首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The storage capacity of reservoirs is gradually reduced due to sediment accumulation that causes changes in the area-storage capacity (ASC) curves.Establishing these curves and predicting their future change is an important issue for planners,designers and operators of dams.Many empirical and semiempirical approaches have been suggested for establishing and predicting the future changes for these curves.In this study four empirical and semi-empirical methods were evaluated and three of them were modified to be used for the prediction of changes in the ASC curves due to sedimentation,based on the existing sedimentation survey data for 11 reservoirs in the USK For evaluation,these approaches were reviewed and used to determine sedimentation depth and establishing the ASC curves for the Mosul dam reservoir (MDR),which is the biggest hydraulic structure on the River Tigris in northern Iraq.MDR started operating in 1986 with a storage capacity of 11.11 km3 and a water surface area 380 km2 at normal operation stage (330 m a.s.l.).The results obtained from these methods were evaluated using observed bathymetric survey data that had been collected in 2011 after 25 years of the operation of the dam.The evaluation results showed three methods had presented more accurate results for estimating water depth or sedimentation depth at dam site with percentage error about 1.06-3.30%.Whilst for establishing ASC curves,one method presented good agreement result with survey data.Furthermore,ASC and sedimentation depths at dam site of MDR for periods 50,75,100 and 125 years were estimated using the modified approaches and the area reduction method.The results of the modified methods provided reasonable agreement when compared with the area reduction method proposed by the U.S.Bureau of Reclamation and the agreement became better with an increase in time period.  相似文献   

2.
The traditional and still prevailing approach to characterization of flood hazards to dams is the inflow design flood (IDF). The IDF, defined either deterministically or probabilistically, is necessary for sizing a dam, its discharge facilities and reservoir storage. However, within the dam safety risk informed decision framework, the IDF does not carry much relevance, no matter how accurately it is characterized. In many cases, the probability of the reservoir inflow tells us little about the probability of dam overtopping. Typically, the reservoir inflow and its associated probability of occurrence is modified by the interplay of a number of factors (reservoir storage, reservoir operating rules and various operational faults and natural disturbances) on its way to becoming the reservoir outflow and corresponding peak level—the two parameters that represent hydrologic hazard acting upon the dam. To properly manage flood risk, it is essential to change approach to flood hazard analysis for dam safety from the currently prevailing focus on reservoir inflows and instead focus on reservoir outflows and corresponding reservoir levels. To demonstrate these points, this paper presents stochastic simulation of floods on a cascade system of three dams and shows progression from exceedance probabilities of reservoir inflow to exceedance probabilities of peak reservoir level depending on initial reservoir level, storage availability, reservoir operating rules and availability of discharge facilities on demand. The results show that the dam overtopping is more likely to be caused by a combination of a smaller flood and a system component failure than by an extreme flood on its own.  相似文献   

3.
Reservoir construction can lead to much more water stored in front of the dam and significantly increase heat storage capacity of the reservoir waters, thus resulting in different distribution pattern of water temperature in reservoir area compared to river. Especially for large reservoir, the obvious stratification of water temperature will appear in the reservoir with deeper water levels. Meanwhile, the low water temperature will be observed in the downstream river due to the operation of the reservoir. The vertical numerical simulation model for reservoir from MIKE 11 was used to predict the changes of water temperature of Wuxikou Reservoir to check the effects of the reservoir construction on water temperature. The water temperature prediction model was developed to simulate the water temperature of the reservoir and the discharged outflow water. The predicted results can contribute to assessing the feasibility of the pre‐constructed project based on the environmental influence of water temperature.  相似文献   

4.
基于接触非线性有限元模型,以锦屏一级拱坝为例,库水分别采用附加质量模型、可压缩流体有限元模型、不可压缩流体有限元模型计算了正常蓄水位及运行低水位时坝体的动力响应,结果表明:库水模型对拱坝动力响应有较大影响,随库水深度的增大,各模型计算结果差异增大;相比于流体可压缩模型,采用不可压缩流体模型所得动力响应普遍偏大;运行低水位工况,由于静水压力减小导致拱效应减弱,从而降低了拱坝的整体性,因此运行低水位工况各缝开度普遍高于正常蓄水位工况,且其拉应力范围较大,因此,运行低水位工况将对抗震设计起控制作用。  相似文献   

5.
It is becoming increasingly popular to reintroduce beaver to streams with the hopes of restoring riparian ecosystem function or reducing some of the hydrological impacts of climate change. One of the risks of relying on beaver to enhance ecosystem water storage is that their dams are reportedly more apt to fail during floods which can exacerbate flood severity. Missing are observations of beaver dam persistence and water storage capacity during floods, information needed to evaluate the risk of relying on beaver as a nature-based flood solution. A June rainstorm in 2013 triggered the largest recorded flood in the Canadian Rocky Mountains west of Calgary, Alberta. We opportunistically recorded hydrometric data during the rainfall event at a beaver-occupied peatland that has been studied for more than a decade. We supplemented these observations with a post-event regional analysis of beaver dam persistence. Results do not support two long-held hypotheses—that beaver ponds have limited flood attenuation capacity and commonly fail during large flood events. Instead we found that 68% of the beaver dam cascade systems across the region were intact or partially intact after the event. Pond fullness, in addition to the magnitude of the water-sediment surge, emerged as important factors in determining the structural fate of dam cascade sequences. Beaver ponds at the instrumented site quickly filled in the first few hours of the rain event and levels were dynamic during the event. Water storage offered by the beaver ponds, even ones that failed, delayed downstream floodwater transmission. Study findings have important implications for reintroducing beaver as part of nature-based restoration and climate change adaptation strategies.  相似文献   

6.
Rainfall distributions in Iran are spatially and temporally heterogeneous, a fact probably linked to the mostly arid and semi-arid climate of the country. On the other hand, water demand is increasing with increasing population and improving life style. At present, the optimal utilization of water resources and irrigation dams is the primary concern of water resource managers. The Eleviyan dam (with a capacity of 60 hm3) was constructed to meet the irrigation and municipal water needs of the Maraghan region (Northwestern Iran). In this study, the efficiency of the Eleviyan irrigation dam system was investigated in three phases by setting up the optimization model that maximized the water release for irrigation purposes after municipal water need were met. In the first phase, the inflows measured in the 21 years prior to the construction of the reservoir, and in the second, the inflows generated by the Monte Carlo simulation method, and in the third phase, the inflows after the construction of the reservoir were used. The results demonstrate that the capacity determined during the preliminary studies was accurate and the operation carried out in the recent periods of operation life was up to a satisfactory standard.  相似文献   

7.
Large dam construction for irrigation, hydropower, water supply, and flood control in tropical to sub-tropical areas increased markedly after 1950. Many of the dams built during this period have filled with sediment and no longer perform to their original design specifications; in many cases, forecast dam life was greatly overestimated. This study investigates the useful life of Burdekin Falls Dam (BFD), northeastern Australia and compares the findings with other tropical reservoirs. Using two independent methods it is estimated that between 61 and 65 million m3 of sediment has been deposited in the reservoir over the 24 years of operation through 2011. This sediment volume equates to an average of 0.15% of capacity lost per year since construction was completed. If current sediment loads/climate regimes persist, reservoir capacity will be reduced by 50% after 345 years. However, the useful life of the BFD reduces to just 276 years when drawdown data are considered; these data show reservoir use would be affected once 40% of storage was filled with sediment, with a 60% drawdown return period of 1 in 15 years. When compared to similar large tropical to sub-tropical reservoirs, the BFD has a slightly longer reservoir useful life than dams in India and a much longer half-life than for both similar-sized and larger dams in China, Brazil, and Iran. Properties of the BFD that promote a longer useful life include a lower trap efficiency, relatively low annual sediment load delivered to the reservoir, limited sediment deposition behind the dam wall (and uniform distribution of deposited sediment), and the export of highly turbid annual floodwaters before settling and deposition of any remaining sediment within the reservoir.  相似文献   

8.
Abstract

Small dams represent an important local-scale resource designed to increase water supply reliability in many parts of the world where hydrological variability is high. There is evidence that the number of farm dams has increased substantially over the last few decades. These developments can have a substantial impact on downstream flow volumes and patterns, water use and ecological functioning. The study reports on the application of a hydrological modelling approach to investigate the uncertainty associated with simulating the impacts of farm dams in several South African catchments. The focus of the study is on sensitivity analysis and the limitations of the data that would be typically available for water resources assessments. The uncertainty mainly arises from the methods and information that are available to estimate the dam properties and the water use from the dams. The impacts are not only related to the number and size of dams, but also the extent to which they are used for water supply as well as the nature of the climate and the natural hydrological regimes. The biggest source of uncertainty in South Africa appears to be associated with a lack of reliable information on volumes and patterns of water abstraction from the dams.

Citation Hughes, D. A. & Mantel, S. K. (2010) Estimating the uncertainty in simulating the impacts of small farm dams on streamflow regimes in South Africa. Hydrol. Sci. J. 55(4), 578–592.  相似文献   

9.
Abstract

The new Swedish guidelines for the estimation of design floods for dams and spillways are presented, with emphasis on high-hazard dams. The method is based on a set of regional design precipitation sequences, rescaled for basin area, season and elevation above sea level, and a full hydrological model. A reservoir operation strategy is also a fundamental component of the guidelines. The most critical combination of flood generating factors is searched by systematically inserting the design precipitation sequence into a ten year climatological record, where the initial snowpack has been replaced by a statistical 30-year snowpack. The new guidelines are applicable to single reservoir systems as well as more complex hydroelectric schemes, and cover snowmelt floods, rain floods and combinations of the two. In order to study the probabilities of the computed floods and to avoid regional inconsistencies, extensive comparisons with observed floods and frequency analyses have been carried out.  相似文献   

10.
11.
Available water resources are often not sufficient or too polluted to satisfy the needs of all water users. Therefore, allocating water to meet water demands with better quality is a major challenge in reservoir operation. In this paper, a methodology to develop operating strategies for water release from a reservoir with acceptable quality and quantity is presented. The proposed model includes a genetic algorithm (GA)-based optimization model linked with a reservoir water quality simulation model. The objective function of the optimization model is based on the Nash bargaining theory to maximize the reliability of supplying the downstream demands with acceptable quality, maintaining a high reservoir storage level, and preventing quality degradation of the reservoir. In order to reduce the run time of the GA-based optimization model, the main optimization model is divided into a stochastic and a deterministic optimization model for reservoir operation considering water quality issues.The operating policies resulted from the reservoir operation model with the water quantity objective are used to determine the released water ranges (permissible lower and upper bounds of release policies) during the planning horizon. Then, certain values of release and the optimal releases from each reservoir outlet are determined utilizing the optimization model with water quality objectives. The support vector machine (SVM) model is used to generate the operating rules for the selective withdrawal from the reservoir for real-time operation. The results show that the SVM model can be effectively used in determining water release from the reservoir. Finally, the copula function was used to estimate the joint probability of supplying the water demand with desirable quality as an evaluation index of the system reliability. The proposed method was applied to the Satarkhan reservoir in the north-western part of Iran. The results of the proposed models are compared with the alternative models. The results show that the proposed models could be used as effective tools in reservoir operation.  相似文献   

12.
Stochastic optimization methods are used for optimal design and operation of surface water reservoir systems under uncertainty. Chance-constrained (CC) optimization with linear decision rules (LDRs) is an old approach for determining the minimum reservoir capacity required to meet a specific yield at a target level of reliability. However, this approach has been found to overestimate the reservoir capacity. In this paper, we propose the reason for this overestimation to be the fact that the reliability constraints considered in standard CC LDR models do not have the same meaning as in other models such as reservoir operation simulation models. The simulation models have fulfilled a target reliability level in an average sense (i.e., annually), whereas the standard CC LDR models have met the target reliability level every season of the year. Mixed integer nonlinear programs are presented to clarify the distinction between the two types of reliability constraints and demonstrate that the use of seasonal reliability constraints, rather than an average reliability constraint, leads to 80–150 % and 0–32 % excess capacity for SQ-type and S-type CC LDR models, respectively. Additionally, a modified CC LDR model with an average reliability constraint is proposed to overcome the reservoir capacity overestimation problem. In the second stage, we evaluate different operating policies and show that for the seasonal (average) reliability constraints, open-loop, S-type, standard operating policy, SQ-type, and general SQ-type policies compared to a model not using any operation rule lead to 190–460 % (200–550 %), 100–200 % (80–300 %), 0–90 % (0–60 %), 30–90 % (0–20 %), and 10–90 % (0–10 %) excess capacity, respectively.  相似文献   

13.
李祖忠  张旭东  江聪  杜涛  曾凌 《湖泊科学》2023,35(5):1822-1831
三峡水库蓄水引起库区水位抬升,水面面积显著增加,对区域水文循环过程产生了一定影响。为揭示三峡水库蓄水前后水面面积及蒸发损失变化规律,选取三峡库区坝前至寸滩区间作为研究区,利用Landsat影像数据提取1982—2021年水面面积,分区建立水位与面积关系曲线,进而推求库区逐日水面面积。在估计三峡库区水面面积的基础上,结合站点潜在蒸发资料推求水面蒸发损失量。研究结果表明:2010年三峡水库全面运行后,坝前至寸滩库区平均水面面积由蓄水前的372.96km2,增加到761.31km2,较蓄水前增加了1.04倍。同时,三峡水库的蓄泄调节改变了库区河段原有的水文节律,使得库区水面面积的季节性变化特征较蓄水前发生了显著变化。蓄水后,冬季水面面积最大,平均为843.81km2,较蓄水前增加了1.89倍;秋季、春季次之,水面面积分别为818.73和735.28km2,较蓄水前分别增加了97.17%和1.28倍;夏季水面面积最小,为653.03km2,较蓄水前仅增加了39.06%。水库全面运行后,...  相似文献   

14.
泥沙问题是三峡工程建设与运行中的关键技术问题之一,只有妥善处理好泥沙问题,才能保证三峡工程长期有效使用,维持水库功能的全面发挥。本文首先结合实测水文、河道地形观测资料,对三峡水库运行近20年来的泥沙淤积特性及水库排沙比进行了较为全面的分析研究,并与已有研究成果进行了对比;其次,围绕防洪、航运以及坝前段的泥沙淤积等方面,进一步分析了水库淤积产生的影响。结果表明:三峡水库蓄水以来,在不考虑区间来沙的情况下,三峡水库共淤积泥沙20.484亿t,近似年均淤积1.102亿t,水库排沙比为23.6%,水库年均淤积量为原论证预测值的33%。其中,库区干流段累计淤积泥沙17.835亿m3(变动回水区冲刷0.694亿m3;常年回水区淤积18.529亿m3),淤积在水库防洪库容内的泥沙为1.648亿m3(干、支流分别淤积1.517亿m3和0.131亿m3),占水库防洪库容的0.74%,“十一五”攻关阶段研究得出的多年平均淤积量及排沙比较实测值均偏大,变动回水区冲淤则出现反向的...  相似文献   

15.
《国际泥沙研究》2022,37(5):675-686
In the Brazilian drylands, there are tens of thousands of small dams. Despite their paramount importance to the rural population, they are rarely monitored. Water demand increases with time while, simultaneously, siltation reduces reservoir water capacity and availability. Reservoir siltation models are, therefore, mandatory to manage the numerous ungauged small dams in these drylands. The objective of the current study is to improve sediment trap efficiency (TE) modeling by including resuspension as a key probabilistic process. The Shannon entropy was used to estimate the sediment resuspension probability, which was merged with the Camp model and generated the RETSED entropy model. To validate the RETSED model, an experimental check dam (ECD, 300 m³), located in the Gilbués desertification site, Brazil, was monitored hourly during one hydrological year (July 2018–July 2019). Measurements show that the annual volumetric decline of the check dam was 12%; and that the average trap efficiency equaled 86%. Only 9.5% of the hourly sediment concentration outflow exceeded the average plus one standard deviation, showing that the reservoir is well mixed; a fact which highlights the relevance of the resuspension process. Three empirical models failed to mimic the experimental results: Churchill (TE = 99%), Brune (TE = 75%), and Maryland (TE = 94%). According to the RETSED entropy model, the resuspension probability during the experiment was 10% and TE = 81%, a value only 6% below the measured one. The Camp model simulated TE = 89%, only 3% higher than the measured value, but confirmed the Camp model's tendency to overestimate TE due to a disregard of resuspension. The deterministic model showed low sensitivity concerning the hydrodynamic effects, whereas the entropy formulation proved to be more consistent with physical behavior: the resuspension probability clearly increased and trap efficiency decreased with rising reservoir discharge.  相似文献   

16.
We investigated dam behaviours during high-flow events and their robustness against perturbations in meteorological conditions using the H08 global hydrological model. Differences in these behaviours were examined by comparing simulation runs, with and without dams and using multiple meteorological datasets, at a case-study site, Fort Peck Dam on the Missouri River, USA. The results demonstrated that dam-regulated river flow reduced temporal variability over large time periods and also dampened inter-forcing discrepancies in river discharge (smoothing effects). However, during wet years, differences in peak flow were accentuated downstream of the dam, resulting in divergence in simulated peak flow across the meteorological forcing (pulsing effect). The pulsing effect was detected at other major dams in global simulations. Depending upon the meteorological forcing, the dams act as a selective filter against high-flow events. Synergy between a generic dam scheme and differences in meteorological forcing data might introduce additional uncertainties in global hydrological simulations.  相似文献   

17.
Dynamic response of dams is significantly influenced by foundation stiffness and dam-foundation interaction. This in turn, significantly effects the generation of hydrodynamic pressures on upstream face of a concrete dam due to inertia of reservoir water. This paper aims at investigating the dynamic response of dams on soil foundation using dynamic centrifuge modelling technique. From a series of centrifuge tests performed on model dams with varying stiffness and foundation conditions, significant co-relation was observed between the dynamic response of dams and the hydrodynamic pressures developed on their upstream faces. The vertical bearing pressures exerted by the concrete dam during shaking were measured using miniature earth pressure cells. These reveal the dynamic changes of earth pressures and changes in rocking behaviour of the concrete dam as the earthquake loading progresses. Pore water pressures were measured below the dam and in the free-field below the reservoir. Analysis of this data provides insights into the cyclic shear stresses and strains generated below concrete dams during earthquakes. In addition, the sliding and rocking movement of the dam and its settlement into the soil below are discussed.  相似文献   

18.
A nonlinear finite element model for earthquake response analysis of arch dam–water–foundation rock systems is proposed in this paper. The model includes dynamic dam–water and dam–foundation rock interactions, the opening of contraction joints, the radiation damping of semi‐unbounded foundation rock, the compressibility of impounded water, and the upstream energy propagating along the semi‐unbounded reservoir. Meanwhile, a new equivalent force scheme is suggested to achieve free‐field input in the model. The effects of the earthquake input mechanism, joint opening, water compressibility, and radiation damping on the earthquake response of the Ertan arch dam (240 m high) in China are investigated using the proposed model. The results show that these factors significantly affect the earthquake response of the Ertan arch dam. Such factors should therefore be considered in the earthquake response analysis and earthquake safety evaluation of high arch dams. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The cascading failure of multiple landslide dams can trigger a larger peak flood discharge than that caused by a single dam failure.Therefore,for an accurate numerical simulation,it is essential to elucidate the primary factors affecting the peak discharge of the flood caused by a cascading failure,which is the purpose of the current study.First,flume experiments were done on the cascading failure of two landslide dams under different upstream dam heights,downstream dam heights,and initial downstream reservoir water volumes.Then,the experimental results were reproduced using a numerical simulation model representing landslide dam erosion resulting from overtopping flow.Finally,the factors influencing the peak flood discharge caused by the cascading failure were analyzed using the numerical simulation model.Experimental results indicated that the inflow discharge into the downstream dam at the time when the downstream dam height began to rapidly erode was the main factor responsible for a cascading failure generating a larger peak flood discharge than that generated by a single dam failure.Furthermore,the results of a sensitivity analysis suggested that the upstream and downstream dam heights,initial water volume in the reservoir of the downstream dam,upstream and downstream dam crest lengths,and distance between two dams were among the most important factors in predicting the flood discharge caused by the cascading failure of multiple landslide dams.  相似文献   

20.
Catchment storage capacity is an important factor in the determination of catchment sensitivity to climate variability. Quantification of catchment sensitivity is in turn important in the regional assessment of the effects of possible climate change. In the present paper, an empirical regional model is proposed that quantifies catchment sensitivity as the ratio of present maximum reservoir storage to catchment storage capacity. Catchment storage capacity is defined theoretically using readily available catchment variables. Present maximum reservoir storage in a catchment, as determined from recession analysis, is expressed as a fraction of catchment storage capacity; the fraction defines catchment sensitivity and depends on storage capacity and annual net precipitation. Average annual conditions for present maximum reservoir storage and average annual net precipitation are used to test the developed model. Although the study used data from only 15 catchments in the Upper Loire region in France, the model proved statistically valid. Storage capacity calculated with the model compares favourably with the baseflow index and a storage index defined in previous research. Values of storage capacity are probable with respect to reported water resources in the area. With the model catchment sensitivity can easily be assessed. Flood or drought prone catchments can be identified as well as a catchment's sensitivity to a catchment-type transition (baseflow versus direct flow dominated catchments). © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号