65–70° in geomagnetic latitude. The former region corresponds to a projection of an area inside the plasmapause and the latter of an area of the outer radiation belt in the magnetosphere. The dependence of the pc 3, 4 periods on the position of the plasmapause is clarified. It is also shown that both the position of the pc 3 amplitude maximum in the middle latitudes and the position of pc 4 minimum in the subauroral area shift according to the variation in the magnetic activity and the position of plasmapause.The dynamic spectra of the simultaneous wave-packets of Pc-pulsations are investigated along the meridional profile. The maximum time delay of the Pc-signals is found at a latitude of about 57°, corresponding to the region of low values of Alfvén velocity inside the plasmasphere. On the other hand, a sharp decrease in the time delay is observed at a latitude of about 60°, the region of the rapid increase of Alfvén velocity at the plasmaspheric boundary in the magnetosphere.  相似文献   

2.
Synoptic observations made on magnetic recording tape at Huancayo, Peru, at the magnetic dip equator, during the International Geophysical Year 1957–1958, were aurally reviewed at that time and no whistlers, hiss, or other emissions were heard. In view of the more recent observation of whistlers at geomagnetic latitudes as low as 12°, and in conjunction with a study of equatorial hiss observed in the topside ionosphere, these recordings have recently been reassessed by reducing them with modern real-time, digital spectrographic equipment. Although the observations were found to be of high quality, and to show the classical features of ground-wave and sky-wave propagation of sferics and VLF transmissions, again no evidence whatsoever of whistlers, hiss, or other emissions is found. Thus it is concluded that the whistlers observed at very low latitudes do not propagate subionospherically to the equator and it is confirmed that “hybrid” whistlers must be due to subionospheric propagation across the equator of the causative sferic rather than of the short whistler.  相似文献   

3.
In order to investigate Pc3-4 geomagnetic pulsations at very low and equatorial latitudes, L=1.0 to 1.2, we analyzed simultaneous geomagnetic data from Brazilian stations for 26 days during October-November 1994. The multitaper spectral method based on Fourier transform and singular value decomposition was used to obtain pulsation power spectra, polarization parameters and phase. Eighty-one (81) simultaneous highly polarized Pc3-4 events occurring mainly during daytime were selected for the study. The diurnal events showed enhancement in the polarized power density of about 3.2 times for pulsations observed at stations close to the magnetic equator in comparison to the more distant ones. The phase of pulsation observed at stations near the magnetic equator showed a delay of 48-62° in relation to the most distant one. The peculiarities shown by these Pc3-4 pulsations close to the dip equator are attributed to the increase of the ionospheric conductivity and the intensification of the equatorial electrojet during daytime that regulates the propagation of compressional waves generated in the foreshock region and transmitted to the magnetosphere and ionosphere at low latitudes. The source mechanism of these compressional Pc3-4 modes may be the compressional global mode or the trapped fast mode in the plasmasphere driving forced field line oscillations at very low and equatorial latitudes.  相似文献   

4.
We investigate the spatial and temporal variations of the high-degree mode frequencies calculated over localized regions of the Sun during the extended minimum phase between solar cycles 23 and 24. The frequency shifts measured relative to the spatial average over the solar disk indicate that the correlation between the frequency shift and magnetic field strength during the low-activity phase is weak. The disk-averaged frequency shifts computed relative to a minimal activity period also reveal a moderate correlation with different activity indices, with a maximum linear correlation of about 72?%. From the investigation of the frequency shifts at different latitudinal bands, we do not find a consensus period for the onset of solar cycle 24. The frequency shifts corresponding to most of the latitudes in the northern hemisphere and 30° south of the equator indicate the minimum epoch to be February 2008, which is earlier than inferred from solar activity indices.  相似文献   

5.
The characteristics of long period Pc5 pulsations (frequency 3·33-1·67 mHz; period 300–600 sec) for stations in the subauroral, auroral and polar zones are studied for 1967. These pulsations occur mainly in the auroral and polar zones with one morning and one evening peak; in the cusp region they occur most frequently near local noon. The evening peak gets stronger and appears farther away from noon with increasing geomagnetic activity. Periods are shorter and amplitudes larger in the morning compared to the evening hours. Only in a small latitudinal belt (60–70°) do the periods tend to increase with latitude. Amplitudes are almost always maximum near the central line of the auroral zone and drop much more sharply towards lower latitudes than towards higher latitudes. Considerable diurnal variations and also variations with magnetic activity are found to exist in the occurrence-latitude and amplitudelatitude profiles. In all the three regions the occurrence and the amplitude of these pulsations increase with magnetic activity to a certain level after which results become uncertain. Periods either do not change very much or at some stations decrease as activity increases.  相似文献   

6.
By using an image-dipole magnetic field model for a variety of plasma density profiles we have studied the latitude effect of the 0.1–1.0-Hz hydromagnetic wave propagation in the Earth's magnetosphere. On comparing the results of signal group delay time calculations for dipole and model magnetic fields with ground and satellite observations we obtain some propagation characteristics of Pc1s and localize the regions of their generation. Our results show that most high-latitude Pc1 events are generated in the outer magnetosphere in accordance with ground and satellite observations and theoretical considerations. The non-dipole geometry of the geomagnetic field in the outer magnetosphere (at geomagnetic latitudes φ0 > 66°, L > 6) has a significant effect on the hydromagnetic wave propagation.  相似文献   

7.
Explorer 26 magnetic field data in the magnetospheric region of L=3?6 and LT 1100–1500 hr with geomagnetic latitude range ?6° to 27° have been analyzed for studying nineteen SI and SC events. Most of the SI events observed in the magnetosphere at less than 15° geomagnetic latitude are compressional with magnetic perturbations along the ambient field. Elliptic polarizations with magnetic field variations in all three components have been observed between 10° and 27° geomagnetic latitude. Polarization directions have been shown to have similar patterns to those observed in the surface magnetic field data. Afternoon LT zone data in the magnetosphere indicate polarization patterns in general agreement with the results of Wilson and Sugiura (1961) obtained earlier from surface observations. The SI/SC perturbations are also qualitatively shown to be related to changes in the interplanetary magnetic field observed beyond 1 a.u.  相似文献   

8.
We have examined the relationships among coronal holes (CHs), corotating interaction regions (CIRs), and geomagnetic storms in the period 1996?–?2003. We have identified 123 CIRs with forward and reverse shock or wave features in ACE and Wind data and have linked them to coronal holes shown in National Solar Observatory/Kitt Peak (NSO/KP) daily He i 10?830 Å maps considering the Sun?–?Earth transit time of the solar wind with the observed wind speed. A sample of 107 CH?–?CIR pairs is thus identified. We have examined the magnetic polarity, location, and area of the CHs as well as their association with geomagnetic storms (Dst≤?50 nT). For all pairs, the magnetic polarity of the CHs is found to be consistent with the sunward (or earthward) direction of the interplanetary magnetic fields (IMFs), which confirms the linkage between the CHs and the CIRs in the sample. Our statistical analysis shows that (1) the mean longitude of the center of CHs is about 8°E, (2) 74% of the CHs are located between 30°S and 30°N (i.e., mostly in the equatorial regions), (3) 46% of the CIRs are associated with geomagnetic storms, (4) the area of geoeffective coronal holes is found to be larger than 0.12% of the solar hemisphere area, and (5) the maximum convective electric field E y in the solar wind is much more highly correlated with the Dst index than any other solar or interplanetary parameter. In addition, we found that there is also a semiannual variation of CIR-associated geomagnetic storms and discovered new tendencies as follows: For negative-polarity coronal holes, the percentage (59%; 16 out of 27 events) of CIRs associated with geomagnetic storms in the first half of the year is much larger than that (25%; 6 out of 24 events) in the second half of the year and the occurrence percentage (63%; 15 out of 24 events) of CIR-associated storms in the southern hemisphere is significantly larger than that (26%; 7 out of 27 events) in the northern hemisphere. Positive-polarity coronal holes exhibit an opposite tendency.  相似文献   

9.
K. Rages  J.B. Pollack 《Icarus》1983,55(1):50-62
Radial intensity scars of a Voyager 2 high phase angle image of Titan have been inverted to yield vertical extinction profiles at 1° intervals around the limb. A detached haze layer with peak particle number densities ~0.2 cm?3 exists at all latitudes south of ~45°N, and at an altitude of 300–350 km. The optical depth 0.01 level lies at a radius of 2932 ± 5 km at the equator and at a radius of 2915 ± 10 km over the poles (altitudes of 357 ± 5 and 340 ± 10 km, respectively). In addition to the haze layer at 300–350 km, there is a small enhancement in the extinction at ~450 km which exists at all latitudes between 75°S and ~60°N.  相似文献   

10.
A detailed analysis of rapid-run magnetograms from Guam (geomagnetic latitude = 4.2°) revealed that there are two kinds of geomagnetic sudden commencement (SC) observed in nighttime. One is the ordinary SC consisting of a main impulse only which has a smooth rise of the H-component. The other is a superposition by a small positive impulse on the very beginning part of the smooth rise of the main impulse and consequently the SC starts with a small stepwise increase of the H-component. The latter type of SC occurs between 20 and 08 h L.T. and its occurrence rate takes the maximum value of about 50% around 03 h L.T. Corresponding magnetograms from a dayside equatorial station (Huancayo, geomagnetic latitude = ?0.7°) were examined and a good correlation was found between the stepwise SC at the nightside (Guam) and SC1 with a preliminary reverse impulse (PRI) at the dayside (Huancayo). Since PRI observed at the dayside equator may be interpreted as an extension of an ionospheric current due to an dusk-to-dawn electric field impressed on the polar ionosphere, our results show that a polar originating ionospheric current can extend to the nightside equator and produce a small but observable magnetic effect in spite of much reduced nighttime ionospheric conductivity.  相似文献   

11.
Autospectra in the 2–13 month range, computed from mean monthly horizontal intensity on quiet days at Trivandrum, situated close to the dip equator, suggest an exceedingly large semi-annual modulation of the field confined to an interval of about 5 hr centred at 1000 LT. The amplitude of the semi-annual oscillation at this station, derived from power density, is greater than 19 γ at 1000 LT. Between 1900 and 0500 LT, spectral lines, corresponding to a period of six months, are not observed above the continuum. Spectral densities from observations at two other electrojet stations in India, Kodaikanal and Annamalainagar, and at Alibag, outside the electrojet, establish the existence of an appreciable enhancement of the semi-annual oscillation of the field in the equatorial electrojet belt. Similar computations of spectra using observations on all days, however, suggest a secondary component in the evening sector. This component is not enhanced in the equatorial electrojet belt. It is concluded that while in low latitudes the daytime component is largely associated with the modulation of Sq currents, in the electrojet belt it appears to be due entirely to a semi-annual modulation of the equatorial electrojet. It is also concluded that the secondary component, observed in the evening sector in low latitude and equatorial stations, is associated purely with the modulation of the ring current by disturbance. The two components of the semi-annual variation observed at the Indian stations have also been noticed at several stations between geomagnetic latitudes N54.6° and S41.8°. It is also observed that the association of the semi-annual component with geomagnetic latitude is confined to the evening-night component.  相似文献   

12.
Geomagnetic disturbances are the results of interplanetary causes such as high-speed streamers (HSSs), interplanetary coronal mass ejections (ICMEs), corotating interaction regions (CIRs), and magnetic clouds. During different forms of geomagnetic disturbances, we observed changes in the count rate at neutron monitors that are kept at various locations. We studied the count rates measured by neutron monitors at four stations at various latitudes during different categories of geomagnetic events and compared them. We analysed five events: a geomagnetically quiet event, a non-storm high-intensity long-duration continuous AE activity (HILDCAA) event, a storm-preceded HILDCAA event, a geomagnetic substorm event, and a geomagnetic moderate storm event. We based our analysis on geomagnetic indices, solar wind parameters, and interplanetary magnetic field (IMF) parameters. We found that the strength of the modulation was least during the quiet event and highest during the storm-preceded HILDCAA. By analysing the cause of these geomagnetic disturbances, we related each decrease in the neutron monitor data with the corresponding solar cause. For the ICME-driven storm, we observed a decrease in neutron monitor data ranging from 6% to 12% in all stations. On the other hand, we observed a decrease ranging from 2% to 5% for the HSS-driven storm. For the non-storm HILDCAA, we observed a decrease in neutron monitor data of about 1% to 1.5%. For the quiet event, the neutron monitor data fluctuated such that there was no overall decrease in all stations.  相似文献   

13.
Intense (? 10 mVm?1) electrostatic plasma waves near the upper hybrid frequency have been observed between ± 50° magnetic latitude during spacecraft plasmapause crossings. We present wave growth rate and three-dimensional convective amplification calculations which suggest how intense upper hybrid (IUH) events can occur over such a wide range of latitudes. The effects of wave refraction are shown to be crucial to the proper calculation of convective amplification.We first calculate upper hybrid wave growth for an IUH event at 10° MLAT during which a complete electron distribution function with a loss cone feature was measured simultaneously with the waves. We show that a parallel density gradient may be necessary to account for the observed amplification. Without such a density gradient, the dipole magnetic field gradient would quickly refract the wave vector component parallel to the local field lines out of the unstable region in wave vector space. Upon mapping the distribution function observed at 10° MLAT to other latitudes by conserving the electrons' magnetic moments, we then find that the mapped distribution could produce large amplification at higher latitudes only if there is an appropriate parallel density gradient. At the equator, the long magnetic field gradient scale length enables large amplitudes to be attained without a density gradient.The results of our UH ray tracing analysis are related to theories and observations of magnetospheric continuum radiation.  相似文献   

14.
L. Wallace 《Icarus》1983,54(1):110-132
A series of time-dependent radiative/convective models are presented for the atmosphere of Uranus. The effects of atmospheric dynamics have been omitted from the models. The inclination of the pole of rotation to the pole of the orbit, approximately 90°, produces large seasonal changes in the insolation. Because of the relatively small flow of heat from the interior, these seasonal changes cause the effective temperature, which is about 60°K, to vary through the 84-year orbital period by ~5°K at the poles, ~4°K at ±60° latitude, ~2°K at ±30° latitude, and ~0.5°K at the equator. For a particular latitude, the minimum effective temperature and the maximum convective flow of heat from the interior occur near the end of the period when the sun remains below the horizon during the Uranian day. If the methane mixing ratio is not limited by its saturated vapor pressure (SVP) in the convective region, the maximum convective flow would be a few times the orbital average convective flow and persist for an interval of several years. On the other hand, if the methane mixing ratio is limited by its SVP in the convective regions, the maximum convective flow could be orders of magnitude greater than the orbital average and could persist for less than an hour. If the orbital mean internal heat flow is negligible, the difference in effective temperatures between 30 and 60° latitude would be in the range 2 to 4°K. If the internal heat is taken to be about the maximum allowable and is assumed to be redistributed in the interior in a manner to compensate for the minimum in insolation at low latitudes, the corresponding temperature difference would be in the range 12 to 2°K. In either case, the existing theory of atmospheric dynamics for the outer planets indicates that such large temperature differences will drive large-scale motions which would in turn reduce these temperature differences.  相似文献   

15.
During a campaign of optical observations at high latitude, a bi-dimensional study of the wave structure of the OH layer has been performed in December 1981 from Sodankyla (Finland). This site is one of the three stations of the EISCAT ionosphere sounding system. It has been found that a wave field covering an area of 1 million km2 may extend to latitudes as high as 70°N. The OH wave structure shows many similarities with noctilucent clouds. The fairly large horizontal wavelength, of the order of 40 km cannot easily be explained by a wave motion at an interface. The observed wave structure seems to be a result of the propagation of an internal gravity wave in the 80–100 km region. This wave structure was often recorded during the same time as an active aurora was present. As a result, it appears that the perturbation might be correlated with particle precipitations at auroral latitudes.  相似文献   

16.
The local time dependent effects of geomagnetic storm on the ionospheric TEC and Rate of change of TEC Index (ROTI) are studied here using the GPS data for four different low latitude stations: Ogaswara, Japan (24.29?°N, 153.91?°E; Geomagnetic: 17.21?°N, 136.16?°W); Surat, India (21.16?°N, 72.78?°E; Geomagnetic: 12.88?°N, 146.91?°E); Bogota, Colombia (4.64?°N, ?74.09?°E; Geomagnetic: 14.42?°N, 1.67?°W); and Kokee park Waimea, Hawaii, US (22.12?°N, ?159.67?°E; Geomagnetic: 22.13?°N, 91.19?°W). The solar wind velocity and geomagnetic indices: Dst, Kp and IMF Bz are utilized to validate the geomagnetic storms registered during the years 2011 and 2012. Using the GPS based TEC data and computed values of ROTI, the storm induced ionospheric irregularities generation and inhibition has been studied for all stations. The present study suggests that, the F-region irregularities of a scale length of few kilometers over the magnetic equator are locally affected by geomagnetic storms. This study also shows a good agreement (70–84 %) with the Aaron’s criteria (Aarons, Radio Sci., 26:1131–1149, 1991; Biktash, Ann. Geophys., 19:731–739, 2004) as significant absence and enhancement of ROTI was found to be influenced by the local time of the negative peak of Dst index association.  相似文献   

17.
Since the discovery of ultraviolet markings on Venus, their observations have been a powerful tool to study the morphology, motions and dynamical state at the cloud top level. Here we present the results of investigation of the cloud top morphology performed by the Venus Monitoring Camera (VMC) during more than 3 years of the Venus Express mission. The camera acquires images in four narrow-band filters centered at 365, 513, 965 and 1010 nm with spatial resolution from 50 km at apocentre to a few hundred of meters at pericentre. The VMC experiment provides a significant improvement in the Venus imaging as compared to the capabilities of the earlier missions. The camera discovered new cloud features like bright “lace clouds” and cloud columns at the low latitudes, dark polar oval and narrow circular and spiral “grooves” in the polar regions, different types of waves at the high latitudes. The VMC observations revealed detailed structure of the sub-solar region and the afternoon convective wake, the bow-shape features and convective cells, the mid-latitude transition region and the “polar cap”. The polar orbit of the satellite enables for the first time nadir viewing of the Southern polar regions and an opportunity to zoom in on the planet. The experiment returned numerous images of the Venus limb and documented global and local brightening events. VMC provided almost continuous monitoring of the planet with high temporal resolution that allowed one to follow changes in the cloud morphology at various scales.We present the in-flight performance of the instrument and focus in particular on the data from the ultraviolet channel, centered at the characteristic wavelength of the unknown UV absorber that yields the highest contrasts on the cloud top. Low latitudes are dominated by relatively dark clouds that have mottled and fragmented appearance clearly indicating convective activity in the sub-solar region. At ~50° latitude this pattern gives way to streaky clouds suggesting that horizontal, almost laminar, flow prevails here. Poleward from about 60°S the planet is covered by almost featureless bright polar hood sometimes crossed by dark narrow (~300 km) spiral or circular structures. This global cloud pattern can change on time scales of a few days resulting in global and local “brightening events” when the bright haze can extend far into low latitudes and/or increase its brightness by 30%. Close-up snapshots reveal plenty of morphological details like convective cells, cloud streaks, cumulus-like columns, wave trains. Different kinds of small scale waves are frequently observed at the cloud top. The wave activity is mainly observed in the 65–80° latitude band and is in particular concentrated in the region of Ishtar Terra that suggests their possible orographic origin. The VMC observations have important implications for the problems of the unknown UV absorber, microphysical processes, dynamics and radiative energy balance at the cloud tops. They are only briefly discussed in the paper, but each of them will be the subject of a dedicated study.  相似文献   

18.
Eighty-seven measurements of the thermal structure in the atmosphere of Venus between the altitudes of about 40 and 85 km were derived from Pioneer Venus Orbiter radio occultation data taken during four occultation seasons from December 1978 to October 1981. These measurements cover latitudes from ?68 to 88° and solar zenith angles of 8 to 166°. The results indicate that the characteristics of the thermal structure in both the troposphere and stratosphere regions are dependent predominantly on the latitude and only weakly on solar illumination conditions. In particular, the circumpolar collar cloud region in the northern hemisphere (latitude 55 to 77°) displays the most dramatic changes in structure, including the appearance of a large inversion, having an average magnitude of about 18°K and a maximum of about 33°K. Also in this region, the tropopause altitude rises by about 4.8 km above its value at low latitudes, the tropopause temperature drops by about 60°K, and the pressure at the tropopause decreases by an average of about 240 mbar. These changes in the collar region are correlated with observations of increased turbulence and greater amplitude of thermal waves in the region, which is located where the persistent circulation pattern in the Venus atmosphere changes from zonally symmetric retrograde rotation to a hemispherical circumpolar vortex. It was shown that the large zonal winds associated with this circulation pattern are not likely to produce distortions in the atmosphere of a magnitude that could lead to temperature errors of the order of the mesosphere inversions observed in the collar region, but under certain circumstances zonal wind distortion could cause errors of 3–4°K.  相似文献   

19.
A statistical analysis of the surface distribution of the larger solar flares of the 21st cycle is carried out in this paper. The results are as follows: (1) There exist two active longitude belts, 220°–140° and 340°–320°. (2) The distribution of flares is assymetric about the solar equator. (3) Active regions located in 50°–60° E and 10°–20° W are good producers of flares; those in 80°–90° E (i.e., near the East limb) and 60°–70° W are poor producers. (4) The autocorrelation function of the flare series shows that a flare active region has a large probability of producing another flare after one rotation and a small probability of so doing after more than one rotation, and that there is a high probability of a flare occurring in the region next to the one in which a flare has already occurred.  相似文献   

20.
Chen  Hong-Fei  Xu  Wen-Yao  Chen  Geng-Xiong  Hong  Ming-Hua  Peng  Feng-Lin 《Solar physics》2001,204(1-2):339-349
In this paper geomagnetic disturbances at middle and low latitudes are discussed by using geomagnetic data of the magnetic storm of 15–16 July 2000. This storm is a response to the solar Bastille Day flare on 14 July. Generally, the geomagnetic disturbances at middle and low latitudes during a storm are mainly caused by three magnetospheric–ionospheric current systems, such as the ring current system (RC), the partial ring current and its associated region II field-aligned currents (PR), and the region I field-aligned currents (FA). Our results show that: (1) The northward turning of IMF-Bz started the sudden commencement of the storm, and its southward turning caused the main phase of the storm. (2) The PR- and FA-currents varied violently in the main phase. In general, the field of the FA-current was stronger than that of the PR-current. (3) In the first stage of the recovery phase, the RC-field gradually turned anti-parallel to the geomagnetic axis from a 15° deviation, and the local time (Λ) pointed by the RC-field stayed at 16:00. After that, Λ rotated with the stations, and the RC-field was not anti-parallel to the geomagnetic axis, but 5°–10° deviated. These facts suggest that the warped tailward part of the ring current decays faster than the symmetric ring current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号