首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.  相似文献   

2.
The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the atmospheric circulation field and temperature field data of ERA-Interim for every six hours,the NCCV processes during the early summer(June)seasons from 1979 to 2018 were objectively identified.Then,the NCCV processes were classified using a machine learning method(k-means)according to the characteristic parameters of the activity path information.The rationality of the classification results was verified from two aspects,as follows:(1)the atmospheric circulation configuration of the NCCV on various paths;and(2)its influences on the climate conditions in the NEC.The obtained results showed that the activity paths of the NCCV could be divided into four types according to such characteristics as the generation origin,movement direction,and movement velocity of the NCCV.These included the generation-eastward movement type in the east of the Mongolia Plateau(eastward movement type or type A);generation-southeast longdistance movement type in the upstream of the Lena River(southeast long-distance movement type or type B);generationeastward less-movement type near Lake Baikal(eastward less-movement type or type C);and the generation-southward less-movement type in eastern Siberia(southward less-movement type or type D).There were obvious differences observed in the atmospheric circulation configuration and the climate impact of the NCCV on the four above-mentioned types of paths,which indicated that the classification results were reasonable.  相似文献   

3.
Phase Two of the Integrative Monsoon Frontal Rainfall Experiment(IMFRE-II)was conducted over the middle and lower reaches of the Yangtze River during the period 16 June to 19 July 2020.This paper provides a brief overview of the IMFRE-II field campaign,including the multiple ground-based remote sensors,aircraft probes,and their corresponding measurements during the 2020 mei-yu period,as well as how to use these numerous datasets to answer scientific questions.The highlights of IMFRE-II are:(1)to the best of our knowledge,IMFRE-II is the first field campaign in China to use ground-based,airborne,and spaceborne platforms to conduct comprehensive observations over the middle and lower reaches of the Yangtze River;and(2)seven aircraft flights were successfully carried out,and the spectra of ice particles,cloud droplets,and raindrops at different altitudes were obtained.These in-situ measurements will provide a“cloud truth”to validate the ground-based and satellite-retrieved cloud and precipitation properties and quantitatively estimate their retrieval uncertainties.They are also crucial for the development of a warm(and/or cold)rain conceptual model in order to better understand the cloud-to-rain conversion and accretion processes in mei-yu precipitation events.Through an integrative analysis of ground-based,aircraft,and satellite observations and model simulations,we can significantly improve our cloud and precipitation retrieval algorithms,investigate the microphysical properties of cloud and precipitation,understand in-depth the formation and dissipation mechanisms of mei-yu frontal systems,and improve cloud microphysics parameterization schemes and model simulations.  相似文献   

4.
Based on tropical cyclone (TC) data for the period 1949 to 2008 and following the Gumbe-I method, Pearson-Ⅲ method and determinacy method, this article estimates the possible minimum central pressure of TCs affecting southern Fujian where a nuclear power will be located. Results show that the observed minimum central pressure of TCs agrees well with the results determined with the methods above and there is little difference between them (the minimum central pressure is 867.4 hPa and 868.1 hPa, respectively, in a 1,000-yr return period). Established with the theory of atmospheric dynamics, the determinacy method yields a result of 867.28 hPa/1000 years, only a little smaller than the result of the probability method. Because of randomicity in parameter adjustment with the Pearson-Ⅲ method whereas the determinacy method is theoretically solid and its estimates are the smallest of the three methods, it is therefore reasonable, for security and conservative concerns, to adopt the result determined with the determinacy method as the possible maximum intensity of TC (with the central pressure being 867.28 hPa in a 1,000-yr return period).  相似文献   

5.
Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes(BMSs),the Thompson and the Chen-Liu-Reisner(CLR),using the Weather Research and Forecast(WRF)model.The objective of this study is to investigate the parameterizations of aerosol effects on cloud and precipitation characteristics and assess the necessity of introducing aerosols into a weather prediction model at fine grid resolution.The results show that aerosols play a decisive role in the composition of clouds in terms of the mixing ratios and number concentrations of liquid and ice hydrometeors in an intense supercell storm.The storm consists of a large amount of cloud water and snow in the polluted environment,but a large amount of rainwater and graupel instead in the clean environment.The total precipitation and rain intensity are suppressed in the CLR scheme more than in the Thompson scheme in the first three hours of storm simulations.The critical processes explaining the differences are the auto-conversion rate in the warm-rain process at the beginning of storm intensification and the low-level cooling induced by large ice hydrometeors.The cloud condensation nuclei(CCN)activation and auto-conversion processes of the two schemes exhibit considerable differences,indicating the inherent uncertainty of the parameterized aerosol effects among different BMSs.Beyond the aerosol effects,the fall speed characteristics of graupel in the two schemes play an important role in the storm dynamics and precipitation via low-level cooling.The rapid intensification of storms simulated with the Thompson scheme is attributed to the production of hail-like graupel.  相似文献   

6.
THE IMPACTS OF MADDEN-JULIAN OSCILLATION ON SPRING RAINFALL IN EAST CHINA   总被引:3,自引:1,他引:2  
Phase composite analyses are conducted to investigate the possible effect of the Madden–Julian oscillation(MJO)on the spring rainfall anomalies in East China by using the Real-time Multivariate MJO(RMM)index from Australian Meteorological Bureau.The results show that the rainfall anomalies over the mid-and lower-valley of Yangtze River are positive when the MJO shifts eastward to the mid-and eastern-Indian Ocean,and anomalous precipitation over South China are positive when the MJO moves further eastward to the maritime continent,whereas spring rainfall anomalies over East China are negative in the other MJO episodes.The MJO impacts on the precipitation over East China result from the changes in large-scale atmospheric circulation as well as vorticity and water vapor transportation in the mid-and lower-troposphere.  相似文献   

7.
Global climate changes significantly impact the water condition of big rivers in glacierized high mountains. However,there is a lack of studies on hydrological changes within river basins caused by climate changes over a geological timescale due to the impossibility of direct observations. In this study, we examine the hydro-climatic variation of the Yarlung Zangbo River Basin in the Tibet Plateau since the Last Glacial Maximum(LGM) by combining δ18 O proxy records in Indian and Omani caves with the simulated Indian summer monsoon, surface temperature, precipitation, evapotranspiration and runoff via the Community Climate System Model and the reconstructed glacier coverage via the Parallel Ice Sheet Model. The mean river runoff was kept at a low level of 145 billion cubic meters per year until an abrupt increase at a rate of 8.7 million cubic meters per year in the B?lling-Aller?d interval(BA). The annual runoff reached a maximum of 250 billion cubic meters in the early Holocene and then reduced to the current value of 180 billion cubic meters at a rate of 6.4 million cubic meters per year. The low runoff in the LGM and Heinrich Stadial 1(HS1) is likely attributed to such a small contribution of precipitation to runoff and the large glacier cover. The percentage of precipitation to runoff was only 20%during the LGM and HS1. Comparison of glacier area among different periods indicates that the fastest deglaciation occurred during the late HS1, when nearly 60% of glacier area disappeared in the middle reach, 50% in the upper reach,and 30% in the lower reach. The rapid deglaciation and increasing runoff between the late HS1 and BA may have accelerated widespread ice-dam breaches and led to extreme outburst flood events. Combining local geological proxy records and regional simulations could be a useful approach for the study of paleo-hydrologic variations in big river basins.  相似文献   

8.
This study reports verification results of hindcast data of four systems in the subseasonal-to-seasonal(S2S)prediction project for major stratospheric sudden warmings(MSSWs)in northern winter from 1998/99 to 2012/13.This report deals with average features across all MSSWs,and possible differences between two MSSW types(vortex displacement and split types).Results for the average features show that stratospheric forecast verifications,when further averaged among the four systems,are judged to be successful for lead times around 10 d or shorter.All systems are skillful for lead times around 5 d,whereas the results vary among the systems for longer lead times.A comparison between the MSSW types overall suggests larger forecast errors or lower skill for MSSWs of the vortex split type,although the differences do not have strong statistical significance for almost all cases.This limitation is likely to at least partly reflect the small sample size of the MSSWs available.  相似文献   

9.
南京三千公尺高空之风向与天气之预测   总被引:1,自引:0,他引:1  
晚近日本籐原笑平(Fujiwhora)博士于地球物理杂志发表「根据三千公尺高空等压线,以预测天气之一例证」一文,谓日本最近用三千公尺高空之等压线,作每日天气之预测,已得相当成就。氏之经验法则谓自九月以迄五月,日本太平洋沿岸,三千公尺高空之等压线,来自西南者,可形去致雨,而来自西北者,则可期晴明。此种倾向颇为显著。  相似文献   

10.
This study investigates why an extreme hot midsummer occurred in Central and South China(CSC) during 2017. It is shown that the western North Pacific subtropical high(WNPSH) was abnormally intensified and westward-extending,resulting in anomalous high pressure and consequent extreme heat over CSC. The abnormal WNPSH was favored by the warming of the western tropical Pacific(WTP), which was unrelated to ENSO and manifested its own individual effect.The WTP warming enhanced the convection in-situ and led to anomalous high pressure over CSC via a local meridional circulation. The influence of the WTP was confirmed by CAM4 model experiments. A comparison between the 2017 midsummer and 2010 midsummer(with a stronger WNPSH but weaker extreme heat) indicated that the influence of the WNPSH on extreme heat can be modulated by the associated precipitation in the northwestern flank.The role of the WTP was verified by regression analyses on the interannual variation of the WTP sea surface temperature anomaly(SSTA). On the other hand, the WTP has undergone prominent warming during the past few decades, resulting from decadal to long-term changes and favoring extreme warm conditions. Through a mechanism similar to the interannual variation, the decadal to long-term changes have reinforced the influence of WTP warming on the temperature over CSC,contributing to the more frequent hot midsummers recently. It is estimated that more than 50% of the temperature anomaly over CSC in the 2017 midsummer was due to the WTP warming, and 40% was related to the decadal to long-term changes of the WTP SSTA.  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

13.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

16.
基于最新的GTAP8 (Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

17.
Hourly outgoing longwave radiation(OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite(COMS) has been retrieved since June 2010. The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels. This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm(OLR12.0using the 12.0 μm channel) and three multiple-channel algorithms(OLR10.8+12.0using the 10.8 and 12.0 μm channels; OLR6.7+10.8using the 6.7 and 10.8 μm channels; and OLR All using the 6.7, 10.8, and 12.0 μm channels). The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System(CERES) over the full COMS field of view [roughly(50°S–50°N, 70°–170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5–7 W m-2, which indicates good agreement with CERES OLR over the vast domain. OLR6.7+10.8and OLR All have much smaller errors(~ 6 W m-2) than OLR12.0and OLR10.8+12.0(~ 8 W m-2). Moreover, the small errors of OLR6.7+10.8and OLR All are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration. These results indicate a noteworthy role of the6.7 μm water vapor absorption channel in improving the accuracy of the OLRs. The dependence of the accuracy of COMS OLRs on various surface, atmospheric, and observational conditions is also discussed.  相似文献   

18.
正ERRATUM to: Atmospheric and Oceanic Science Letters, 4(2011), 124-130 On page 126 of the printed edition (Issue 2, Volume 4), Fig. 2 was a wrong figure because the contact author made mistake giving the wrong one. The corrected edition has been updated on our website. The editorial office is sincerely sorry for any  相似文献   

19.
20.
Index to Vol.31     
正AN Junling;see LI Ying et al.;(5),1221—1232AN Junling;see QU Yu et al.;(4),787-800AN Junling;see WANG Feng et al.;(6),1331-1342Ania POLOMSKA-HARLICK;see Jieshun ZHU et al.;(4),743-754Baek-Min KIM;see Seong-Joong KIM et al.;(4),863-878BAI Tao;see LI Gang et al.;(1),66-84BAO Qing;see YANG Jing et al.;(5),1147—1156BEI Naifang;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号