首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three‐dimensional model for predicting redox controlled, multi‐species reactive transport processes in groundwater systems is presented. The model equations were fully integrated within a MODFLOW‐family reactive transport code, RT3D. The model can simulate organic compound biodegradation coupled to different terminal electron acceptor processes. A computational approach, which uses the spatial and temporal distribution of the rates of different redox reactions, is proposed to map redox zones. The method allows one to quantify and visualize the biological degradation reactions occurring in three distinct patterns involving fringe, pseudo‐core and core processes. The capabilities of the numerical model are demonstrated using two hypothetical examples: a batch problem and a simplified two‐dimensional reactive transport problem. The model is then applied to an unconfined aquifer underlying a leaking landfill located near the city of Turin, in Piedmont (Italy). At this site, high organic load from the landfill leachate activates different biogeochemical processes, including aerobic degradation, denitrification, manganese reduction, iron reduction, sulfate reduction and methanogenesis. The model was able to describe and quantify these complex biogeochemical processes. The proposed model offers a rational framework for simulating coupled reactive transport processes occurring beneath a landfill site. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Occurrences of pharmaceutically active compounds in surface water and sewage water have been widely reported. Investigations show the presence of several classes of pharmaceuticals such as antirheumatics (e.g., diclofenac), analgesics (e.g., propyphenazone), and blood lipid regulators (clofibric acid), even in ground water. Compared to their occurrences in surface water, however, the reported incidences of drugs in ground water are much rarer. This may be due to the input, but also to transport processes and degradation in the aquifer. In field studies investigating ground water sampled at a bank infiltration site at Lake Tegel, Berlin, Germany, clofibric acid was found at concentrations up to 290 ng/L, and propyphenazone up to 250 ng/L, whereas concentrations of diclofenac were around the detection limit. The aim of this study was to investigate the ground water transport behavior of the pharmaceuticals clofibric acid, propyphenazone, and diclofenac with a laboratory soil column experiment. Results show that clofibric acid exhibits no degradation and almost no retardation (Rf = 1.1). Diclofenac (Rf = 2.0) and propyphenazone (Rf = 1.6) are retarded, whereas significant degradation was not observed for both pharmaceuticals under the prevailing conditions in the soil column. We conclude that the concentration distribution of the pharmaceuticals at the bank filtration site at Lake Tegel is controlled by sorption, desorption, and input variation, rather than by degradation.  相似文献   

3.
The presence of acid pharmaceuticals in water environments poses a potential threat to ecosystems and human health. Recent research has shown that photo oxidation processes are much more effective for removing these pharmaceuticals. However, the existence of humic acid (HA) could inhibit the clearance efficiency of this process. In this study, we investigated the photochemical degradation of six selected acid pharmaceuticals in surface water and effluent from wastewater treatment plants using the UV/H2O2 process. The results showed that HA can act as a photo sensitizer or a . OH sink, and its concentration had a significant inhibitory effect on the degradation of acid pharmaceuticals. Most of these pharmaceuticals were inhibited during this process when HA was added to deionized water solutions. In addition, the effects of chloride, bicarbonate, and nitrate on the degradation of these pharmaceuticals were different. The removal efficiency of these acid pharmaceuticals is lower in natural samples than in deionized samples because of the complex constituents in the latter.  相似文献   

4.
5.
Sewer inlet structures are vital components of urban drainage systems and their operational conditions can largely affect the overall performance of the system. However, their hydraulic behaviour and the way in which it is affected by clogging is often overlooked in urban drainage models, thus leading to misrepresentation of system performance and, in particular, of flooding occurrence. In the present paper, a novel methodology is proposed to stochastically model stormwater urban drainage systems, taking the impact of sewer inlet operational conditions (e.g. clogging due to debris accumulation) on urban pluvial flooding into account. The proposed methodology comprises three main steps: (i) identification of sewer inlets most prone to clogging based upon a spatial analysis of their proximity to trees and evaluation of sewer inlet locations; (ii) Monte Carlo simulation of the capacity of inlets prone to clogging and subsequent simulation of flooding for each sewer inlet capacity scenario, and (iii) delineation of stochastic flood hazard maps. The proposed methodology was demonstrated using as case study design storms as well as two real storm events observed in the city of Coimbra (Portugal), which reportedly led to flooding in different areas of the catchment. The results show that sewer inlet capacity can indeed have a large impact on the occurrence of urban pluvial flooding and that it is essential to account for variations in sewer inlet capacity in urban drainage models. Overall, the stochastic methodology proposed in this study constitutes a useful tool for dealing with uncertainties in sewer inlet operational conditions and, as compared to more traditional deterministic approaches, it allows a more comprehensive assessment of urban pluvial flood hazard, which in turn enables better-informed flood risk assessment and management decisions.  相似文献   

6.
Infiltration of groundwater to sewer systems is a problem for the capacity of the system as well as for treatment processes at waste water treatment plants. This paper quantifies the infiltration of groundwater to a sewer system in Frederikshavn Municipality, Denmark, by measurements of sewer flow and novel model set‐up, which simulates the interaction between groundwater and sewer flow. The study area has a separate waste water sewer system, but the discharged volumes from the system are approximately twice the volumes from a tight system without infiltration. The model set‐up makes use of two commercial models: mike she for simulation of groundwater transport and mike urban (mouse ) [DHI, Hørsholm, Denmark] for simulation of sewer flow. By simulating the groundwater level and calibrating infiltration coefficients against sewer flow measurements, it has been possible to estimate the average infiltration to the sewer system with satisfying results. The infiltration processes are indeed complicated and to a large degree heterogeneous throughout the sewer system. The paper shows contribution from both saturated and unsaturated groundwater zones, which makes the modelling process complex. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The “HYDRUS package for MODFLOW” is an existing MODFLOW package that allows MODFLOW to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package is based on incorporating parts of the HYDRUS-1D model (to simulate unsaturated water flow in the vadose zone) into MODFLOW (to simulate saturated groundwater flow). The coupled model is effective in addressing spatially variable saturated-unsaturated hydrological processes at the regional scale. However, one of the major limitations of this coupled model is that it does not have the capability to simulate solute transport along with water flow and therefore, the model cannot be employed for evaluating groundwater contamination. In this work, a modified unsaturated flow and transport package (modified HYDRUS package for MODFLOW and MT3DMS) has been developed and linked to the three-dimensional (3D) groundwater flow model MODFLOW and the 3D groundwater solute transport model MT3DMS. The new package can simulate, in addition to water flow in the vadose zone, also solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption. Due to complex interactions at the groundwater table, certain modifications of the pressure head (compared to the original coupling) and solute concentration profiles were incorporated into the modified HYDRUS package. The performance of the newly developed model is evaluated using HYDRUS (2D/3D), and the results indicate that the new model is effective in simulating the movement of water and contaminants in the saturated-unsaturated flow domains.  相似文献   

8.
The paper presents the results of a study in which the uncertainty levels associated with a detailed and a simplified/parsimonious sewer sediment modelling approach have been compared. The detailed approach used an Infoworks CS sewer network model combined with a user developed sediment transport code and the simplified approach used a conceptual sewer flow and quality model. The two approaches have been applied to a single case study sewer network and the simulation results compared. The case study was selected as moderate storm events had occurred during a 2 year rainfall and sewer flow monitoring period. Flooding had been observed and this was thought to be caused by significant solids accumulation in the sewer network. As a result sediment deposit measurements were carried out over a 6 month period. Model simulations were made of this period and predictions obtained of sediment deposit location and depth. The uncertainty analysis of both modelling approaches was carried out using Monte Carlo based computational methods. This was a limitation for the detailed approach with regards to computational time. Use of the simplified model was not constrained by this issue and so a more conventional assessment of the uncertainty was possible. The simplified approach, due to its structure, only provided a temporal estimate of uncertainty at the final section of the catchment. The detailed approach enabled an assessment of uncertainty at an individual pipe scale but only at the end of the simulation period. A comparison of the uncertainty estimations from both methods at the final section of the catchment and the end of the simulation period indicated comparable values of predicted uncertainty. Therefore a complementary use of both approaches would allow reasonably comparable estimations of levels of uncertainty at both a spatial and temporal scale. The use of such modelling approaches may provide a useful decision-making tool for sewer system management.  相似文献   

9.
Hazardous waste site investigations have shown that volatile organic compounds (VOCs) can be transported via sewer pipes and migrate into indoor spaces. Despite field data confirming the presence of this exposure pathway, there is lack of context-based numerical models that provide guidance to characterize and predict VOCs concentration in sewer gas at vapor intrusion sites. Particularly, this poses a challenge when assessing and mitigating risks associated with these exposure pathways. Therefore, a numerical model has been developed to simulate the concentration of VOCs in sewer gas in different stages throughout the sewer lines. The developed model considers various input parameters, including temperature, sewer liquid depth, groundwater depth, and sewer construction characteristics to incorporate local and operational conditions. The model's output is verified using field data from a sewer system constructed near a Superfund site. Moreover, a sensitivity analysis was conducted to evaluate the model's response to variation of the external input parameters. To the best of our knowledge, this study is the first attempt to model VOCs concentration in sewer gas, particularly to address vapor intrusion. The developed model can be used as a numerical tool to support the development of sewer assessment guidelines, risk assessment studies, and mitigation strategies.  相似文献   

10.
《国际泥沙研究》2020,35(4):386-394
Sediment transport simulations are important in practical engineering. In this study, a graphics processing unit (GPU)-based numerical model coupling hydrodynamical and morphological processes was developed to simulate water flow, sediment transport, and morphological changes. Aiming at accurately predicting the sediment transport and sediment scouring processes, the model resolved the realistic features of sediment transport and used a GPU-based parallel computing technique to the accelerate calculation. This model was created in the framework of a Godunov-type finite volume scheme to solve the shallow water equations (SWEs). The SWEs were discretized into algebraic equations by the finite volume method. The fluxes of mass and momentum were computed by the Harten, Lax, and van Leer Contact (HLLC) approximate Riemann solver, and the friction source terms were calculated by the proposed a splitting point-implicit method. These values were evaluated using a novel 2D edge-based MUSCL scheme. The code was programmed using C++ and CUDA, which could run on GPUs to substantially accelerate the computation. The aim of the work was to develop a GPU-based numerical model to simulate hydrodynamical and morphological processes. The novelty is the application of the GPU techniques in the numerical model, making it possible to simulate the sediment transport and bed evolution in a high-resolution but efficient manner. The model was applied to two cases to evaluate bed evolution and the effects of the morphological changes on the flood patterns with high resolution. This indicated that the GPU-based high-resolution hydro-geomorphological model was capable of reproducing morphological processes. The computational times for this test case on the GPU and CPU were 298.1 and 4531.2 s, respectively, indicating that the GPU could accelerate the computation 15.2 times. Compared with the traditional CPU high-grid resolution, the proposed GPU-based high-resolution numerical model improved the reconstruction speed more than 2.0–12.83 times for different grid resolutions while remaining computationally efficient.  相似文献   

11.
The study of Sediment transport of low concentration in pipes bas been applied in the design of a self-cleansing storm sewer. An alternative criterion is suggested as op- posed to the widely used single flow velocity approach. A conceptual model which simu- lates the condition in a storm sewer is developed and tested against experimental data. The results proved that the volumetric sediment concentration, pipe diameter and sedi- ment size have to be taken into consideration to produce a self-cleansing storm sewer. It also shows that the slope obtained by this alternative criterion is lower than the single flow velocity approach.  相似文献   

12.
This paper presents results of recent measurements of sand transport made in Chioggia inlet as part of an extensive monitoring programme in the Venetian inlets. Measurements were made in order: (1) to define a relationship between sand transport magnitude and tidal flow; (2) to derive the thresholds for sand transport; (3) to identify the dominant modes of transport; (4) to evaluate the concentration profiles of sand within the benthic boundary layer; (5) to compare bedload transport observations with model predictions using existent bedload formulae; and (6) to produce yearly estimates of bedload transport across the inlet. The vertical distribution of sand in the water column was sampled using modified Helley–Smith bedload samplers at three sites. Transport was found to vary according to the flow and bed grain size, with considerable temporal and spatial variability. A difference of up to three orders of magnitude in transport was observed through the inlet, with higher transport rates measured on the seaward part. The dominant mode of transport in the central inlet was suspension, while bedload was dominant in the mouths. The measured profiles of sand concentration varied with the tidal stage and seabed grain size according to the Rouse parameter (R). R was high at the inlet mouths (1<R<2), indicative of a well-developed bedload layer. The inverse movability number (Ws/U*) was also higher at these sites and appeared to be grain size dependant. Formulae for bedload transport were tested against field data; stochastic methods such as Einstein–Brown, Engelund–Hansen and Van Rijn produce the best fits. The coupled model SHYFEM-Sedtrans05 appears to simulate well observed transport for most conditions of flow. Long-term bedload predictions indicate a dominant export of sand, with a yearly average of 4500 m3.  相似文献   

13.
A modified version of the MODFLOW/MT3DMS‐based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably‐saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D‐UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated‐zone flow (UZF1) package. A volume‐averaged approach similar to the method used in UZF‐MT3DMS was adopted. The PHREEQC‐based computation of chemical processes within PHT3D‐UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional‐scale applications, UZF1 simulates downward‐only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably‐saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.  相似文献   

14.
Knowledge of the physical processes acting at inlet systems and their interaction with sediments and sediment bodies is important to the understanding of such environments. The objectives of this study are to identify and assess the relative importance of the controlling processes across the complex sandbar system at the Teign inlet (Teignmouth, UK) through the combined application of a numerical model, field data and Argus video images. This allows the determination of the regions dominated by wave processes or by tidal processes and definition of the variability of these regions under different wave, tide and river-discharge conditions. Modelling experiments carried out for one stage of the evolution of the system show that the interaction between tidal motion and waves generates complex circulation patterns that drive the local sediment transport and sandbar dynamics, producing a cyclic morphological behaviour of the sandbars that form the ebb-tidal delta. The relative importance of each physical process on the sediment transport and consequent morphodynamics varies across the region. The main inlet channel is dominated by tidal action that directs the sediment transport as a consequence of the varying tidal flow asymmetry, resulting in net offshore transport. Sediment transport over the shoals and secondary channels at both sides of the main channel is dominated by wave-related processes, displacing sediment in the onshore direction. The interaction between waves and tide-generated currents controls the transport over the submerged sandbar that defines the channels seaward extend. High river discharge events are also proven to be important in this region, as they can change sediment-transport patterns across the area.Responsible Editor: Iris Grabemann  相似文献   

15.
With the rapid growth of nanotechnology industry, nanomaterials as an emerging pollutant are gradually released into subsurface environments and become great concerns. Simulating the transport of nanomaterials in groundwater is an important approach to investigate and predict the impact of nanomaterials on subsurface environments. Currently, a number of transport models are used to simulate this process, and the outputs of these models could be inconsistent with each other due to conceptual model uncertainty. However, the performances of different models on simulating nanoparticles transport in groundwater are rarely assessed in Bayesian framework in previous researches, and these will be the primary objective of this study. A porous media column experiment is conducted to observe the transport of Titanium Dioxide Nanoparticles (nano-TiO2). Ten typical transport models which consider different chemical reaction processes are used to simulate the transport of nano-TiO2, and the observed nano-TiO2 breakthrough curves data are used to calibrate these models. For each transport model, the parameter uncertainty is evaluated using Markov Chain Monte Carlo, and the DREAM(ZS) algorithm is used to sample parameter probability space. Moreover, the Bayesian model averaging (BMA) method is used to incorporate the conceptual model uncertainty arising from different chemical reaction based transport models. The results indicate that both two-sites and nonequilibrium sorption models can well reproduce the retention of nano-TiO2 transport in porous media. The linear equilibrium sorption isotherm, first-order degradation, and mobile-immobile models fail to describe the nano-TiO2 retention and transport. The BMA method could instead provide more reliable estimations of the predictive uncertainty compared to that using a single model.  相似文献   

16.
Typhoons and storms have often brought heavy rainfalls and induced floods that have frequently caused severe damage and loss of life in Taiwan. Our ability to predict sewer discharge and forecast floods in advance during storm seasons plays an important role in flood warning and flood hazard mitigation. In this paper, we develop an integrated model (TFMBPN) for forecasting sewer discharge that combines two traditional models: a transfer function model and a back propagation neural network. We evaluated the integrated model and the two traditional models by applying them to a sewer system of Taipei metropolis during three past typhoon events (NARI, SINLAKU, and NAKR). The performances of the models were evaluated by using predictions of a total of 6 h of sewer flow stages, and six different evaluation indices of the predictions. Finally, an overall performance index was determined to assess the overall performance of each model. Based on these evaluation indices, our analysis shows that TFMBNP yields accurate results that surpass the two traditional models. Thus, TFMBNP appears to be a promising tool for flood forecasting for the Taipei metropolis sewer system. For publication in Stochastic Environmental Research and Risk Analysis.  相似文献   

17.
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.  相似文献   

18.
We assessed short-term ecological and potential human health effects of wastewater treatment plant (WTP) effluent by measuring δ15N‰ and microbial concentrations in oysters and suspended particulate matter (SPM). We also tested male-specific bacteriophage (MSB) as an alternative to fecal coliforms, to assess potential influence of wastewater contamination on shellfish. WTP effluent did not affect oyster growth or survival, but SPM and oysters acquired wastewater-specific δ15N‰. δ15N values were depleted near the WTP, typical of low-level processed wastewater. Fecal coliform and MSB concentrations were higher in samples taken closest to the WTP, and MSB values were significantly correlated with δ15N‰ in oyster tissues. Overall, oysters demonstrated relatively rapid integration and accumulation of wastewater-specific δ15N‰ and indicator microorganisms compared to water samples. These data suggest oysters were superior sentinels compared to water, and MSB was a more reliable indicator of wastewater influence on shellfish than fecal coliforms.  相似文献   

19.
《Advances in water resources》2002,25(8-12):945-983
Subsurface contamination by organic chemicals is a pervasive environmental problem, susceptible to remediation by natural or enhanced attenuation approaches or more highly engineered methods such as pump-and-treat, amongst others. Such remediation approaches, along with risk assessment or the pressing need to address complex scientific questions, have driven the development of integrated modelling tools that incorporate physical, biological and geochemical processes.We provide a comprehensive modelling framework, including geochemical reactions and interphase mass transfer processes such as sorption/desorption, non-aqueous phase liquid dissolution and mineral precipitatation/dissolution, all of which can be in equilibrium or kinetically controlled. This framework is used to simulate microbially mediated transformation/degradation processes and the attendant microbial population growth and decay. Solution algorithms, particularly the split-operator (SO) approach, are described, along with a brief résumé of numerical solution methods. Some of the available numerical models are described, mainly those constructed using available flow, transport and geochemical reaction packages. The general modelling framework is illustrated by pertinent examples, showing the degradation of dissolved organics by microbial activity limited by the availability of nutrients or electron acceptors (i.e., changing redox states), as well as concomitant secondary reactions. Two field-scale modelling examples are discussed, the Vejen landfill (Denmark) and an example where metal contamination is remediated by redox changes wrought by injection of a dissolved organic compound. A summary is provided of current and likely future challenges to modelling of oxidisable organics in the subsurface.  相似文献   

20.
Two-dimensional, vertically-averaged hydrodynamic and sediment transport models were developed and applied as part of a PCB fate and transport modeling study of Thompson Island Pool (TIP), Upper Hudson River. Mechanistic formulations were used to simulate cohesive and non-cohesive suspended load transport; site-specific data were extensively used to determine model inputs. This modeling approach is compared and contrasted to non-mechanistic solids transport sub-models used in other contaminant fate studies. A minimum number of model parameters were adjusted to calibrate the sediment transport model using data collected during the 1994 spring flood. The model was validated during the 1997 spring flood and for a 22-year (1977–1998) period. Successful calibration and validation of the model showed that: (1) deposition and resuspension processes were realistically and accurately formulated in the model; (2) the model is an effective diagnostic tool for quantitatively evaluating net deposition and erosion from various areas of TIP; and (3) sediment transport results can be coupled with a PCB fate model with a high degree of confidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号